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ABSTRACT 

A number of recent papers have determined the compliance of steel studs for use in a model for predicting the 

sound insulation of cavity stud walls. Previously, the steel studs have usually been modelled as line 

connections. In this paper, they are also modelled as point connections where the points are the screws 

attaching the wall leaves to the steel studs. The compliance of the combination of resilient channel bars and 

wooden or steel studs, modelled as point or as line connections, is also presented. The values of compliance 

which make a theoretical model agree with the experimental data have been calculated. The experimental 

sound insulation data were measured by the National Research Council of Canada. There were 126 steel stud 

walls, 78 resilient channel bar and wooden stud walls, 15 resilient channel bar and steel stud walls and 4 walls 

with resilient channel bars on both sides of wooden studs. Linear regressions of the logarithm of the 

compliance against the logarithms of frequency, reduced surface density, cavity depth and number of point 

connections or stud spacing, were conducted in a low frequency range and in a high frequency range. The 

equations produced by these linear regressions can be used in sound insulation prediction models. 
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1. INTRODUCTION 

This paper presents three new models of the sound insulation of cavity stud walls with res ilient 

channel bars and steel stud cavity walls using linear or point connection theories . Linear regressions of 

the logarithm of the compliance against the logarithms of frequency, the reduced surface density of the 

wall leaves, the cavity depth and the number of point connections or the stud spacing, were conducted 

in the low frequency range and in the high frequency range. The equations produced by these linear 

regressions can be used in sound insulation prediction models.  

Poblet-Puig et al. (1, 2) calculated the vibrational level difference of different gypsum plaster board 

wall leaves which were connected via steel studs. They compared these differences with those 

calculated for line connections with a range of equivalent translational stiffnesses and equivalent  

rotational stiffnesses. Guigou-Carter and Villot (3) used this information to calculate the sound 

insulation at low frequencies of two gypsum plaster board steel stud cavity walls with sound absorbing 

material in the wall cavity. At higher frequencies they modelled the steel studs as resilient point 

connections situated at the positions of the screws used to attach the gypsum plaster board to the steel 

stud. 

Poblet-Puig et al. (1, 4) have shown that a steel stud can be modelled as a translational spring with 

an equivalent translational stiffness which varies with frequency. Vigran (5) derived a best-fit third 

order polynomial approximation to the logarithm of Poblet-Puig’s numerical values as a function of 

the logarithm of the frequency for the most common type of steel stud.  

Davy et al. (2) derived equations for the compliance of steel studs in cavity stud walls. It should be 

possible to develop a similar method for predicting the sound insulation of cavity stud walls with 

resilient channel bars by using the same approach. The expected outcome of this research is a 

regression equation for predicting the compliance of resilient channel bars which can be used in 

existing sound insulation theories such as those of Davy 2012 (6). 
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2. Methods 

2.1 Calculation of sound transmission factor with point and line connections 

Davy (6) derived equations for the sound transmission factor τ of a cavity wall via resilient 

massless point and line connections: 

𝜏 =
16𝑛𝜌0

2𝑐4𝑄𝑅

𝜋5𝑓2[(𝑚1𝑓𝑐2 + 𝑚2𝑓𝑐1)2 + 64𝑓2𝑚1
2𝑚2

2𝑐4𝐶2]
          (𝑃𝑜𝑖𝑛𝑡 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛) ( 1 ) 

𝜏 =
8𝜌0

2𝑐3𝑄𝑅

[𝑔2 + (8𝜋𝑓
3
2𝑚1𝑚2𝑐𝐶 − 𝑔)

2

] 𝑏𝜋3𝑓2

          (𝐿𝑖𝑛𝑒 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛) 
( 2 ) 

f is the frequency, n is the number of point connections per unit area calculated from the stud 

spacing and the resilient channel bar or screw spacing, b is the distance between the line connections, 

in other words, the stud spacing. ρ0 is the density of air [1.18 kg/m3], c is the speed of sound in the air 

[343 m/s], mi is the mass per unit area of the i th gypsum wall leaf obtained from the data, fci is the 

critical frequency of the i th wall leaf, and C is the compliance of the connection. In the case of a line 

connection, C has the dimensions of length/(force/length) = 1/pressure. For point connection, C has 

dimensions of length/force. 

Q is  

Q = {
1 + 𝑒     𝑖𝑓 𝑓 < 𝑓𝑐1

𝑒            𝑖𝑓 𝑓 ≥ 𝑓𝑐1
 ( 3 ) 

e is 

e =
𝜋𝑓𝑐1𝜎1

4𝑓𝜂1
 ( 4 ) 

e is the ratio of the resonant vibrational energy of the first wall to its mass law vibrational energy 

Cremer, Heckl (7), σi is the radiation efficiency and ηi is the total damping loss factor of the i th wall 

leaf. The condition for Q needs to be stated because at and the above the critical frequency, it is not 

possible to distinguish between the forced response given by the mass law response below the critical 

frequency, and the resonant response.  

R is calculated by using following equation: 

𝑅 = {
1 + 𝑟   𝑖𝑓   𝑓 < 𝑓𝑐2

𝑟          𝑖𝑓   𝑓 ≥ 𝑓𝑐2
 ( 5 ) 

r is calculated as the ratio of the power radiated by the resonant velocity of the second leaf and the 

power radiated by the vibrational near field in the second wall leaf generated by the connection.  

𝑟 =
𝜋𝑓𝑐2𝜎2

4𝑓𝜂2
          (𝑃𝑜𝑖𝑛𝑡 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛) ( 6 ) 

𝑟 =
𝜎2

2𝜂2

√
𝑓𝑐2

𝑓
          (𝐿𝑖𝑛𝑒 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛)  ( 7 ) 

The value of r is dependent on the connection type and because of this fact, the value of R also 

depends on the type of connection. 

Because the line connection equation is non-symmetrical, the wall leaves need to be numbered so 

that fc1 < fc2. This is because total internal reflection will occur for some propagation directions if the 

wall leaves are numbered in the opposite order. 

g is calculated by 

𝑔 = 𝑚1√𝑓𝑐2 + 𝑚2√𝑓𝑐1 ( 8 ) 
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The equations (1) and (2) can be simplified to the following equations when the properties of the 

two walls are the same. 

𝜏 =
4𝑛𝜌0

2𝑐4𝑄

𝜋𝑓2𝑚2[𝑓𝑐
2 + 16𝑓2𝑚2𝑐4𝐶2]

          (𝑃𝑜𝑖𝑛𝑡 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛) ( 9 ) 

τ =
2𝜌0

2𝑐3𝑄𝑅

[𝑓𝑐 + (4𝜋𝑓
3
2𝑚𝑐𝐶 − √𝑓𝑐)

2

] 𝑏𝜋3𝑚2𝑓2

          (𝐿𝑖𝑛𝑒 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛) 
( 10 ) 

The equation (1) and (2) will be combined with the theory for airborne sound transmission across 

the cavity (8). The values of the compliance C which make the values of the predicted sound 

transmission values agree with the measured values of sound transmission will be determined. 

Formulae for the compliance will be obtained using regression analysis.  

2.2 Compliance Calculations of line and point connections 

The theoretical equivalent translational compliances obtained by Davy (6) were calculated by trial 

and error. For this project, the equations have been inverted and the compliance is automatically 

calculated. The equations for calculating the equivalent translational compliance are; 

𝜏𝑠 = 𝜏𝑡 − 𝜏𝑎 ( 11 ) 

𝜏t = 10
𝑅𝑡
10 ( 12 ) 

𝜏a = 10
𝑅𝑎
10 ( 13 ) 

where τs is the structure borne transmission coefficient, τt is the total transmission coefficient given by 

the experimental data, τa is the calculated theoretical air borne transmission coefficient, Rt is the 

measured total sound reduction index and Ra is calculated air borne sound reduction index. Thus, the 

calculation for the compliance is  

C𝑀 = √
(16𝑛𝜌0

2𝑐4𝑄𝑅)/𝜋5𝑓2𝜏𝑠 − (𝑚1𝑓𝑐2 + 𝑚2𝑓𝑐1)2

64𝑓2𝑚1
2𝑚2

2𝑐4
    (𝑃𝑜𝑖𝑛𝑡 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛) ( 14 ) 

C𝑀 =  
√8𝑐3ρ0

2𝑄𝑅/𝜋3𝜏𝑠𝑏𝑓2−𝑔2 + 𝑔

8𝜋𝑐𝑓
3
2𝑚1𝑚2

          (𝐿𝑖𝑛𝑒 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛) 

( 15 ) 

These inverted equations do not always return a value. This occurs in two situations. The first 

occurs when sound transmission via the air in the wall cavity is higher than the total experimental 

value. The second is when the sum of the theoretical sound transmission via the air in the cavity and 

via rigid structural connections is lower than the experimental value. In the first case, th e best 

agreement with experiment is obtained by setting the theoretical compliance to the infinity. Similarly 

in the second case, the best agreement with experiment is obtained by setting the theoretical 

compliance to zero. In both of these cases the inverted formula returns an error because it is trying to 

take the square root of a negative number and the compliance must be a real non-negative number. 

Thus, an IF function test has been used in the spreadsheet in order to eliminate these errors.  

2.3 Parameter calculation 

The sound insulation measurements analyzed in this paper were measured by the National Research 

Council of Canada (NRCC) (9). Davy (6) assumed that the volume density and Young’s modulus of the 

gypsum plaster board were a generic constants. This paper used the actual surface densities of the 

different gypsum plaster boards. The measured Young’s moduli for each type of gypsum plaster board 

were used (Table 1).  

 

The density ρi is given by 
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 𝜌𝑖 =
𝑚𝑖

𝑑𝑖
 (16) 

mi and di are the surface density and thickness of the gypsum plasterboard.  

Table 1 – Types of gypsum plasterboard used by NRCC and their Young’s moduli. 

Nominal Type (mm) Young’s Modulus average (GPa) 

AX (16) 2.40 

BX (16) 2.18 

CX (16) 2.26 

A (13) 1.70 

B (13) 1.86 

Light weight - LB (13) 1.60 

The in situ damping loss factor of gypsum plaster board is assumed to be 0.03. The in situ damping 

loss factor has a significant effect on the theory for airborne sound transmission across the cavity 

above the critical frequency, but only has a small effect below the critical frequency. The Young’s 

moduli were calculated from measurements of flexural stiffness. 

2.4 Equation of best fit 

The theoretical predicting equation was assumed to be a function of the frequency f, the numbers of 

point connections per unit area n or the stud spacing b, and reduced surface density mr. The regression 

was taken over the low frequency range (50-400 Hz) and high the frequency range (400-6300 Hz) on 

each of four different measurement data sets.  

Using each side of the equation of best fit as the argument of the exponential function produces the 

following equations. 

𝐶𝑀 = 𝐴𝑓𝑥𝑓𝑚𝑖
𝑥𝑚𝑏𝑥𝑏           (𝐿𝑖𝑛𝑒 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛) 

 
( 17 ) 

𝐶𝑀 = 𝐴𝑓𝑥𝑓𝑚𝑖
𝑥𝑚𝑛𝑥𝑛           (𝑃𝑜𝑖𝑛𝑡 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛) 

( 18 ) 

A is the constant, f is the frequency, mr is the reduced surface density, b is the distance between the 

line connections, in other words, the stud spacing, n is the number of point connections per unit area 

calculated by the stud spacing and resilient channel bar or screw spacing. The regressions of 

equivalent translational compliance produced the constants in the equation and their 95% confidence  

limits. 

The reduced surface density can be calculated from the following equation.  

𝑚𝑖 =
𝑚1𝑚2

𝑚1 + 𝑚2  
 (19) 

mi is the mass per unit area of the i th gypsum wall leaf. The variable mr is used because it is how the 

the two surface densities are combined in the equation used to calculate normal incidence the mass -air 

mass resonant frequency of the cavity wall. 

3. Best fitting to compliance values 

The results obtained from the preliminary analysis of the line of best fit are shown in this section. 

There are 16 tables all together; two different connection models, four different combinations of the 

studs and/or resilient connections, and two different frequency ranges. The values of the constants and 

the 95% upper and lower confidence limits of the equivalent translational compliances are shown in 

the tables. A is statistically different from one. xf, xm and xb are only shown in these tables when they 

are statistically different from zero. 

There is only one table where the line of best fit has a statistically significant dependence on the 

number of point connections per unit area n. This occurs in the low frequency range for the point 

connection model of wood studs with resilient channel bars on only one side.  No tables showed a 

statistically significant dependence on the stud spacing b. This is probably because there were only 

two different stud spacing of 0.406 and 0.61 (m). The previous analysis of the Davy et al. (2), in the 

low frequency range for the line connection model of the steel stud only case, showed no statistically 

significant dependence on the frequency. The analysis presented in this paper shows statistically 
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significant dependence on frequency in the low frequency range for half of the cases.  

In 9 out of the 16 tables, the equivalent translational compliance is statistically significantly 

dependent on the reduced surface density of the gypsum plaster boards.  

3.1 Steel stud with resilient channel bar 

 Line Connection 

Table 2 – Values and confidence limits for the constants in the low frequency range. 

Constant Value 95% Upper Limit 95% Lower Limit 

A 5.40×10-6 6.50×10-6 4.30×10-6 

 

Table 3 – Values and confidence limits for the constants in the high frequency range. 

Constant Value 95% Upper Limit 95% Lower Limit 

A 2.15 4.44 1.04 

xf -1.89 -1.82 -1.96 

xm -0.98 -0.74 -1.22 

 Point Connection 

Table 4 – Values and confidence limits for the constants in the low frequency range. 

Constant Value 95% Upper Limit 95% Lower Limit 

A 8.18×10-6 1.01×10-5 6.22×10-6 

 

Table 5 – Values and confidence limits for the constants in the high frequency range. 

Constant Value 95% Upper Limit 95% Lower Limit 

A 0.64 1.40 0.29 

xf -1.54 -1.46 -1.61 

xm -0.95 -0.69 -1.21 

3.2 Wood stud with resilient channel bar 

  Line Connection 

Table 6 – Values and confidence limits for the constants in the low frequency range. 

Constant Value 95% Upper Limit 95% Lower Limit 

A 2.01×10-4 3.58×10-4 1.13×10-4 

xf -0.48 -0.38 -0.58 

xm -0.98 -0.76 -1.21 

 

Table 7 – Values and confidence limits for the constants in the high frequency range. 

Constant Value 95% Upper Limit 95% Lower Limit 

A 0.22 0.31 0.15 

xf -1.54 -1.50 -1.57 

xm -1.16 -1.03 -1.28 

 Point Connection 

Table 8 – Values and confidence limits for the constants in the low frequency range. 

Constant Value 95% Upper Limit 95% Lower Limit 

A 5.27×10-4 1.69×10-3 1.65×10-4 

xf -0.22 -0.06 -0.38 

xm -1.19 -0.80 -1.58 

xn -0.87 -0.36 -1.38 

 

Table 9 – Values and confidence limits for the constants in the high frequency range. 

Constant Value 95% Upper Limit 95% Lower Limit 

A 0.06 0.09 0.04 

xf -1.16 -1.12 -1.20 

xm -1.17 -1.04 -1.29 
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3.3 Resilient channel bars on the both sides of the wall studs 

 Line Connection 

Table 10 – Values and confidence limits for the constants in the low frequency range. 

Constant Value 95% Upper Limit 95% Lower Limit 

A 1.09×10-5 1.95×10-5 2.33×10-6 

 

Table 11 – Values and confidence limits for the constants in the high frequency range. 

Constant Value 95% Upper Limit 95% Lower Limit 

A 9.05×10-3 0.17 4.7×10-4 

xf -1.25 -0.87 -1.64 

 

  Point Connection 
Table 12. Values and confidence limits for the constants in the low frequency range. 

Constant Value 95% Upper Limit 95% Lower Limit 

A 1.79×10-5 3.31×10-5 2.79×10-6 

 

Table 13 – Values and confidence limits for the constants in the high frequency range 

Constant Value 95% Upper Limit 95% Lower Limit 

A 2.56×10-3 4.78×10-2 1.37×10-4 

xf -0.88 -0.49 -1.26 

3.4 Steel stud only 

  Line Connection 

Table 14 – Values and confidence limits for the constants in the low frequency range. 

Constant Value 95% Upper Limit 95% Lower Limit 

A 3.22×10-4 4.71×10-4 1.74×10-4 

xf -0.55 -0.46 -0.64 

xm -1.07 -0.89 -1.26 

 

Table 15 – Values and confidence limits for the constants in the high frequency range 

Constant Value 95% Upper Limit 95% Lower Limit 

A 2.60 3.45 1.97 

xf -1.90 -1.87 -1.93 

xm -1.29 -1.21 -1.37 

 

  Point connection 

Table 14 – Values and confidence limits for the constants in the low frequency range. 

Constant Value 95% Upper Limit 95% Lower Limit 

A 1.88×10-4 3.21×10-4 5.55×10-4 

xf -0.29 -0.15 -0.42 

xm -1.02 -0.72 -1.31 

 

Table 15 – Values and confidence limits for the constants in the high frequency range 

Constant Value 95% Upper Limit 95% Lower Limit 

A 0.07 0.09 0.05 

xf -1.50 -1.46 -1.54 
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3.5 Comparison with previous study 

Davy et al.(2) compared their best fit equations with Vigran (5) and with Poblet-Puig et al. (4) for 

the line connection model for 70mm wide TC steel studs spaced at 600mm with 13mm gypsum plaster 

board on each side. These results are compared with this paper’s equations for the steel stud only line 

connection model. The equation of the Vigran (5), which is a best fit third order polynomial 

approximation to Poblet-Puig et al.’s (4) numerically calculated equivalent translational compliance 

data for TC steel studs, is as follows where x = log10(f); 

 

 − log10 𝐶 = 0.6286𝑥3 − 4.4051𝑥2 + 10.3323𝑥 − 7.0722 ( 20 ) 

 

Davy’s equations are following: 

 
 𝐶 = 9.3 × 10−5(𝑚𝑖

−1.09)(𝑑0.80)          (𝐿𝑜𝑤 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦) ( 21 ) 

 
 𝐶 = 1.74(𝑓−1.81)(𝑚𝑖

−1.81)(𝑏−1.40)(𝑑0.28)          (𝐻𝑖𝑔ℎ 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦) ( 22 ) 

 

Figure 1 shows the comparison of the best fit equations of these previous studies and this paper.  

 

Figure 1 – Comparison of the best fit equations of this paper, Davy et al. (2) and Vigran (5) for the equivalent 

translational compliance with the Poblet-Puig et al. (4) data for 70mm wide TC steel studs spaced at 600mm 

with 13mm gypsum plasterboard on each side. 

It can be seen from figure 1, that at the lowest frequency of 16 Hz, the compliance of 1.23×10-5 

(1/Pa) obtained by the present study is close to the Vigran’s (5) equation but far from the other two 

results. At around 25 Hz, this paper’s equation is close to the numerical result of Poblet-Puig et al. (4), 

and slowly drops to the value of 2.09×10-6 (1/Pa) at 400 Hz, where it is close to the value of compliance 

of 1.92×10-6 (1/Pa) given by the equations of Davy et al. (2). In the high frequency range the equations 

derived in this paper agree well with those of Davy et al. (2), Vigran (5) and Poblet-Puig et al. (4). 

3.6 COMPARISON WITH EMPIRICAL DATA 

The line of best fit for the line connection model of the steel stud only case shows good agreement 

with the previous studies. The lines of best fit for the point connections and for the resilient 

connections have not been previously studied. Thus, these equations need to be assessed with NRCC’s 

experimental results. The values of the line of best fit equations are obtained by using the constant 
values given in the tables in the section 3.1 to 3.4. Since the point connection models of the resilient 

connections are more physically realistic, the line connection results are not presented because of 

1E-09

1E-08

0.0000001

0.000001

0.00001

0.0001

10 100 1000 10000

C
o

m
p

li
a
n

c
e
 (

1
/P

a
)

Frequency (Hz)

Davy et al. (2012)

Vigran (2010)

TC (Poblet-puig) (2009)

Hirakawa, Davy (2014)



Page 8 of 10  Inter-noise 2014 

Page 8 of 10  Inter-noise 2014 

space restrictions. 

The figures 2 to 5 present the maximum, average, minimum and standard deviation of the 

differences between theory and the NRCC’s experimental data. 

It should be noted that figure 5, the point connection method with the steel stud only combinations, 

shows a minimum of -11.9 dB. This is much lower than the other three difference calculations of the 

sound reduction index. Thus, the vertical axis is extended. The maximum and minimum values clearly 

showing the effects of the mass air mass resonance of 63 Hz, the first resilient effects around 250 Hz 

and the critical frequency affect around 2500 Hz. It can be seen from figure 4, that the case of resilient 

channel bars on both sides of the studs gives the lowest difference between the prediction model and 

the experimental results of the four tables. The average standard deviations shown in the figure 2 and 

4 are around 1.4 and 1.5 dB respectively, while figure 3 gives 2 dB and figure 5 gives 2.85 dB.  

 

Figure 2 – Steel stud with resilient channel bars, point connection 

 

Figure 3 – Wood stud with resilient channel bars, point connection   

-8

-6

-4

-2

0

2

4

6

8

10 100 1000 10000

D
if

fe
re

n
c
e
 i

n
 s

o
u

n
d

 r
e
d

u
c
ti

o
n

 i
n

d
e
x
 (

d
B

)

Frequency (Hz)

Max

Average

Min

STD

-10

-8

-6

-4

-2

0

2

4

6

8

10 100 1000 10000

D
if

fe
re

n
c
e
 i

n
 s

o
u

n
d

 r
e
d

u
c
ti

o
n

 i
n

d
e
x
 (

d
B

)

Frequency (Hz)

Max

Average

Min

STD



Inter-noise 2014  Page 9 of 10 

Inter-noise 2014  Page 9 of 10 

 Figure 4 – Resilient channel bars on the both sides, point connection   

 Figure 5 – Steel stud only, point connection   

4.  CONCLUSIONS 

This paper has derived empirical equations for predicting the compliance using line and point 

connection models for four different combinations of studs and resilient channel bars. The results of 

the steel stud only case using the line connection model were compared with the previous predictions 

made by Vigran (5), Poblet-Puig et al. (4) and Davy et al.(2). There was good agreement in the high 

frequency range with all three previous results, and also in the low frequency range with Vigran (5) 
and Poblet-Puig et al. (4). These results can be used in simple theoretical models for predicting the 

sound insulation of gypsum plaster board cavity walls with resilient structural connections between 
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their wall leaves. The differences between the theoretical predictions of the sound insulation of cavity 

stud walls using the point connection model and NRCC’s experimental values were presented in the 

figures showing the maximum, minimum, average and standard deviation of the differences. The 

values of the standard deviation of the differences are of the order of 2 dB for the all resilient channel 

bar combinations presented. The equations presented in this paper cover a wider range of resilient 

connections than those of Davy et al.’s paper (2) which only considered the line connection model for 

steel stud only case. These new prediction equations need further verification using with experimental 

sound insulation data which is not part of the data set used to derive the compliances. 
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