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ABSTRACT
Structures made from carbon composite materials are rapidly replacing metallic ones in the automotive
industry because of their high strength-to-mass ratio. The goal of this study is to enhance acoustic comfort
of cars made from carbon composites by comparing various carbon composites in order to find the most
suitable composite in terms of mechanical and dynamic properties. To achieve this goal, the structural intensity
method is implemented. This method can give information concerning the paths of energy propagated through
structures and the localization of vibration sources and sinks. The significance of the present research is that
it takes into account the effect of the material damping on the dissipation of the energy in a structure. The
damping of the composite is presented as a function of its macro mechanical properties, frequency, geometry,
and boundary conditions. The damping values are calculated from a 2D analytical model based on the laminate
theory and the modal strain energy method. The benefit of this research for acoustics is that it demonstrates
the effect of material properties on the passive control of vibrations in a structure. Consequently, vibrational
energy propagated in carbon composite structures is reduced, and less noise is radiated.

Keywords: NVH, composite structures I-INCE Classification of Subjects Number(s): 13.2.1

1. INTRODUCTION
In order to improve the NVH (noise, vibrations, and harshness) performance of future vehicles without

increasing production cost or weight, the effect of material properties on passive control of vibrations in CFRP
(carbon fiber reinforced plastic) structures is investigated. In order to find suitable composite lay-ups in terms
of NVH performance, the damping of various carbon composite laminas is simulated numerically. The paths
of energy propagated through carbon composite structures and the location of vibration sources and sinks are
determined. The effect of material damping on the dissipation of vibrational energy is taken into account. The
dependence of damping on frequency and material orientation is studied and, thus, the NVH performance of
carbon composites can be improved. In this paper, firstly the structural intensity method of carbon composite
laminas is implemented, then a study of the effect of the modal damping on the vibrational energy flow is
performed. Finally, the modal strain energy method is implemented to determine the accurate values of modal
damping of a vibrating structure.

2. CALCULATION OF STRUCTURAL INTENSITY OF LAMINATED PLATES
The structural intensity represents the vibrational power flow per unit cross-sectional area of a dynamically

loaded structure. Since Noiseux (1) introduced the measurement method of power flow in beams and plates
using measured accelerations and the wave equation, many studies have been carried out over the years to
understand power flow phenomena in structures. For instance, Pavic (2), Fahy and Pierri (3), and Verheij (4)
presented the measurement methods of vibration power flow using the measured amplitudes in frequency and
or time domain, and they estimated the internal forces numerically by the finite difference method. Structural
intensity analysis using the finite element method (FEM) was also formulated by Gavric, and Pavic (5) and
by Hambric (6). Using FEM simulations, Rajmani et al. (7) studied the dynamic response of composite
laminas with cutouts for simply supported and clamped boundary conditions. Lee et al. (8) studied the free
vibration of composite laminas with rectangular cutouts. Liu (9) studied the structural intensity characteristics
of isotropic plates under low-velocity impact. Wang et al. (10) studied the structural intensity characteristics
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of composite laminas subjected to a dynamic concentrated force. Wang et al. (11) discussed the structural
intensity characteristics of composite laminas subjected to impact load.

The instantaneous structural intensity component in the time domain is defined as follows

ik(t) =−σkl(t)vl(t) (1)

where σkl(t) and vl(t) are the stress and velocity, respectively, in the l-direction at time t. The temporal mean
of the kth instantaneous intensity component Ik =< ik(t)> represents the net energy flow through the structure.
For steady-state vibrations the complex structural intensity can be defined as (13)

∏
k
(ω) =

1
2

σ̃kl(ω)ṽ∗l (ω) = Ik(ω)+ jJk(ω), k, l = 1,2,3, (2)

where ωisthe f requency,ṽ∗l (ω) is the complex conjugate of velocity and σ̃kl(ω) is the complex stress. The
real part of the quantity Ik(ω) is called active intensity and indicates the net energy flow in the structure. The
imaginary part Jk(ω) is called reactive intensity and does not contribute to the net energy flow in a structure.
The active intensity is associated with propagative vibration fields. For composite laminated plate elements,
since stresses and displacements are usually determined as stress results and movements for each layer, the
integration is carried out over the whole thickness. The structural intensity in the laminated plates can be
expressed in the form of power flow per unit width. Both flexural deformations and membrane effect are
considered in the formulation of the reactive structural intensity of the plate. The two-dimensional components
of the active and reactive structural intensity in the local x and y directions for a vibrating flat plate can be
expressed as (5)
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Imag[Ñxũ∗+ Ñxyṽ∗+ Q̃xW̃ ∗+ M̃xθ̃

∗
y − M̃xyθ̃

∗
x ], (3)

Ireactive y =−ω

2
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where Ñx, Ñy, and Ñxy = Ñyx are complex membrane forces per unit width of plate, M̃x, M̃y, and M̃xy = M̃yx are
complex bending and twisting moments per unit width of plate, Q̃x and Q̃y are complex transverse shear forces
per unit width of plate, ũ∗, ṽ∗, and W̃ ∗ are complex conjugates of translational displacements in x, y, and z
directions, θ̃ ∗

x , and θ̃ ∗
x are complex conjugates of rotational displacements about x and y directions. For the

composite laminas, the stress-strain relation for an orthotropic layer in any orientation angle in the plane of the
layer k is given as 
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where the transformed stiffness Ci j =C ji is given in terms of the orientation angle and the engineering constants
of the material. For small deformations the displacement components of a point are

u = u0 − zω,x, (8)

v = v0 − zω,y. (9)

The strain-displacement relations are

εx = u0,x − zW,xx,

εy = v0,y − zW,yy,

γxy = u0,y + v0,x −2zω,yy.

(10)

For a typical lamina k, the contribution of this lamina to the stress-resultants and stress couples of the plate is
given by
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Thus, if there are n laminas in the plate, the stress resultants and stress couples are obtained by simply summing
Eq. (11) over the n laminas, substituting Eqs. (10) and (7) in Eq. (11), and performing this summation results
in
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for the stress couples, where the Ai j, Bi j and Di j are defined by
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(12)

3. DAMPING ANALYSIS OF COMPOSITE STRUCTURES
Generally, vehicles are subjected to dynamic loadings, and if they are not properly designed they may fail

due to instability or fatigue. Therefore, the area of dynamic behavior of fiber reinforced composite structures
has attracted close attention in the recent years. In particular, since damping has the beneficial effect of
absorbing noise and vibrations of the system, the studies of damping capacities of laminated structures have
been carried out by many investigators. The damping in a structure helps to reduce the amplitudes of the
vibrations of the structure, and, consequently, it is considered a very important feature in mechanical design.
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In general, the damping in metal structures is low, which results in high amplitudes of the vibrations. For
carbon composite materials, damping is higher, and it depends on the constitution of the materials. From
micro mechanical point of view, the energy dissipation in carbon fiber reinforced composites is induced by
various processes such as the viscoelastic behavior of the matrix and the damping of the fiber-matrix interface.
From a macro mechanical point of view, the damping depends on the constituent layer properties, layer
orientations, inter-laminar effects, and stacking sequence. Moreover, the damping in composites involves a
variety of energy dissipation mechanisms that depend on vibrational parameters such as frequency, amplitude,
and environmental conditions such as temperature and moisture. Vance et al. (14) reviewed in detail the initial
works on the damping analysis of fiber composite materials. Adams and Bacon (15) did a damping analysis
of composite materials in which the energy dissipation can be described as separable energy dissipations
associated with the individual stress components. Afterwards, this analysis was refined by Ni and Adams
(16). The damping of orthotropic beams is presented as a function of material orientation. Moreover, the
damping of cross-ply laminas, angle-ply laminas, as well as more general types of symmetric laminates were
studied. Adams and Maheri (17) applied the damping concept of Adams and Bacon to the investigation of
angle-ply laminas made of unidirectional glass fiber or carbon layers. Lin et al. (18) and Maheri and Adams
(19) used the finite element analysis to evaluate the damping properties of free-free fiber reinforced plates.
The two transverse shear damping parameters were included in these analyses. Then, the established damping
model of FRP composites by Adams and Maheri (17) named modal strain energy approach was adopted by
the following authors in order to develop the damping analysis of various composites (20, 21, 22). Maheri
et al. (23) also demonstrated that the modal strain energy method was effective for analyzing the vibration
damping of honeycomb structure panels with carbon fiber composite sheets. Berthelot (24) studied extensively
the damping of carbon composite laminas with viscoelastic layers and sandwich materials. Yang et al. (25)
used the modal strain energy method to study the vibration and damping characteristics of hybrid carbon fiber
composte pyramidal truss sandwich panels with viscoelastic layers. The various definitions of damping are
related as follows (26)

η =
Ψ

2π
= 2ξ =

1
Q

=
δ

π
=

E2

E1
= tanΦ (13)

where η is the loss factor, ψ is the specific damping capacity, ξ is the damping ratio, Q is the quality factor, δ

is the logarithmic decrement, E1 is the storage modulus, E2 is the loss modulus and Φ is the loss angle.

4. MODAL STRAIN ENERGY APPROACH
In this paper, the modal strain energy approach was applied in a finite element formulation to calculate the

damping properties of carbon composite laminas. The principle of this method is that the damping properties
of a structure can be defined by the ratio of the energy dissipated to the energy stored during a stress cycle. For
all CFRP laminas, the damping characteristics are obviously anisotropic. Hence, the total structural damping
loss factor can be expressed as

η =
∑

n
k=1 ηi jUk

i j

∑
n
k=1Uk

i j
(i, j = 1,2,3), (14)

where ηi j and Uk
i j are the damping loss factors of the composite parent material and the strain energy

components of the element k respectively. The number 1 is the fiber direction. 2 is transverse to this direction,
and 3 is through thickness direction. The strain energy Uk

i j is related to the stress component σi j and the strain
component εi j as follows

Uk
i j =

1
2

∫
σ

k
i jε

k
i jdV k. (15)

4.0.1 In-Plane Strain Energy
All the layers of the composite materials considered in this study are constituted of orthotropic materials.

In each layer, the stresses σ1, σ2, and σ12, related to the material directions, can be expressed as functions of
the in-plane stresses σxx, σyy, and σxy, related to the finite element directions (x, y, z), according to

σ1

σ2

σ12


=


cos2(θ) sin2(θ) 2sin(θ)cos(θ)

sin2(θ) cos2(θ) −2sin(θ)cos(θ)

−sin(θ)cos(θ) sin(θ)cos(θ) cos2(θ)− sin2(θ)




σxx

σyy

σxy


, (16)
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where θ is the orientation of material in layer. In a similar way, the strains ε1, ε2, and ε12, related to the
material directions, can be expressed as functions of the in-plane stresses εxx, εyy, and εxy, in the finite element
directions (x, y, z), according to the stress transformation relation

ε1

ε2

ε12


=


cos2(θ) sin2(θ) 2sin(θ)cos(θ)

sin2(θ) cos2(θ) −2sin(θ)cos(θ)

−sin(θ)cos(θ) sin(θ)cos(θ) cos2(θ)− sin2(θ)




εxx

εyy

εxy


. (17)

The total in-plane energy Ue
d stored in a given finite element e can be expressed as a function of the in-plane

strain energies related to the material directions as

Ue
d =Ue
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12, (18)

with
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The in-plane strain energies stored in the finite element e can be expressed as
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n

∑
k=1
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11k,
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∑
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(20)

where Ue
i jk (ij=11,22,12) are the in-plane strain energies stored in the layer k of the element e, and n is the total

number of layers in the laminate. Next, the total in-plane strain energies stored in the finite element assemblage
are obtained by summation on the elements as

U11 = ∑
elements

Ue
11,

U12 = ∑
elements

Ue
12,

U22 = ∑
elements

Ue
22.

(21)

Transverse Shear Strain Energy
The transverse shear strain energy for a given element e can be expressed in the material directions as

Ue
s =Ue

13 +Ue
23, (22)

with

Ue
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1
2
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σ

e
13ε

e
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∫ ∫ ∫
σ

e
23ε

e
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(23)

where the integration is extended over the volume of the finite element e. σ23 and ε23 are, respectively, the
transverse shear stress and the strain in plane (2,3) of material in layer k. σ13 and ε13 are, respectively, the
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transverse shear stress and the strain in the plane (1,3). In each layer k, the stresses σ13, σ23 and the strains ε13,
ε23, related to material directions of the layer, can be expressed, respectively, as a function of the transverse
shear stresses σyz, σyz and a function of the transverse shear strains εyz, εyz, asσ13

σ23

=

cos(θ) −sin(θ)

sin(θ) cos(θ)


σxz

σyz

 , (24)

ε13

ε23

=

cos(θ) −sin(θ)

sin(θ) cos(θ)


εxz

εyz

 . (25)

The transverse shear energies can be expressed as

Ue
13 =

n

∑
k=1

Ue
13k,

Ue
23 =

n

∑
k=1

Ue
23k,

(26)

where Ue
i jk (ij= 13, 23) are the transverse shear energies stored in the layer k of the element e. Next, the total

transverse shear strain energies stored in the finite element assemblage are obtained by summation on the
elements as

U13 = ∑
elements

Ue
13,

U23 = ∑
elements

Ue
23.

(27)

The total strain energy stored in the laminated structure is given by

Utotal =U11 +U22 +U12 +U13 +U23, (28)

where the in-plane strain energies U11, U22, and U12 are expressed by Eq. (21), and the transverse shear
strain energies U13, and U23 are expressed by Eq. (27). U11, U22 are the contributions of tension-compression
deformation in the 1 and 2 direction of the fiber reinforced structures, respectively. U12, U13 and U23 are
the contributions of shear deformations in the planes (1,2), (1,3) and (2,3), respectively. Then, the energy
dissipated by damping in the layer k of the element e is derived from the strain energy stored in the layer by
introducing the specific damping coefficients ψe

pqk of each layer ψe
pqk as

∆Ue
k = ψ

e
11kU

e
11k +ψ12kUe

12k +ψ
e
22kU

e
22k +ψ

e
13Ue

13 +ψ
e
23Ue

23. (29)

These coefficients are related to the material directions (1,2,3) of the layer, ψe
11k and ψe

22k are the damping
coefficients in traction-compression in the 1 direction and 2 direction of the layer, respectively, ψe

12k is the
in-plane shear coefficient, ψe

13k and ψe
23k are the transverse shear damping coefficients in planes (2, 3) and

(1,3), respectively. The damping energy dissipated in the element e is next obtained by summation on the
layers of element e as

∆Ue =
n

∑
k=1

∆Ue
k . (30)

And the total energy ∆U dissipated in the finite element assemblage is then obtained by summation on the
elements

∆U = ∑
elements

∆Ue. (31)

Finally, the total damping of the finite element assemblage is characterized by the damping coefficient ψ of
the assemblage derived from the relation

ψ =
∆U

Utotal
. (32)
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4.1 Procedure for Evaluating the Damping of Composite Structure
The procedure for evaluating the damping of carbon composite structure was performed by implementing a

postprocessing tool for models simulated using two commercial finite element software packages, namely,
Abaqus and Nastran. This procedure is based on the previous formulation, and it is valid for any structure in
which the damping characteristics are different according to the layers and to the elements of the assemblage.
Figure 1 shows the solution procedure of the damping loss factor of the model. The finite element analysis is
used first to calculate the frequency response function of the vibrating structure. The natural frequencies and
the corresponding mode shapes are obtained. For each frequency, the total number of layers is extracted. Then
the thickness of each layer is extracted. Then for every element in each layer, the area and the components of
stresses σ k

i j and strains εk
i j are extracted in order to calculate and cumulate the various strain energies of the

whole model. Then, the specific damping capacities of each layer are used to calculate the dissipated energy
components. Finally, the damping of the whole carbon composite structure is calculated according to Eq. (32).

5. MODEL VERIFICATION
In order to validate the implementation of this model, a test case is made and compared for the case of

glass fibre composites. The specific damping capacities and the material properties of the single layers are
taken from Adams and Maheri (17). A cantilever beam in a clamping block is excited at a point near the
clamping block. The test is performed for glass fiber/epoxy laminas, E11= 41.5 GPa, E22= 10.9 GPa, G12=
4.91 GPa, µ12= 0.32, η11=1.61 %, η22 = 6.7 %, and η12=7.3 %. The frequency has been fixed at 50 Hz in
order to test the effect of the fiber orientation on the loss factor. The beam is composed of 8 unidirectional
layers of thickness 2 mm. The width-to-length ratio of the beam used is 1:17. The loss factor was tested for
various fiber orientations between 0 and 90 degrees. The results were compared to the results of Adams and
Maheri (17). A good agreement was found. The maximum of difference was found at 45 degrees, because in
this 2D model the effect of the inter-laminar interface on the damping is not taken accurately. Figure 2 shows
the results of this test. The model was also verified with a square plate of material-III given in (27). A square
plate was tested in simply supported boundary conditions with the same dimensions given in (27). A good
agreement was found in the variation of the specific damping capacity of a single layer with fiber orientation.

6. RESULTS AND DISCUSSION
The dynamic mechanical behavior of a vibrating structure is governed by the material properties and by its

geometrical dimensions. The material’s elastic modulus measures its capacity to store mechanical strain energy,
while its damping measures its capacity to dissipate energy. For instance, metallic materials are generally stiff
and have a high elastic modulus. These materials can generate high mechanical strain energy, but they are
poor in dissipating the energy because of low damping. Polymeric materials are viscoelastic, i.e., they have
both viscous and elastic properties. A polymer component can absorb significant energy and can dissipate the
energy. In order to study the effect of the damping on the structural intensity for a single natural frequency,
several tests were performed for various geometries, frequencies, and boundary conditions. The material used
in this section is HMS carbon epoxy (DX 210) (16). The results show that the influence of the damping is
only quantitative, i.e. the directions of the vectors stayed the same and only their absolute values are affected.
However, for the averaged structural intensity, the damping effect becomes also qualitative. The roof is tested in
simply supported boundary conditions, firstly with a constant damping over the frequency domain [0 Hz – 600
Hz], and secondly with a variable damping depending on the frequency. The structural intensity is averaged
over all natural frequencies present in this domain. The results show that in the case of averaged structural
intensity, the variable damping can change also qualitatively the vibrational energy flow. Figure 3 shows the
structural intensity distribution in the two cases. In order to study the effect of the boundary conditions on
the damping the damping of a carbon composite square plate with the lay-up [45,–45,45,–45] was calculated
in simply supported and clamped boundary conditions. Figure 4 shows the additionl damping added to the
structure from the friction at the boundary conditions. The boundary conditions affected the amount of the
energy absorbed in the different directions of the composites. For instance, for the third mode shape present
at 351 Hz in clamped BC and for the fourth mode shape present at 388 Hz in simply supported BC. The
distribution of the strain energy in the different directions of the composite is illustrated in Fig. 5 with i j is the
strain energy stored in the direction (i,j). So two parameters play crucial role in the total damping of composite
structure. The first one is the amount of energy stored in each direction in each layer, which can vary with the
boundary conditions, fiber orientation, and the lay-up of the whole composite. The second one is the specific
damping capacity of the single layer, which can be affected by the type of fibers used and the fiber volume
fraction. Moreover, a study of the vibrational energy flow is done for a car’s roof in free, simply supported,
and ball-joint boundary conditions. In free boundary conditions the energy flow is more concentrated at the
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boundaries. For simply supported and ball-joint boundary conditions, the energy flow has many virtual sinks
that can dissipate the vibrational energy. This difference in the directions of the vibrational energy flow is
the consequence of the different mode shapes coming from various boundary conditions. Figure 6 shows the
variation of the vibrational energy flow with the boundary conditions. In order to study the effect of the layer
orientation, the damping of four composite laminas is studied in the frequency domain [0 Hz–600 Hz]. Table 1
shows the various composite lay-ups and the engineering constants of each composite. The roof of the car
is simulated for the four composites in simply supported boundary conditions. The mass of the roof is 6.69
kg and the thickness is 3 mm. Figure 7 shows the specific damping capacity curves calculated at the natural
frequencies of each composite. By keeping the same mass and the same thickness of the roof, the using the

Table 1 – composite roofs properties

Composite Lay-up E1 (GPa) E2 (GPa) ν12 G12 (GPa) mass (kg) thickness (mm)

A [0,0,0]2 172 7.2 0.29 3.76 6.69 3
B [45,−45,45]2 13.9 13.9 0.84 43.910 6.69 3
C [0,30,60]2 85.778 37.23 0.52 23.835 6.69 3
D [0,15,30,45.60,75] 74.854 50.181 0.39 23.835 6.69 3

same layers from the same material, and changing only the orientations of these layers, the dynamic properties
of the composite change greatly. The engineering constants vary largely from composite to other and, the
amount of energy stored in each direction varies, and, consequently, the loss factor of the whole composite
structure vary from composite to other. The averaged vibrational flow is studied for the composites A, B, C,
D mentioned in Table 1. The average is calculated over all the natural frequencies present in the frequency
domain [0 Hz-600 Hz]. The same test is performed for a steel roof. Table 2 shows the properties of the roof
made from steel. The structural intensity of the various composites and steel roofs is illustrated in Figure 8.

Table 2 – steel roof properties

material E1 (GPa) ν12 mass (kg) thickness (mm)

steel 210 0.29 7.43 0.7

The vibrational energy flow varies largely from composite to other. In this study, the elastic modulus of the
carbon composite roofs is smaller than that of steel roof. Ultimately, the energy in the composite laminas
flows easier than in the steel. From these results it can be seen that it is easy to change the number and the
positions of virtual sources and sinks of the carbon composite roofs. In addition, as it is shown in Table 1, the
distribution of the elastic modulus of the composite laminas is also influenced by the stacking sequence of
the composite laminas. Consequently, the stacking sequence of the composite laminas affects the number of
virtual sources and sinks of the energy flow.

7. CONCLUSIONS
Damping in fiber reinforced composite materials is highly tailorable with respect to constituent properties

such as ply orientation angles. Thus the properly designed structure can provide significant damping and may
further improve the dynamic performance. The vibrational energy flow can be significantly reduced and the
paths of the energy flow become smoother. The number of virtual sources and sinks can be largely affected.
As the increased damping results in a decrease of stiffness, and strength, therefore any selection of material
properties must be based on trade off between damping, stiffness and strength. The modal strain energy method
is very effective to calculate the structural damping based on information on the parent material. The industrial
application of this work will be to apply this method on the carbon composites used in the BMW group. An
accurate measurement of the parent material damping allows to get an ideas about thousands of possible
combinations in various boundary conditions. The calculated values of damping can be used then in the
numerical simulations in order to get more accurate idea about the dynamic behavior of vibrating composite
structures.
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Figure 1 – Procedure to calculate the damping by the modal strain energy method.
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Figure 2 – Variation of specific damping capacity with fiber orientation for a glass/epoxy(fiberdux 913 G)
laminate with a unidirectional layup of [θ ◦]8.

Page 12 of 17 Inter-noise 2014



Inter-noise 2014 Page 13 of 17

Figure 3 – Effect of the damping on averaged structural intensity from 0 to 600 Hz.
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Figure 4 – Effect of boundary conditions on the damping.

Figure 5 – Distribution of the strain energy as a function of the boundary conditions.
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Figure 6 – Effect of boundary conditions on the vibrational energy flow.
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Figure 7 – Effect of composite lay-ups on the damping.
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Figure 8 – Effect of the Composite Lay-up on the Damping.
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