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ABSTRACT
The use of acoustic liners is a common means of noise reduction in jet engine exhausts. The quest for more
effective sound absorption mechanisms in cylindrical ducts has led to the consideration of non-uniform liners,
with impedance varying circumferentially, axially, or in both directions. The present paper is based on the
theory of mode coupling in a non-uniformly lined cylindrical duct and considers the complementary problem of
generation of sound or excitation of coupled modes by a source distribution. The sound field due to an arbitrary
source distribution is obtained as a superposition of eigenfunctions corresponding to complex eigenvalues
for the radial wavenumbers and natural frequencies taking into account that the radial, axial and azimuthal
modes are coupled by the non-uniform wall impedance, and including resonant and non-resonant cases. The
waveforms are illustrated for point monopole, dipole and quadrupole sources and a continuous monopole
distribution. It is shown that a non-uniform liner provides a greater attenuation than a uniform liner with the
same average impedance if it is ‘well-matched’ to the sound field, that is, if it has higher impedance at the
peaks and lower at the nodes of the standing modes.

Keywords: Duct acoustics, Non-uniform liners I-INCE Classification of Subjects Number(s): 26.1.4, 37.1

1. INTRODUCTION
A non-uniform liner can provide greater sound absorption than an uniform liner with the same amount

of material if it is well matched to the sound field, that is (Figure 1a) has larger impedance where the sound
amplitude is larger; the reverse would happen for poor matching (Figure 1b). A fundamental difference
between a non-uniform and a uniform liner is illustrated in the Figure 2 for an axisymmetric incident mode:
(a) it is reflected as an axisymmetric mode by a uniform liner; (b) in contrast a non-uniform liner reflects an
axisymmetric mode as a non-axisymmetric wave, and thus generates harmonics. In conclusion a non-uniform
liner (1, 2, 3, 4) causes coupling of all modes in a duct; the present theory (5, 6, 7, 8) takes into account the
mode interaction in a nozzle with a non-uniform liner.

Figure 1 – A non-uniform liner (b) generates harmonics and causes mode coupling, unlike (a) a uniform liner.
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Figure 2 – A non-uniform liner well-matched (a) to the sound field attenuates more than a uniform liner with
the same average impedance. The opposite if it is poorly matched (b).

2. CONVECTED WAVE EQUATION WITH UNIFORM AXIAL FLOW
The forced convected wave equation is written in cylindrical coordinates (r,θ ,z):[
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∂
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∂
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p(r,ϕ,z, t) = S(r,ϕ,z, t), (1)

where p is the acoustic pressure, c the sound speed, U the uniform axial velocity and S(r,ϕ,z, t) an arbitrary
source distribution as a function of position and time. The free acoustic fields are the solution of the homoge-
neous wave equation (1) without sources S = 0. For a doubly-infinite cylindrical duct may be used a Fourier
series with azimuthal wave number m and a Fourier integral with continuous frequency ω , in addition to: (i) a
Fourier integral with continuous axial wavenumber:

p(r,ϕ,z, t) =
∫ +∞

−∞

e−iωtdω

∫ +∞

−∞

eiκzdκ

+∞

∑
m=−∞

eimϕ Pm(r;ω,κ), (2)

in the case of uniform wall impedance or wall impedance varying only circumferentially; (ii) a Fourier series
with discrete axial wavenumber κl = 2πl/L:

p(r,ϕ,z, t) =
∫ +∞

−∞

e−iωtdω

+∞

∑
l=−∞

ei2πlz/L
+∞

∑
m=−∞

eimϕ Plm(r;ω) (3)

in the case of axially non-uniform wall impedance with spatial period L.
The radial dependence of the acoustic pressure is determined by substitution in (1), that leads to a Bessel

equation:
r2P′′+ rP′+

(
k2r2−m2)P = 0, (4)

with radial wavenumber determined by:

(kl)
2 ≡

(
ω−2πlU/L

c

)2

−
(

2πl
L

)2

, (5)
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in the discrete case (3), and by

k2 ≡
(

ω−κU
c

)2

−κ
2. (6)

in the continuous case (2).
The solution that is finite on the cylinder axis is specified by a Bessel function of the first kind both in the

case of: (i) discrete axial wavenumber (7a)

Plm(r;ω) = Jm(klr), (7a)
Pm(r;κ,ω) = Jm(kr), (7b)

(ii) continuous axial wavenumber (7b). The unforced convected wave equation (1) with S = 0 is satisfied by a
superposition of: (i) discrete axial modes (3, 5,7a):

p(r,ϕ,z, t) =
∫ +∞

−∞

e−iωtdω

+∞

∑
l=−∞

ei2πlz/L
+∞

∑
m=−∞

eimϕ Alm(ω)Jm(klr), (8)

with arbitrary amplitudes Alm(ω); (ii) continuous axial modes (2, 6,7b):

p(r,ϕ,z, t) =
∫ +∞

−∞

e−iωtdω

∫ +∞

−∞

eiκzdκ

+∞

∑
m=−∞

eimϕ Am(ω,κ)Jm(kr), (9)

with arbitrary amplitudes Am(ω,κ). The values of the radial wavenumber in the discrete kl (5) and continuous
k in (6) axial case are the eigenvalues determined by the boundary condition at the duct wall. The case
considered next is the most general locally reacting liner with non-uniform wall impedance varying either
circumferentially or axially or both.

3. BOUNDARY CONDITION FOR NON-UNIFORM WALL IMPEDANCE
A locally reacting liner is represented by a linear relation

p̃(a,ϕ,z;ω) =−Z(ϕ,z;ω) ṽr(a,ϕ,z;ω) (10)

between the pressure and minus the radial velocity spectra:

p(r,ϕ,z, t) =
∫ +∞

−∞

dω e−iωt p̃(r,ϕ,z;ω). (11a)

vr(r,ϕ,z, t) =
∫ +∞

−∞

dω e−iωt ṽr(r,ϕ,z;ω). (11b)

The equation (10) applies at the duct walls r = a, where the mean flow vanishes (no-slip condition) for a
viscous fluid. When the mean flow can be considered as inviscid, as is often the case in acoustics, its tangential
velocity may not vanish at the walls. Then, (10) should be written as

p̃w(a,ϕ,z;ω) =−Z(ϕ,z;ω) ṽw
r (a,θ ,z;ω), (12)

where p̃w and ṽw
r are the spectra of the acoustic pressure perturbation and radial velocity perturbation at the

wall. This condition must be supplemented by the continuity of normal displacement of particles in the fluid
and at the wall. The following analysis is similar for continuous (9) or discrete (8) axial wavenumber, and is
presented explicitly in the latter case. Assuming that the wall impedqance varies axially with spatial period L,
both ṽr and ṽw

r can be written as a Fourier series

ṽr(r,ϕ,z;ω) =
+∞

∑
l=−∞

ei2πlz/L
+∞

∑
m=−∞

eimϕ Vlm(r;ω), (13a)

ṽw
r (r,ϕ,z, t) =

+∞

∑
l=−∞

ei2πlz/L
+∞

∑
m=−∞

eimϕ V w
lm(r;ω). (13b)

Continuity of normal displacement leads to (9):

V w
lm =

ω

ω−2πlU/L
Vlm. (14)
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because the frequency ω has a Doppler shift ω− klU in the flow.
Bearing in mind that the pressure is continuous, substitution of (13b) and (14) in (12) leads to

p̃(a,ϕ,z;ω) =−Z(ϕ,z;ω)
+∞

∑
l=−∞

ei2πl/L ω

ω−2πlU/L
Vlm(r;ω). (15)

Comparing (11a) with (8) it follows that the spectrum of the acoustic pressure is given by

p̃(r,ϕ,z;ω) =
+∞

∑
l=−∞

ei2πlz/L
+∞

∑
m=−∞

eimϕ Alm(ω)Jm(klr). (16)

The radial acoustic velocity is related to the pressure by the radial component of the linearized momentum
equation:

ρ

(
∂

∂ t
+U

∂

∂ z

)
vr(r,ϕ,z, t)+

∂ p(r,ϕ,z, t)
∂ r

= 0. (17)

Substituting (13a) and (16) in (17) leads to:

iρ(ω−2πlU/L)Vlm(r;ω)− kl Alm(ω)J′m(klr) = 0. (18)

It remains to relate the amplitudes of the pressure spectrum and the radial velocity spectra in (18).
Substitution of (16) and (18) in (15), with r = a the radius of the duct, results in the impedance boundary

condition:

+∞

∑
l=−∞

ei2πlz/L
+∞

∑
m=−∞

eimϕ Alm(ω)Jm(kla) =

=−Z(ϕ,z;ω)
+∞

∑
l=−∞

ei2πlz/L
+∞

∑
m=−∞

eimϕ ω

iρ (ω−2πlU/L)2 kl Alm(ω)J′m(kla), (19)

in the case of the discrete axial wavenumber (8) applying to an axially non-uniform impedance with spatial
period L, that may or not also vary circumferentially. If the impedance is axially uniform, regardless of whether
it varies circumferentially or not, a similar calculation using (9) leads to:

∫ +∞

−∞

eiκzdκ

+∞

∑
m=−∞

eimϕ Am(ω,κ)Jm(ka) =

=−Z(ω;ϕ)
∫ +∞

l=−∞

eiκzdκ

+∞

∑
m=−∞

eimϕ ω

iρ (ω−κU)2 k Am(ω,κ)J′m(ka), (20)

as the wall boundary condition. When the wall liner impedance is constant the boundary condition reduces in
the case of discrete axial spectrum (19) to

0 = klZ(ω)J′m(kla)+ i
(ω/c−2πlM/L)2

ω/c
Jm(kla) = B

∞

∏
n=1

(kl− klmn). (21)

(ii) continuous axial spectrum (20) to:

0 = kZ(ω)J′m(ka)+ i
ω/c−κM

ω− c
Jm(ka) = B

∞

∏
n=1

(k− kmn). (22)

Both in (21) and (22) the non-zero constant B 6= 0 does not affect the roots that depend on the Mach number
(23a):

M ≡U/c (23a)
Z̄(ϕ,z;ω)≡ Z(ϕ,z;ω)/ρc (23b)

Z is the specific impedance (23b), defined as the impedance divided by that of a plane wave. In (23b) and
subsequently an overbar is used to indicate a dimensionless quantity. The radial wavenumbers are the roots
kn of (22) for continuous axial spectrum and the roots kln of (21) for discrete axial spectrum; in both cases
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woth uniform impedance there is a separate boundary condition for each m. Thus a uniform wall impedance
does not couple the azimuthal modes. That is not the case for a non-uniform wall impedance as shown by the
following ‘thought experiment’: (i) consider an axysymmetric mode m = 0; (ii) a uniform liner reflects it as
another axisymmetric mode m = 0; (iii) a circumferentially non-uniform liner will cause a reflection with
amplitude depending on the angle ϕ ; (iv) the case (iii) is equivalent to the generation of other azimuthal modes
m 6= 0. Thus a non-uniform liner couples the modes in a duct as shown next for impedance varying either
circumferentially or axially.

4. RADIAL WAVENUMBERS FOR CIRCUMFERENTIALLY OR AXIALLY NON-UNI-
FORM LINERS

In the case of an acoustic liner with circumferentially non-uniform impedance Z(ϕ;ω) the impedance is
represented by a Fourier series:

Z̄(θ ,ω) =
+∞

∑
m′=−∞

Z̄m′(ω)eim′θ (24)

where the coefficients

Z̄m′(ω) =
1

2π

∫ 2π

0
Z̄(θ ;ω)e−im′θ dθ , (25)

specify the amplitudes of the ‘harmonics’ of the impedance. Note that the Fourier series representation applies
to an impedance distribution that is an arbitrary function of bounded variation (10) of position, e.g., it may
have a finite number of finite discontinuities; thus it applies to liner patches and splices.

Since the liner is circumferentially non-uniform (24) but axially uniform the axial wavenumber is continuous
(6) and the impedance boundary condition (20) is used:

+∞

∑
m′=−∞

Z̄m′e
im′ϕ

+∞

∑
m=−∞

k J′m(ka)eimϕ Am(ω,κ)+
+∞

∑
m=−∞

i
(ω/c−κM)2

ω/c
Jm(ka)eimϕ Am(ω,κ) = 0, (26)

that can be rearranged:

+∞

∑
m′,m=−∞

Am(ω,κ)eimϕ

{
i
(ω/c−κM)2

ω/c
δm′m Jm(ka)− Z̄m′−m k J′m(ka)

}
= 0, (27)

where δm′m is the identity matrix. Since the amplitudes Am cannot be all zero, the determinant of the coefficients
must vanish.

0 = det

{
i
(ω/c−κM)2

ω/c
δm′m Jm(ka)− Z̄m′−m k J′m(ka)

}
= B

∞

∏
n=1

(k− kmn). (28)

The roots of (28) are radial wavenumbers kmn, and they are generally coupled between different m. In the
case of uniform impedance Z̄ = Z̄0 = const and Z̄m = 0 for all m 6= 0. the determinant (28) is diagonal, and
vanishes when a single diagonal term is zero, leading to (22). If the wall impedance varies axially with spatial
period L, the specific impedance may again be represented by a Fourier series:

Z̄(z;ω) =
+∞

∑
l′=−∞

Z̄l′(ω)ei2πl′z/L, (29)

with coefficients

Z̄l′(ω) =
1
L

∫ L

0
Z̄(z;ω)e−i2πl′z/Ldz. (30)

In this case of discrete axial wavenumbers (5) the specific impedance (29) is substituted in the boundary
condition (19) leading to

+∞

∑
m=−∞

eimϕ

[
+∞

∑
l=−∞

ei2πlz/LAlm(ω)Jm(kla)−

−
+∞

∑
l′=−∞

+∞

∑
l=−∞

ei2π(l+l′)z/L Z̄l′ ω/c

i
(

ω

c −
2πl
L M

)2 kl Alm(ω)J′m(kla)

]
= 0. (31)
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The terms in square brackets, which are the coefficients of the sum in m, must vanish. They may be rearranged:

+∞

∑
l=−∞

ei2πlz/L


+∞

∑
l′=−∞

Alm(ω)Jm(kla)−
Zl−l′ω/c

i
(

ω

c −
2πl′

L M
)2 kl Al′m(ω)J′m(kla)


= 0. (32)

The terms in curly brackets must vanish, which leads to

+∞

∑
l′=−∞

Al′m(ω)

δl′l Jm(kla)− Z̄l−l′ ω/c

i
(

ω

c −
2πl′

L M
)2 kl J′m(kla)

= 0. (33)

This represents a set of homogeneous equations (one for each value of l and m) for the coefficients Alm. For
fixed m, and since not all the Alm can vanish,

0 = det

δll′ Jm(kla)−Zl−l′ ω/c

i
(

ω

c −
2πl′

L M
)2 kl J′m(kla)

= B
∞

∏
n=1

(kl− klmn). (34)

The radial wavenumbers are the roots of the determinant (34), and thus generally coupled for different l. In the
case of a uniform liner Z̄ = Z̄0 = const and Z̄l = 0 for l 6= 0, the determinant (34) is diagonal, and vanishes if
one term is zero, leading to the boundary condition (21) with decoupled l.

The case of a liner non-uniform both axially and radially can be treated as a combination of the preceding;
it leads to a doubly infinite determinant, i.e. an infinite determinant whose elements are infinite determinants
(6). In all cases of axially non-uniform liners, since the radial wavenumbers that are the roots of (34) are
generally complex the corresponding frequencies (5):

ωlmn =
2πlU

L
± c

√(
2πl
L

)2

+(klmn)2 (35)

are also complex; the complex natural frequencies imply that

exp(−iωlmnt) = exp[−itRe(ωlmn)] exp[−tIm(ωlmn)], (36)

their imaginary part specifies the decay of the acoustic field with time. In the case of a circumferentially
non-uniform liner the radial wavenumbers, that are the roots of (28), are generally complex and lead (6) to
complex natural frequencies:

ωmn = κU± c
√

κ2 +(kmn)2 (37)

whose imaginary part again specifies (36) temporal decay or growth respectively for Im(ω)> 0 and Im(ω)< 0.

5. WAVE FIELD DUE TO INITIAL CONDITIONS OR SOURCES
The acoustics of non-uniformly lined ducts is analogous for discrete (8, 28) and continuous (9, 34) axial

wavenumbers; henceforth only the discrete case will be considered as appropriate to axially non-uniform liners.
The amplitudes of each mode (28) in the acoustic pressure (8) can be specified either by (i) initial conditions
or (ii) by sound sources. Considering the first case the initial condition applies to the pressure perturbation (8)
for all radial modes (28):

p(r,ϕ,z, t) = e−iωt
+∞

∑
l=−∞

ei2πlz/L
+∞

∑
m=−∞

eimϕ
∞

∑
n=1

Almn(ω)Jm(klmnr), (38)

assumed to be known in the whole duct at the initial time t = 0:

p(r,ϕ,z,0) =
+∞

∑
l=−∞

ei2πlz/L
+∞

∑
m=−∞

eimϕ
+∞

∑
n=1

Almn(ω)Jm(klmnr). (39)
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Inverting the Fourier and Bessel series specifies the amplitudes in terms of the initial acoustic pressure, viz.:

Almn(ω) =
1

πLa2

{[
1− m2

(klmna)2

]
[Jm(klmna)]2

}−1

×
∫ L

0
e−i2πlz/Ldz

∫ 2π

0
e−imϕ dϕ

∫ R

0
r Jm(klmna) p(r,ϕ,z,0)dr. (40)

The case (ii) concerns the convected wave equation, with uniform axial flow (1), in the case of an acoustic
source distribution with frequency ω . The solution may be sought in the form similar to (38) for a frequency
ω:

p(r,ϕ,z, t) = e−iωt
+∞

∑
l=−∞

ei2πlz/L
+∞

∑
m=−∞

eimϕ
+∞

∑
n=1

Dlmn Jm(klmnr), (41)

that satisfies the boundary condition at the duct wall, retains the source frequency ω and has distinct amplitudes
Dlmn; these are determined by comparison with the source term also with single frequency:

S(r,ϕ,z, t) = S̃(r,ϕ,z)e−iωt , (42)

with spatial dependence expanded in a Fourier-Bessel series:

S̃(r,ϕ,z) =
+∞

∑
l=−∞

ei2πlz/L
+∞

∑
m=−∞

eimϕ
+∞

∑
n=1

Jm(klmnr)Slmn; (43)

the coefficients are given by:

Slmn ≡
1

2πL
2
a2

[(
1− m2

(klmna)2

)
{Jm(klmna)}2

]−1

×
∫ 2π

0
e−imϕ dϕ

∫ L

0
e−2πilz/Ldz

∫ a

0
r Jm(klmna) S̃(r,ϕ,z)dr. (44)

Substitution of (41) and (43, 42) in (1) yields

1
r2

[
r2 d2

dr2 + r
d
dr

+(kl)
2r2−m2

]
DlmnJm(klmnr) = Slmn Jm(klmnr), (45)

where the Bessel differential operator appears.
Noting that the eigenfunctions satisfy:

1
r2

[
r2 d2

dr2 + r
d
dr

+(klmn)
2r2−m2

]
Jm(klmnr) = 0, (46)

the relation (45) becomes: [
(kl)

2− (klmn)
2]Dlmn = Slmn. (47)

In the non-resonant case kl 6= klmn, the inversion of (47) specifies the coefficients Dlmn in (41), so that

p(r,ϕ,z, t) = e−iωt
+∞

∑
l=−∞

ei2πlz/L
+∞

∑
m=−∞

eimϕ
+∞

∑
n=1

Jm(klmnr)
Slmn

(kl)2− (klmn)2 , (48)

is the acoustic field forced by the source distribution (42, 43).
Solving (35) for the eigenvalues of the radial wavenumber leads to

klmn =

∣∣∣∣∣ 1
c2

(
ωlmn−

2πlU
L

)2

−
(

2πl
L

)2
∣∣∣∣∣
1/2

; (49)

comparing with (5), it follows that

(kl)
2− (klmn)

2 =
1
c2

[
(ω−2πlU/L)2− (ωlmn−2πlU/L)2] , (50)
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that can be simplified:

[
(kl)

2− (klmn)
2]= 1

c2 (ω−ωlmn)(ω +ωlmn−4πlU/L). (51)

Therefore resonances can occur only if kl =±klmn, at two frequencies:

ω = ωlmn (52a)
or

ω +ωlmn = 4πlU/L, (52b)

that may be distinct (simple resonance) or coincide (double resonance).
The non-resonant mode is a general term

p(r,ϕ,z, t) =
+∞

∑
l=−∞

+∞

∑
m=−∞

+∞

∑
n=1

Plmn(t), (53)

or (48), thus is given by

Plmn(t) = ei(mϕ+2πlz/L−ωt)Jm(klmnr)
c2Slmn

(ω−ωlmn)(ω +ωlmn−4πlU/L)
. (54)

6. DISCUSSION
The Figure 3 compares the modulus (left) and phase (right) of the acoustic pressure as a function of the

radial distance r divided by the duct radius. The sound source is an axial dipole. The case (solid line) of a
uniform wall specific impedance (55a) is compared (dotted line) with a non-uniform wall impedance (55b)
that is a small perturbation (55c):

Z0 = 1+ i, (55a)

Z(θ) = Z0

[
1+ ε cos

(
2πl
L

)]
, (55b)

ε = 0.3+0.2i. (55c)

The case (a) at the top corresponds to an axially uniform mode l = 0 in which case there is little difference
between the sound pressure in the presence of uniform or non-uniform liners; in the case l = 1 (in the middle)
of the first non-uniform axial mode again the non-uniform liner is poorly matched to the sound field and has
little effect. The non-uniform liner provides significant attenuation relative to the uniform liner in the case
l = 2 (at the bottom) of the second longitudinal acoustic mode. Similar analysis can be made in the presence
of mean flow and for other non-uniform liner impedances.
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Figure 3 – Amplitude or modulus (l.h.s.) and phase or argument (r.h.s.) of radial eigenfunction as a function of
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