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ABSTRACT
The present work considers the geometric effect of a perforated orifice on its noise-damping performance
by conducting 2D lattice Boltzmann simulations. The damping effect of a rounded orifice is characterized
by using power absorption coefficient by applying an acoustically-excited flow consisting of multiple tones.
Comparison is then made between the damping performance of the rounded orifice and a square one. It is
found that the rounded orifice is associated with lower damping effect than that of the square one. This is due
to the different intensity vorticities generated, as visualized in the vortex shedding contours. To gain further
insight on the damping mechanism and performance of the orifices, the orifice thickness effect is studied. As
the orifice diameter remains constant, the damping performance of the orifices becomes deteriorates in terms
of the effective frequency bandwidth with the increased thickness. The present work confirms the effect of the
orifice shape and geometry plays an important role in its noise-damping performance.
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1. INTRODUCTION
Thermoacoustic instability(1) is generated by the interaction between unsteady heat release and acoustic

waves. Its occurrence can cause many plaguing problems such as mechanical failure, large amplitude noise
and increase heat release rate on the aero-engines. To mitigate combustion instabilities, the coupling between
unsteady heat release and acoustic waves must somehow be interrupted(2). Perforated liners along the bounding
walls of a combustor are widely used as acoustic dampers(3, 4, 5, 4, 6)to dissipate the acoustic waves. They
are usually made by metal sheets, which have tiny orifices in them. In practice, a cooling air flow through
the orifices (known as bias flow) is needed to prevent the liners from being damaged under high temperature.
Over the last few decades, perforated liners have been the subject of intense research activity, aiming to better
understand and predict their damping performance.

To shed lights on their damping mechanism and to predict their damping, lots of investigations of orifices
are widely conducted. Howe(7) modeled the acoustic energy dissipated by the periodic shedding of vorticity
for a single orifice at a high Reynolds-number by using Rayleigh conductivity. Eldredge & Dowling(8)
recently developed a 1D duct model in frequency domain to simulate the absorption of axial plane wave by a
double-liner with a bias flow. The damping mechanism of vortex shedding was embodied using a homogeneous
liner compliance adapted from the Rayleigh conductivity. Due to the high performance computer and more
efficient computational methods, numerical simulation becomes more popular. Tam et al.(9) carried out direct
numerical simulation (DNS) of a single aperture, showing that vortex shedding was the dominant mechanism of
absorption for incident waves of high amplitude. Mendez & Eldredge(10) conducted compressible large-eddy
simulations (LES) in time domain to study the flow through a single perforated hole or multiple holes. Ji &
Zhao(11) investigated the acoustics behavior in a 3D acoustic liner using lattice Boltzmann method and found
that vorticity generation and shedding were affecting the sound absorption ability of the liner.

The need to improve perforated liners designs with current low-emission engines leads to a resurgence
of liner focused research. The perforation geometry has been observed to have a significant influence on the
aeroacoustic response of wall perforations. Jing & Sun’s(12) experiments showed that the thickness and the
bias flow Mach number play the dominant roles in affecting the liners’ performance. Kooijman et al.(13)
investigated the influence of the edge geometry of a slit shaped perforation subjected to pure grazing flow.
The amplitudes of the oscillations in resistance and reactance were observed to be larger for sharp edged
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geometries. Lahiri et al.(14) investigated the effect of several parameters on the damping performances of
perforated liners subjected to a grazing-bias flow combination. Wall perforations with chamfered edges,
compared to sharp edges, were observed to lead to higher resistance, at low Strouhal numbers. Tonon et al.(15)
experimentally investigated the effect of grazing flow on the impedance of slit shaped wall perforations by
means of a multi-microphone impedance tube. The flow on the perforation impedance was observed to be
sensitive to the perforation geometry.

Most of optimum design of works on acoustic liner geometry were done by experiments. However, detailed
flow and acoustic signature investigations on the acoustic liner are not easy to conduct. Because of small-size
orifice (typically around 1 mm in diameter), both specific geometry manufacture and flow field observing in
and around the orifice are difficult to obtain. Meanwhile, computational fluid dynamics (CFD) can be used
as an effective tooling since it can overcome those weakness on the experiments. In this work, we conduct
numerical simulation to investigate the effect of two kinds of orifice geometry (rounded and square) on
the damping performance of acoustic liner, and analyze the mechanism through the voricity generation and
shedding. In addition, the plate thickness is also studied as an important factor.

The presented paper is organized as follows: in Sect. II, the numerical scheme and configuration are
presented. In Sec. III, definition of the sound absorption coefficient is described to characterize the acoustic
damping of the orifice. In Sect. IV, geometry configuration and thickness effecting on the acoustic performance
is performed in the presence of a bias flow.

2. NUMERICAL SCHEME AND CONFIGURATION
2.1 Lattice Boltzmann Equation
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Figure 1 – Two-dimension, nine-velocity (D2Q9) lattice model.

Unlike conventional numerical schemes, LBM is classified as a particle technique. It simulates the space-
temporal evolution of fluid field based on a time-space discretization of the Boltzmann equation, known as the
lattice Boltzman equation (LBE). The LBE controls the particles associated with collision and propagation
over a discrete lattice mesh. The conserved variables such as density, momentum and internal energy are
obtained by performing a local integration of the particle distribution. Compared with Navier-Stokes solvers,
LBM is easier to implement and code, more successful in dealing with complex boundaries and with the
potential for parallelization. Thus it has been applied to study not only fluid flows but also aeroacoustics, such
as jet, cavity and airfoil noise. Much of the previous works(16) has concluded that LBM possesses the required
accuracy to capture weak acoustic pressure fluctuations.

LBM originated from lattice gas automata, is based on mesoscopic models and kinetic equations. Simplified
kinetic models are developed that assume the fluid flow composes of a collection of pseudo-particles. They
can be represented by a set of density distribution functions. These particles are associated with collision and
propagation over a discrete lattice mesh. In order to perform particles motions, the fluid domain is discrete into
a specific group by series of nodes and lattices, depending on the different models.

Fig. 1 depicts the lattice model used in this work, known as D2Q9, and it means a particle has nine feasible
discrete propagation directions in each node and the motion occurs in two dimensional space. The discrete
velocity vectors ei set of the particles for the D2Q9 model, are defined as:

ei =


0, i = 0,
cl(cos( i−1

4 π), sin( i−1
4 π)), i = 1,3,5,7,√

2cl(cos( i−1
4 π), sin( i−1

4 π)), i = 2,4,6,8,
(1)
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where cl = ∆x/∆t (lattice space/time step) is the particle propagation speed on the lattice, taken as cl = 1 in
most cases.

The fundamental propagation and the collision of the fluid particles over the lattice are governed by a
space-temporal discretization of the Boltzmann equation, which is also named as lattice Botlzmann equation,
given by:

fi(x+ ei∆t, t +∆t)− fi(x, t) =−
1
τ
( fi(x, t)− f eq

i (x, t)), (2)

where fi is the distribution function associated with the propagation direction i at the spatial coordinate x and
time t. The single relaxation parameter τ defines particle collision and acts to control the kinematic viscosity
of the fluid: ν = (2τ−1)/6. f eq

i is the equilibrium distribution function, which is the second order truncated
expansion of the Maxwell-Boltzmann equilibrium function, expressed as:

f eq
i = ρwi(1+

3
c2 ei ·u+

9
2c4 (ei ·u)2− 3

2c2 u ·u), (3)

where wi is the weighting factor and given as:

wi =


4
9 , i = 0,
1
9 , i = 1,2,3,4,
1
36 , i = 5,6,7,8.

(4)

The left hand side of the Eq. (2) represents the propagation operator and determines the diffusion of the
distribution functions over the lattice. The right hand term of Eq. (2), known as Bhatnagar-Gross-Krook (BGK)
collision operator(17), is a simplification of the collision function based on the use of a single relaxation time
τ in all directions i. The local macroscopic variables ρ and u on each lattice site are obtained in terms of the
local distribution function fi by:

ρ(x, t) =
8

∑
i=0

fi(x, t), (5)

ρu(x, t) =
8

∑
i=0

ei fi(x, t). (6)

The equation of state is that of an ideal gas and thus p = ρc2
s , where the dimensionless speed of sound cs

in D2Q9 model is 1/
√

3. By using the Chapman-Enskog expansion, the lattice Boltzmann equations can be
recovered to the compressible Navier-Stokes equation at the hydrodynamic limit(18).

2.2 Turbulence modeling
For turbulence simulation, a common implementation is to combine the Smagorinsky(19) subgrid model

into the collision term of lattice Boltzmann equation. Implementing the turbulent model involves two steps:
(a) Evaluation of the local stress tensor:

∏
m,n

=
8

∑
i=0

ei,mei,n( fi− f eq
i ), (7)

where (m,n) ∈ {x,y}×{x,y}.
(b) Computation of the enhanced relaxation time:

τe = 3(ν +C2S)+0.5, (8)

where S = (
√

ν2 +18C2
√

∏m,n ∏m,n−ν)/(6C2) and the C is a Smagorinsky constant set as 0.18 in current
simulation.

2.3 Non-reflection Boundary Condition
The inlet and outlet are treated with an absorbing boundary condition scheme (ABC) proposed by Kam et

al(20).The concept of the ABC technique is very similar to the perfectly matched layer method commonly
used in computational aeroacoustics scheme. It involves using a buffer zone between the fluid region and the
outlet boundary to create an asymptotic transition towards a target flow in terms of target distribution function
f T
i . This is done by adding an extra term to Eq. (2), which becomes:

fi(x+ ei∆t, t +∆t)− fi(x, t) =−
1
τ
( fi(x, t)− f eq

i (x, t))−σ( f eq
i (x, t)− f T

i (x, t)), (9)

Inter-noise 2014 Page 3 of 10



Page 4 of 10 Inter-noise 2014

where σ = σT (η/β )2 is the absorption coefficient, σT = 0.3 is a constant, η is the distance measured from the
beginning of the buffer zone and β is the thickness of the buffer. The f T

i can be obtained in the same manner as
the f eq

i by using the Eq. (3). The non-reflecting condition is achieved by setting uT = u0 and ρT = ρ0, where
u0 and ρ0 are the undisturbed velocity and density at the boundary. The thickness of the ABC buffer β used in
presented work corresponds to 20 cells.

2.4 Numerical Configuration
In practice, perforate liners may consist of thousands of tiny size orifices. However, if the open area ratio

is small enough, it can be assumed that there is no interaction of the voriticity between neighboring orifices.
Thus the damping behaviors of single orifice can be used to predict the liners, as studied by Mendez and
Eldredge(10).

The geometric configuration is illustrated in Fig. 2. An acoustically excited flow with a mean flow u and
an oscillating velocity u′ is forced to pass through an orifice with opening size d in a duct with width D. The
thickness of plate is characterized as T . When the fluid is injected through the orifice, a bias flow is formed
with a mean velocity approximate Ū , and Reynolds number can be defined as Re = ρŪd/ν . The inlet is
located upstream at l from the plate, and the outlet is at L downstream. Here, L is chosen large enough to avoid
spurious interactions between the outlet condition and the zone of computational interest.
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Figure 2 – Geometry of the liner with a square single orifice.

3. DEFINITION OF ABSORPTION COEFFICIENT DESCRIPTION
The acoustic damping of the orifice can be characterized by using power absorption coefficient, which

describes the fraction of incident waves being absorbed. It is defined as:

∆ = 1−|R|2, (10)

where R is the reflection coefficient as given:

R =
zt +1
zt −1

. (11)

Here, zt is the normalized acoustic impendence of the whole system, and given as the sum of perforated liner
impedance zp and cavity impedance zc:

zt = zp + zc. (12)

Assuming planar waves are propagating between the perforated plate and the back wall, the cavity impedance
can be shown as:

zc =−j cot(kl), (13)

where j =
√
−1 and k is the acoustic wave number and l is the cavity depth. The impedance of the perforated

plate is defined as:

zp =
p̃d− p̃u

ũ0
, (14)

where c is the speed of sound, ũ0 is velocity fluctuations at the center of the orifice, p̃d and p̃u are the pressure
fluctuations at the downstream and upstream of the orifice, respectively.
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Then, The total impedance of the system is obtained:

zt = zp + zc =
p̃d− p̃u

ũ0
− j cot(kl). (15)

substituting Eqs. (11) and (15) into Eq. (10), power absorption coefficient can then be calculated.

4. RESULTS AND DISCUSSION
Before we use the model, validations are conducted by comparing our numerical results with the analytical

ones. Note that the analytical results are obtained by conducting frequency-domain analysis of a square orifice.
For comparison, the numerical configuration is illustrated as in Fig. 2. And the geometric parameters are set as:
T = 2 mm, d = 6 mm, D = 50 mm, l = 35 mm and L = 105 mm. The acoustically excited bias flow consisting
of multiple tones is set as:

uin(t) = ū+u′ = 0.5+0.005
28

∑
k=1

sin(2π fkt), (16)

where f is the forcing frequency. It can be seen that the acoustically excited flow covers a broad frequency
range (31.83 to 891.27 Hz) in increments of 31.83 Hz. The present simulation is conducted in time-domain.
And it is is different from frequency domain simulation, of which the liner’s damping is characterized one
frequency at a time. These frequencies correspond to a range of Strouhal numbers St from 0.11 to 3.05,
corresponding to the mean bias flow velocity Ū ≈ 5.5 m/s.

Fig. 3 (a) illustrates the variation of the power absorption coefficient with Strouhal number. The absorption
is maximum around f ≈ 350 Hz, resulting in an absorption peak approaching 1.0. At this frequency, almost all
the incident acoustic aves are absorbed. Comparison is then made between the present model, Howe’s model
(HM) and modified Howe’s model (MHM). Good agreement between LBM and MHM is also found, although
HM predicts a larger damping at high frequency. And Fig. 3 (b) shows the consistent results by the phase of
reflection coefficient.
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Figure 3 – Comparison between results from lattice Boltzmann method (LBM), Howe model (HM) and
modified Howe model (MHM): (a) Sound absorption coefficient ∆; (b) phase of the reflection coefficient
Φ(R).(21)

4.1 Orifice Shape Effect
To investigate the orifice shape effect on the sound absorption property, two different plate shapes are simu-

lated and compared: square and rounded. The radius of the semi-cycle at the rounded orifice is characterized
as r, and 2r = T , where T is the plate thickness. The details of geometry comparison are described in Fig. 4
and the numerical setting up keeps consistent as used in section 4.1. From the results comparison of the sound
absorption coefficient illustrated in Fig. 5, it can observed that the maximum sound absorption coefficient from
the liner with the rounded orifice ∆r

max is about 0.9, which is lower than the ∆s
max ≈ 1.0 from the square one.

And the effective bandwidth is also narrower when using the rounded orifice. It indicates that the liner with
rounded orifice has poorer sound absorption ability than the one using the square orifice.
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Figure 4 – Geometry comparison of the square (a) and rounded (b) orifice liner.
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Figure 5 – Sound absorption coefficient comparison between the square and rounded orifice liner.
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Figure 6 – Vorticity magnitude of the square (a) and rounded (b) orifice liner.
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Figure 7 – The regular orifice liner with three kinds of plate thickness: (a) T; (b) 2T; (c) 4T.
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Figure 8 – The regular orifice liner with three kinds of plate thickness: (a) T; (b) 2T; (c) 4T.

To better understand the mechanism causing the difference in sound absorption, another numerical simula-
tion is conducted by adding a periodic flow fluctuation at upstream without mean flow (ū = 0) as given:

p′ = |p|sin(2π f t), (17)

where |p| and f are the amplitude and frequency of the perturbation respectively. |p| equals to the 0.01% of
the atmospheric pressure, and frequency f is set to 318Hz. When the excited acoustic wave from the upstream
pass through the orifice, part of acoustic energy is used to generate the vortex at the edge of orifice and make
them shedding to the downstream. That explains why the orifice can dissipate the sound in a lined duct. Fig. 6
(a) and (b) show the vortex shedding from the square and rounder orifice, respectively. For comparison, both
of them are recorded at the same flow time. It can be seen that the intensity of vorticity generated at rounded
orifice is Ir = 300s−1, which is less than Is = 400s−1 from the square one. And the shedding distance of vortex
δr < δs also indicates that the more acoustic energy is transformed to kinetic energy for vortex motion when
through the square orifice.

4.2 Orifice Thickness Effect
It has been shown in the previous experiments that plate thickness also has a major influence on the acoustic

properties of a liner with bias flow(12). Particular attention is now paid to the evaluation of the effect of
finite plate thickness on its acoustic absorption property. In the presence of a same bias flow Ū ≈ 5.5 m/s, the
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Figure 9 – Vorticity shedding contour for the different plate thickness: (a) T; (b) 2T; (c) 4T.
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absorption coefficients of a perforated plate are calculated in three different thickness T(2mm), 2T and 4T
shown in Fig. 7. As the thickness increases from T to 4T, the maximum sound absorption coefficient ∆max
varies little, however, the frequency of maximum absorption changes obviously and the effective bandwidth
becomes narrower as shown in Fig. 8. Vortex shedding is also recorded at the same flow time during the
simulation as done in section 4.2. The vortex intensity and shedding distance are marked on the Fig. 9. By
comparing the vortex intensity IT , I2T and I4T , it can be clearly seen that the IT is strongest among them. And
the distance that vortex sheds from the downstream edge of the plate δT is the longest. It can be explained
vortex I4T generated at the upstream edge of the orifice loses most energy on the boundary layer as it has to go
through the thickest plate thickness(4T).

5. CONCLUSIONS
2D numerical simulations of the damping performance of a rounded and a square orifice are conducted. The

model is developed in time domain by solving the discrete lattice Boltzmann equations via using the pseudo-
particle based technique. It controls the particles associated with collision and propagation over a discrete
lattice mesh. Acoustic variables such as pressure, density and internal energy are determined by performing a
local integration of the particle distribution at each time step. This is different from the conventional numerical
models attempting to solve Navier-Stokes equations by using high-order finite difference or finite volume
methods. In order to enable the orifice damping performance to be characterized over a broad frequency
range, acoustically-excited flow consisting of multiple tones is applied to the orifices. Here we use power
absorption coefficient as the damping performance indicator. It describes the fraction of incident waves being
absorbed. It is shown that the rounded orifice is associated with lower damping effect than that of the square
one. This is due to the reduced intensity vorticities generated, as visualized in the vortex shedding contours.
Further investigations reveal that the orifice thickness also plays a critical role in determine the orifice damping
performance. As the orifice diameter remains constant, the maximum power absorption of the square or
rounded orifice and its effective frequency bandwidth are decreased with the increased thickness. The present
work confirms the effect of the orifice shape and geometry on determining its noise-damping performance.
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