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ABSTRACT 
The acoustic-vortical wave equation is derived describing the propagation of sound in (i) a uni-directional 
shear flow with a linear velocity profile upon which is superimposed (ii) a uniform cross flow; together with 
an impedance wall boundary condition representing the effect of a locally reacting acoustic liner in the 
presence of bias and shear flow. This leads to a third-order differential equation in the presence of cross flow, 
and in its absence simplifies to the Pridmore-brown equation (second-order); also the singularity of the 
Pridmore-brown equation for zero Doppler-shifted frequency is removed by the cross flow. Because the 
third-order wave equation has no singularities (except at the sonic condition), its general solution is a linear 
combination of three linearly independent MacLaurin series in powers of the distance from the wall. The 
acoustic field in the boundary layers is matched through the pressure and horizontal and vertical velocity 
components to the acoustic field in a uniform free stream consisting of incident and reflected waves. The 
scattering coefficients are plotted for several values of the five parameters of the problem, namely the angle 
of incidence, free stream and cross-flow Mach numbers, specific wall impedance and Helmholtz number 
using the boundary layer thickness. 
Keywords: acoustic liners, engine nozzles, shear and bias flow. 

1. INTRODUCTION 
The air inlets and exhaust nozzles of jet engines make extensive use of liners to absorb or attenuate sound. A 
locally reacting acoustic liner can be represented by an impedance wall condition. In the case of a duct with 
mean flow, the boundary layer near the wall leads to interaction between acoustic and vortical modes that also 
affects the pressure perturbation and energy [1]. In addition, a perforated plate can have a bias flow, thus 
superimposing a cross-flow to the shear flow in the boundary layer. This paper addresses the combination of 
the three effects, namely (i) a plane flow over a flat impedance wall (figure 1); (ii) a boundary layer with a 
unidirectional shear flow consisting of a linear velocity profile matched to a uniform stream; and (iii) in 
addition, a uniform cross-flow representing the bias flow out of the perforated liner. The pressure 
perturbation in the free stream consists of incident and reflected plane waves; it must be matched to the 
pressure field in the boundary layer (§2) in order to apply the impedance boundary condition at the wall (§3); 
the latter specifies the reflection coefficient, and thus the wave pressure perturbation in the whole flow, inside 
and outside the boundary layer. 
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2. LINEAR UNIDIRECTIONAL SHEAR WITH UNIFORM CROSS-FLOW 
The fundamental equations of fluid mechanics are considered as (i) the continuity equation for the mass 
conservation: 

                                        (2.1) 
where ˜ is the mass density and v˜ is the velocity; (ii) the inviscid momentum equation: 

                                 (2.2)  
where ˜p is the pressure; and (iii) the adiabatic equation: 

                                  (2.3) 
where ˜c is the adiabatic sound speed. In all three equations appears the material derivative: 

                                (2.4) 
The tilde notation is used to denote the total flow variables, the subscript ‘0’ the mean flow variables and 
neither is used for the perturbations. The mean flow is assumed to be plane and consists (figure 1) of: (i) a 
uniform bias or cross-flow orthogonal to a straightwall with velocity V0: 

                               (2.5)  

(ii) a unidirectional shear flow parallel to the wall with a linear velocity profile in a boundary 
layer of thickness L: 

                     (2.6a,  b) 

matched to a uniform stream with velocity U . 
Denoting with a subscript ‘0’ the mean flow quantities, the momentum equation (2.2) becomes 

                     (2.7) 
Using equation (2.5), the y- and x-components of the momentum equation for the mean flow (2.2) are 
respectively 
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                                               (2.8a) 
and 

                                 (2.8b) 
From (2.8a) follows that the mean flow pressure does not depend on the distance from the wall, but it does 
depend on the distance along the wall (2.8b) for a shear flow. For a shear flow with a linear velocity profile 
(2.9a) from (2.8b) follows (2.9b): 

      (2.9a,b) 
showing that the mass density does not depend on the distance from the wall (2.10a); using (2.10b) in the 
continuity equation (2.1) for the mean flow (2.9a) shows that 

                                   (2.10a)  
and 

                   (2.10b)  
where the mass density is constant (2.11a); because V0 and dU0/dy are constants (2.5), (2.9a) the two 
components (2.8a,b) of the momentum equation show that the mean flow pressure is a linear function of the 
distance along the wall (2.11b): 

                               (2.11a)  
and 

                         (2.11b)  
Considering a limited length of the wall satisfying (2.12a), the mean flow pressure is approximately constant 
(2.12b): 

                    (2.12a,b)  
Under the same conditions, the mean flow is adiabatic (2.13a), and the sound speed is constant (2.13b): 

                          (2.13a)  
and 

                                 (2.13b)  
These conditions simplify the following (§2b) derivation of the acoustic-vortical wave equation in a linear 
unidirectional shear flow (2.6a,b) superimposed on a uniform cross-flow (2.5) for a limited wall distance 
(2.12a). 
 

3. THIRD-ORDER ACOUSTIC-VORTICAL WAVE EQUATION 
An unsteady, non-uniform perturbation of the mean flow (2.5) is considered 

                               (3.1a)  

                                (3.1b)  

                                 (3.1c)  
and 

                                 (3.1d)  
and the momentum equation (2.2) is linearized 
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                   (3.2)  
using the linearized material derivative: 

                     (3.3)  
 
The adiabatic (2.3) and continuity (2.1) equations are combined 

                                    (3.4)  
and are linearized 

                              (3.5)  
The linearized material derivative (3.3) commutes (3.6a) with the x-component gradient, but not with the 
y-component gradient (3.6b): 

                                    (3.6a)  
and 

                             (3.6b)  
For example, applying d/dt to equation (3.5) gives 

                 (3.7)  
where were used the commutation relations (3.6a, b). 

The x- and y-components of the momentum equation (3.2) are 

                      (3.3a)  
and 

 

                                        (3.8b)  
substitution in (3.7) gives 

                  (3.9)  
The l.h.s of (3.9) is the convected wave equation for pressure which is valid when the r.h.s is zero, i.e. in the 
absence of shear flow. In the presence of shear flow in order to eliminate (v, ) from the r.h.s of (3.9) and 
obtain a wave equation for the pressure alone, d/dt is applied once more leading to 

             (3.10)  
In the case (2.9a) of a linear shear flow (3.11a) two terms on the r.h.s of (3.10) vanish, and the linearized 
adiabatic equation (3.11b): 

                                  (3.11a)  
and 
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                                 (3.11b)  
together with (3.8b) substituted in (3.10) give 

           (3.12)  
The first three terms on the l.h.s of (3.12) specify the acoustic-vortical wave equation in a unidirectional shear 
flow [2–5,18,19] in the absence of cross-flow. The generalization to include a uniform cross-flow adds the 
fourth term on the l.h.s of (3.12) and restricts the shear flow to the linear velocity profile (3.11a). 

4. PRESSURE PERTURBATION INSIDE THE BOUNDARY LAYER 
Because the mean flow is steady and uniform in the wall direction, a Fourier integral representation exists 

                            (4.1)  
where P is the pressure perturbation spectrum for a wave of frequency  and horizontal wavenumber k at the 
distance y from the wall. The linearized material derivative (3.3) leads to (4.2a) 

                             (4.2a)  

and 

                             (4.2b)  
where  is the Doppler-shifted frequency calculated for the shear flow alone. Substitution of (4.1) and 
(4.2b) in the acoustic-vortical wave equation (3.12) leads to the dependence of the pressure perturbation 
spectrum on the distance from the wall: 

    (4.3) 

Because the acoustic-vortical wave equation (3.12) is of the third order, (4.3) is (i) a cubic dispersion relation 
in the frequency  and horizontal wavenumber k, retaining and (ii) the dependence on the distance from the 
wall as a third-order differential equation. In the absence of the cross-flow (4.4a), the differential equation 
(3.12) reduces to the second order 

               (4.4a,  b)  

Equation (4.4b) has a singularity when the coefficient of , that is the Doppler-shifted frequency (2.27b) 
vanishes. To interpret this physically, consider (figure 2a) a wave of frequency 

 
 

 and horizontal wavenumber k, hence horizontal phase speed w = /k propagating against a unidirectional 
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shear flow. At the critical layer when the horizontal phase speed equals the mean flow velocity (4.5a), the 
Doppler-shifted frequency vanishes (4.5b) 

                 (4.5a,  b)  
The wave can propagate no further, and the wave equation (4.4b) has a singularity, implying one of the 
following possibilities: (i) the wave becomes evanescent beyond the critical layer that acts as a total reflector; 
and (ii) the wave is partly absorbed, partly reflected and partly transmitted as another mode able to propagate 
beyond the critical layer. In all cases, the critical layer occurs at the point where the wave is ‘stopped’ by the 
mean flow. The sonic condition in a potential flow is also a singularity of the acoustic wave equation. The 
difference is that sound waves in a potential flow are non-dispersive and the critical layer occurs at the sonic 
condition  that  is  the  same  for  all  wavenumbers.  In  the  shear  flow,  the  critical  layer  occurs  at  different  
positions for fixed frequency  and varying wavenumber k (or vice versa) so that the forbidden values form a 
continuous spectrum. Applying a cross-flow (figure 2b), this convects the wave away from the critical layer 
and removes the singularity. Thus, the acoustic-vortical wave equation with cross-flow (3.12) has no 
singularity, that is the coefficient of the third-order derivative does not vanish, except if the cross-flow 
reaches the sonic condition. The acoustic-vortical wave equation in a unidirectional shear flow is simpler in 
the presence of cross-flow, in the sense that it has no singularity, so it has solution as Taylor series valid in the 
whole flow region. 
 

The acoustic-vortical wave equation (3.12) is applied inside the boundary layer (2.6a), and the distance 
from the wall is normalized to its thickness (4.6a) leading for the pressure perturbation spectrum (4.4b): 

                                      (4.6a)  
and 

                                 (4.6b)  
to the third-order differential equation: 

       (4.7)  

that involves three independent dimensionless parameters, namely (i) the cross-flow Mach number (4.8a); 
(ii) the free-stream Mach number (4.8b); (iii) the dimensionless frequency or Helmholtz number (4.8c) 
comparing the thickness of the boundary layer L to the wavelength 0 in an homogeneous medium at the rest: 

                                   (4.8a)  

                                  (4.8b)  
and 

                              (4.8c)  
Thus, 1 for sound rays in the boundary layer, 1 for acoustically thin boundary layer and  1 in 
the more interesting case of wavelength compared with the thickness of the boundary layer. In (4.7) appear 
another two dimensionless coefficients, namely (i) the horizontal compactness defined as the product of the 
horizontal wavenumber (4.9a) by the thickness of the boundary layer (4.9b) that depends on the angle of 
incidence. 

                  (4.9a,b)  
(ii) the dimensionless (4.7c) Doppler-shifted frequency (4.2b): 
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              (4.9c)  
The angle  is measured from the horizontal in the direction of the core flow. The word ‘horizontal’ means 
parallel to the wall or along the core flow (2.6a,b); in the presence of crossflow (2.5), the total velocity is 
oblique to the wall and streamwise is not ‘horizontal’. Similarly, the vertical direction is perpendicular to the 
wall not perpendicular to the stream. Substituting (4.9c) in (4.7), it follows that the pressure perturbation 
spectrum in the boundary layer satisfies a third-order differential equation with polynomial coefficients: 

        (4.10) 
The coefficient of the highest order derivative is a non-zero constant except for a bias flow at sonic speed; 
excluding this case, the differential equation (4.10) has no singularities, and the solution exists as a 
MacLaurin series (4.11b) with infinite radius of convergence (4.11a): 

                         (4.11a,  b)  

Substitution of (4.11b) in (4.12) leads to the recurrence formula for the coefficients: 

     (4.12) 
The MacLaurin series (4.11b) with coefficients satisfying (4.12) specifies the pressure perturbation spectrum 
in the boundary layer to be matched to the acoustic field in the free stream. 
 

5. CONCLUSION  
The pressure field inside the shear layer is matched to incident plane waves in the free stream outside. The 
effect of the angle of incidence  = 30º, 60º, 90º, 120º, 150º is shown (Figure 2) on the modulus (left) and 
phase (right) of the pressure as a function of the distance from the wall (divided as the thickness of the 
boundary layer). The bias flow has a small mach number  = 0.06 and the case of no bias flow  = 0 is 
included for comparison at  = 90º. It is seen that for normal incidence  = 90º there is a large difference in 
pressure amplitude (left) between the presence (solid line) and absence (dotted line) of bias flow, with the 
pressure decreasing away from the wall in the presence of bias flowand instead increasing in the absence of 
bias flow; the effect on the phase (right) is smaller as it increases away from the wall both in the presence and 
absence of bias flow, but faster in the latter case. The phase variation (right) is larger for longer angles of 
incidence, in particular for downstream propagation  > 90º. The amplitude of the pressure (left) decreases 
away from the wall, more slowly for upstream propagation  > 90º and faster for downstream propagation  
> 90º although it can have inversion due to interaction with the shear and bias flows. The effect on sound 
pressure of other parameters, like frequency, wall impedance and free stream and bias flow Mach number can 
be analyzed similary [1]. The present paper extends to bias flow the propagation of sound in a shear flow with 
linear velocity profile [2], that has also been considered in the presence of temperature gradients [3]. Other 
shear velocity profiles have been considered, including an exponential boundary layer [4], hyperbolic tangent 
shear layer [5] and parabolic shear flow in a duct [6]. Besides the propagation of sound in shear flows the 
sound generation has been considered for sourced outside [7] or inside [8] boundary layer. 



Page 8 of 8  Inter-noise 2014 

Page 8 of 8  Inter-noise 2014 

 

Figure  3. For five values of the angle of incidence is plotted the (a) modulus and (b) phase of acoustic 
pressure versus dimensionless distance from the wall (4.4a) the pressure is also normalized to the wall value. 
The free stream Mach number (4.8b) is = 1.2, the bias flow Mach number (4.8a) is = 0.05 and the 
dimensionless frequency (4.8a) is  = 1. The wall specific impedance is Z = 1 + i. 
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