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ABSTRACT

Prediction of brake squeal as unwanted high frequeoise above 1 kHz remains a challenging problem
despite substantial research efforts in the pastdecades. Brake squeal, triggered by friction-oedu
self-excited vibration, can be caused by many wifieand interacting mechanisms with nonlineariosig

in material properties and boundary conditions.hdligh brake squeal is essentially a nonlinear
phenomenon, the standard industrial practice fediption of brake squeal relies on the linear caxpl
eigenvalue analysis which may under-predict or @redict the number of unstable vibration modes.
Brake squeal can be considered in nonlinear dymarteems to be caused by a friction-induced
self-excitation driven into instability and oscfitzg in a limit cycle through super-critical AndrowHopf
bifurcations. In this paper, a nonlinear stabibtyalysis that may be applied to a full brake sysiem
examined using an unforced 4-DOF friction osciltatith cubic nonlinearity. The local bifurcation
behaviour of this model is studied using the norfoain theory and the nonlinear stability boundasy i
evaluated. Differences between results of linedrranlinear analyses are discussed and the liomisinf

the linear analysis are highlighted. The energyipexd by friction and consumed by damping is caltad

by multiple scales method to provide a physicala@xation for instability generation.
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1. INTRODUCTION

Brake squeal has been a major concern for automatidustry owing to the associated warranty
costs and vehicle noise vibration and harshnes®peance (1). Several mechanisms are known to
initiate brake squeal, e.g. negative gradient efitlocity- friction coefficient relationship, skieslip,
sprag-slip, hammering and mode coupling, etc (1, A)imit cycle may be established through
friction-induced self-excited vibration, resultinig squeal (3). The most popular approach to
determine unstable vibration modes is the compliggerevalue analysis (CEA), which is a linear
stability analysis. However, the CEA is often ungeedictive owing to either modelling issues
(correct friction law (4), sufficiently fine mesim icontact zone (2)) or over-predictive since nadt al
unstable modes will squeal (5) or are able to n@dsaund efficiently (3, 6). Further, linearizatidoes
not allow predicting all instabilities (4) or mangil unstable states (2) so that the results of GEA
neither necessary nor sufficient in predicting lerakueal.

One reason of the CEAs poor performance in mangesais that a brake system’s noise
performance might be nonlinearly correlated to fiistion coefficient (5). Recently, the Ruelle
-Takens route to chaos has been identified as enpat cause for brake squeal (6) which is a clear
indication of nonlinearity in the system. Sourcdsnonlinearity are abundant in operating brake
systems, e.g., the deflection of the lining materaies nonlinearly with the load (2), and detaemh
between the pad and the rotor (7), the nonlineangdag character of friction (8, 9), etc. Hence a
nonlinear analysis of structural vibrations seenendjicial to understand the generation of
instabilities.

The Normal Form Theory, as a nonlinear stabilitalgsis approach, has been used to analyse a
nonlinear brake model (3) to indicate that CEA ® sufficient for detecting instability. Using the
Normal Form Theory, a nonlinear system can be reduo a normal form (centre manifold reduction
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(10), perturbation technique (11)) to qualitativegsemble the long term behaviour of the original
system (11). In this work, a nonlinear stabilityatysis based on a perturbation approach (11) is
applied to an analytical 4-DOF (degree of freedeimstously-damped self-excited friction oscillator
with cubic contact stiffness. The linear and noeéininstability regions are predicted and compared.
Friction work and viscous work over one cycle aegcalated in order to highlight the feed-back
energy as the physical origin of brake squeal (13),

2. An analytical 4-DOF viscously-damped self-excited friction oscillator with

cubic nonlinearity and stability analysis

A 4-DOF viscously-damped self-excited friction dkatior is shown in Figure 1. A block with mass
my and a conveyor belt with mass, are held by linear springs with stiffneds_, and ky_,,
respectively. A nonlinear spring with stiffnesg is used for modelling their contact. The springcto
of kg is characterised aB =ks;(y;—V,)+kss(y; - ¥,)®, wherey, -y, denotes the relative motion
of m andm, in they directionks; and kg; are two components of the stiffndgs The motion of the
massesy andm, in thex andy direction is viscously damped by dashpotsof;andc; csrespectively
and coupled via constant friction coefficigntising Coulomb-Amonton’s law. In this model, thedko
m; and the conveyom, represent the brake pad and brake rotor respdgtivhile the springks
represents the contact stiffness between the pddhenrotor. The-direction is in the plane of the
disc whereas thg-direction is out-of-plane.

Figure I A viscously-damped self-excited nonlinear frictiascillator

Only the dynamics of the system in the steddding state is considered so that the stick-slip
effect can be ruled out (14). The equations of orotie written as

MU+CU+KU+Fy(U)=0 (1)
with U =(x., 1, %, y,)" being the displacement vector arfd) its time derivativeM, C andK are the

diagonal mass, damping matrices and the asymnstifficess matrix respectively (1%, (U) is a vector
containing the nonlinear expressiofy, — Y,)® - (—Ksaft, Kss, Ksatt,—Ks3) " -

2.1 Linear stability analysis (CEA)

Perturbing the equilibrium point of Equation (1)dalinearising the resultant nonlinear equations
using a first-order Taylor expansion leads to ac$efquations as

MU+CU+KU=0 )
The solution of Equation (2) is

U=2 ¢y, ©)

wheres andy ; are thg™ complex eigenvalue and eigenvector of Equation.l{anys has a positive real
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part, the perturbed displacemeﬁltwould exponentially increase indicating an insigbillf there is at
least one zero real part with all others being tiegathe stability of the equilibrium point is noconclusive
(16).

2.2 Nonlinear stability analysis

The system matrix of Equation (1) without nonlinéarces (17), can be transformed as (details in
appendix A.1)

2n+a)n22n=aqn(21,...z4,21,...24) (4)

4

4 4 4 4 4
qn(zl,...z4,21,...z4):22205,],2| +Z,Bn, Z,3+227n”2|22j +Z Z6n,jkz| Z;z ,n=1~4] # j #k (5)
=1 1=1

4
j=11=1 I=1 j=1 k=1

where ¢ is a dimensionless small positive constant, repreésg the nonlinear stiffness characteristics
of the brake liningz, are the unknown variables; are the natural frequencies of the un-damped
linear systeme; , B , 7,; andd,;, are known constants determined in the processaoisformation

(details in appendix A.2).
The solution of Equation (4) can be approximatedlyuncated series i (18)

M
z, =zgmznm(5°t,...,g°°t) (6)
m=0

For smalle , the nonlinearity is assumed to be weak, and theses in Equation (6) of higher order
will have diminishing contribution (12). Equatiofi)(can be truncated with two terms as

nijk

Zn = ZnO(TO’T1)+an1(TO’T1)+O(‘92) (7)
whereT, =t, T, = st are two time scales so that the derivative of aalde with time is written as (19)
E=i+gi:D0+ng (8)
dad o1, 0T,
d? 2
a Do + 26D, Dy (9)

Substituting Equation (7) into Equation (4) witlethid of Equations (8) and (9) and balancing tfie le
and right hand side of the resultant equation atiogrto the power of leads to
The zeroth order ofs

D2z, + @, 2y =0 (10)
The first order ofe

4 4 4 4 4 4 4
D32y + 0,2 = _22 Do (D170 + i Z0) +Zﬁn| 20 + ZZM] 2102210 +zzz5nljkz|ozjozko (11)
-1 =] j

j=11=1 =1 j=1 k=1
The solution of Equation (10) is
Zno = AL (T)ET + A, (Ty)e ' (12)
wheree is the exponential function arigv/-1. By substituting Equation (12) into Equation (11¢th
unknown variableg,;can now be solved in a closed form. By substituig@ndz,; into Equation (7)).
an approximate solution to the truncated originqu&tion (6) can be obtained..

However, to obtain a bounded solutionzf{, the terms on the right hand side of Equation ) (11
with frequency equating 0, have to be artificially set as zero (so-called veddility condition’ of
perturbation techniques (7, 14), details in appe®dB). The solvability condition would be a set of
equations governing the amplitude(T;) . If A,(T;) reaches a non-zero steady state, the original
nonlinear system is unstable.
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3. Results and discussion

Results from the linear and the nonlinear stabitihalysis are compared by varying the friction
coefficient x# and the spring stiffneds. The other values are setrag=1 kg, m,=100 kg,k;, k3, k4,
ks1, kss are 2.49, 1, 1, 1.33, 1 N/ne;-,=0.05 Ns/mg,,a,are 30 and 156, respectively. These
parameters values are chosen because, in a bratengythe mass of the rotor is typically about 100
times bigger than the mass of the pad. Other palamalues are chosen to be similar to those
reported in Hoffmann et al. (20).
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Figure 2 — Comparison between stable and unsta&giem predicted by linear (CEA) and
nonlinear stability analysis

The stable and unstable region predicted byC#A and nonlinear stability analysis is given iiguiie
2. The nonlinear stability analysis predicts a dargrea unstable region than the linear CEA higltilgy
the under-predictive character of the CEA as aaquepensity assessment tool. Some area predcteel
stable by CEA is actually unstable in the nonlingtability analysis. As predicted by the nonlinstability
analysis, every point in the region between thedmand nonlinear stability boundary in Figure 3uiglo
show two possible solutions, one is stable asdhage to zero, while the other reaches a limit cynlat
predicted by CEA).

The 4" order Runge-Kutta method is applied to numericaitggrate Eq.(1) with these points to check
if a limit cycle can be reached By choosing antaatby point in the region between the linear andlinear
stability boundary g is 0.5 and the stiffness of sprikgare 1.21 N/m, respectively), the response of the 4-
DOF friction oscillator indicates a periodicallyryang velocity (Figure 3).

By integrating the friction (& damping) forcedoag the path of the relative (absolute)
displacement betweem, and m, in the in-plane X) direction, the friction (and damping) work
over one cycle is calculated (Figure 4). The amoaihtvork performed by friction and damping
force (in absolute values) converges to about 2.45his indicates that the energy provided by the
friction force would balance the damped energyha steady state, which is a necessary condition
for the existence of a limit cycle (21). From theridation of the solvability condition Equation (1.3
one could see closeness of natural frequencies dvdektabilise the dynamics in terms of the
positive friction work while separation of circuldrequencies would take the opposite effect
(Appendix A.3).

4. Conclusions

Friction-induced self-excited vibration is usuatlgnsidered as the primary cause of brake squeal.
In this work, a linear and nonlinear stability ays is performed to assess an analytical 4-DOF
friction oscillator with cubic nonlinearity as angplified brake model for predicting the instability
region. Results show that either a nonlinear siigbénalysis or nonlinear time domain analysis is
necessary to reliably predict the occurrence oindticycle. The linear stability analysis (CEA)
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has been shown here to under-predict stability bieha; not only chaotic regimes, but even limit
cycles (6,7) might not be predicted numericallycbntrast to the linear the CEA (22), the nonlinear
stability analysis is able to estimate the limitkg/s phase space diameter (3, 22, 23). The prediict
instability is due to the positive work performeg friction force which is here the sole energy
source leading to self-excitation (12). The nondinstability analysis has not been applied to &din
element model with many thousand DOFs due to itsheraatical complexity and computational
resources required; reduction methods are diffitaltapply for nonlinear systems. Also, a priori
knowledge of the type and the degree of nonlingastnecessary and the effect of truncation of a
series of solutions remains outstanding issuegakdéd squeal research.
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Figure 3. Velocity of the 4-DOF friction oscillato
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Figure 4. The evolution of friction and damping \kqrer cycle
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APPENDIX

A.1 Transforming Equation (1) to Equation (4)

The left and right modal matri¥ andD of the undamped linear part of Equation (1) can be
determined as an eigenvalue problem by

K'V=A4,M"V KD=1,MD (A.1)
wherej, and/, are the corresponding eigenvalues.

Transforming the original unknown vector by uslhg DZ and substituting it into Equation (1),
then left- multiplyingV', one obtains
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V'MDZ +VTKDZ =-Vv'CcDZ +V'(K,DZ)? (A.2)
where
0 ksgu 0 —Kszu
0 —ksaer 0 Kksgu

K represents the friction and normal force actingrprandm, due to the nonlinear element of the model.
Left-multiplying Equation (A.2) by the invers matfV "MD leads to

Z+(VTMD)YH(VTKD)Z =—(V"MD)(V'CD)Z +(V'MD)*VT(K,DZz)3 (A.4)
Equation (4) is just an abbreviation of Equation4(A

A.2 Determination of the coefficients in Eq. (5)
Equation (5) is the right hand side of Equation4()0and it takes the form as

qn(zlv Z4,Zl, Z4) ZzanIZ|+Zﬂnlz| +227nljz| Z +2226nljkz|zjzk , n=1~4 (A-5)

j=11=1 =1 j=1 k=1
The value ofam is determined by just multiplying the element |t the™ row and™ column
of matrix —(V'™MD)}(vTCD)with -0.5. Determination of,, » 7nij » Onijk EQUIres first expanding the
(VTMD) VT (K;Dz)® and then determining the corresponding coeffident

|th

A.3 Determination of solvability condition
Take Eq. (11) as an example:

D5z + le__ZZDO(Dlz|O+aﬂZ|O)+Z:BﬂZ|O +ZZ7JJJZ|0 Zjo+zzz5ﬂjkztozjozko (A.5)

j=11=1 1=1 j=1 k=1
By imposing the solvab|llty condition ellmlnates dle terms on the right hand side of Equation {A.5
which include the circular frequeney.

Asz,, has been obtained in Eq. (12) as

20 = A (T + A (Ty)e ™0 (A.6)
Then the first term on the right hand side of E&.5) would become

4
- ZZ Do (D120 + @1 Z0) = 210y (Do A+ A — 20, (Do Ay +a1pA0)€ " A7)
1 :

—2i03(Dy A + ay5hg)€ M — 21w, (DA, + gy A)E D
The second term on the right hand side of Eq. (Au6)ld become

4
Zﬁ]] ZI03 _ ,311(A139'3w1t +3A12 Alela)lt +3A1A128_|w1t + Ai‘?’e—liia)lt)
=1

+,812(A23 i30,t +3AZZEeiw2t +3AQEZe—im2t +Ee’e—i3w2t) (A.8)
t Bis (A33 i304t +3A32Eeiw3t +3A3E2e—iw3t +E3e—i3w3t)

+l814(A43ei3w4t +3A42Eeiw4t +3A4E2e—iw4t +E3€—i3w4t)

As can be seen in Eq. (A.7- A.8)—,2ia)l(D2A1+allA1)+3ﬂllA12K1 has to be set as zero. Similarly, we
can find other terms with the circular frequency®f from the left two terms on the right hand side of
Eqg. (A.5) and in conjunction with2im,(D,A +a;;A)+36;A%A , this constitutes the solvability
condition for Eq. (A.5).

If v, ~w, (mode coupling), additional terms lik&g,,A,>A, will come into the solvability
condition which in turn influences the amplitude thfe solution (& ). For a certain parameter
combination, a stable nontrivia] bifurcates which is related to a super-critical Hbfurcation.
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