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ABSTRACT 
Prediction of brake squeal as unwanted high frequency noise above 1 kHz remains a challenging problem 
despite substantial research efforts in the past two decades. Brake squeal, triggered by friction-induced 
self-excited vibration, can be caused by many different and interacting mechanisms with nonlinear origins 
in material properties and boundary conditions. Although brake squeal is essentially a nonlinear 
phenomenon, the standard industrial practice for prediction of brake squeal relies on the linear complex 
eigenvalue analysis which may under-predict or over-predict the number of unstable vibration modes.  
Brake squeal can be considered in nonlinear dynamics terms to be caused by a friction-induced 
self-excitation driven into instability and oscillating in a limit cycle through super-critical Andronov-Hopf 
bifurcations. In this paper, a nonlinear stability analysis that may be applied to a full brake system is 
examined using an unforced 4-DOF friction oscillator with cubic nonlinearity. The local bifurcation 
behaviour of this model is studied using the normal form theory and the nonlinear stability boundary is 
evaluated. Differences between results of linear and nonlinear analyses are discussed and the limitations of 
the linear analysis are highlighted. The energy provided by friction and consumed by damping is calculated 
by multiple scales method to provide a physical explanation for instability generation. 
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1. INTRODUCTION 
Brake squeal has been a major concern for automotive industry owing to the associated warranty 

costs and vehicle noise vibration and harshness performance (1). Several mechanisms are known to 
initiate brake squeal, e.g. negative gradient of the velocity- friction coefficient relationship, stick-slip, 
sprag-slip, hammering and mode coupling, etc (1, 2). A limit cycle may be established through 
friction-induced self-excited vibration, resulting in squeal (3). The most popular approach to 
determine unstable vibration modes is the complex eigenvalue analysis (CEA), which is a linear 
stability analysis. However, the CEA is often under-predictive owing to either modelling issues 
(correct friction law (4), sufficiently fine mesh in contact zone (2)) or over-predictive since not all 
unstable modes will squeal (5) or are able to radiate sound efficiently (3, 6). Further, linearization does 
not allow predicting all instabilities (4) or marginal unstable states (2) so that the results of CEA are 
neither necessary nor sufficient in predicting brake squeal.  

One reason of the CEA’s poor performance in many cases is that a brake system’s noise 
performance might be nonlinearly correlated to its friction coefficient (5). Recently, the Ruelle 
-Takens route to chaos has been identified as a potential cause for brake squeal (6) which is a clear 
indication of nonlinearity in the system. Sources of nonlinearity are abundant in operating brake 
systems, e.g., the deflection of the lining material varies nonlinearly with the load (2), and detachment 
between the pad and the rotor (7), the nonlinear damping character of friction (8, 9), etc. Hence a 
nonlinear analysis of structural vibrations seems beneficial to understand the generation of 
instabilities. 

The Normal Form Theory, as a nonlinear stability analysis approach, has been used to analyse a 
nonlinear brake model (3) to indicate that CEA is not sufficient for detecting instability. Using the 
Normal Form Theory, a nonlinear system can be reduced to a normal form (centre manifold reduction 
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(10), perturbation technique (11)) to qualitatively resemble the long term behaviour of the original 
system (11). In this work, a nonlinear stability analysis based on a perturbation approach (11) is 
applied to an analytical 4-DOF (degree of freedom) viscously-damped self-excited friction oscillator 
with cubic contact stiffness. The linear and nonlinear instability regions are predicted and compared. 
Friction work and viscous work over one cycle are calculated in order to highlight the feed-back 
energy as the physical origin of brake squeal (12, 13).  

2. An analytical 4-DOF viscously-damped self-excited friction oscillator with 

cubic nonlinearity and stability analysis 
A 4-DOF viscously-damped self-excited friction oscillator is shown in Figure 1. A block with mass 

m1 and a conveyor belt with mass m2 are held by linear springs with stiffness 2~1k  and 4~3k , 
respectively. A nonlinear spring with stiffness 5k  is used for modelling their contact. The spring force 
of 5k is characterised as 3

21532151 )()( yykyykF −+−= , where 21 yy − denotes the relative motion 
of 1m and 2m in the y direction. 51k  and 53k  are two components of the stiffness k5. The motion of the 
masses 1m and 2m in the x and y direction is viscously damped by dashpots of c2, c3 and c1, c4 respectively 
and coupled via constant friction coefficientµ using Coulomb-Amonton’s law. In this model, the block 
m1 and the conveyor m2 represent the brake pad and brake rotor respectively while the spring k5 

represents the contact stiffness between the pad and the rotor.  The x-direction is in the plane of the 
disc whereas the y-direction is out-of-plane. 
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Figure 1- A viscously-damped self-excited nonlinear friction oscillator 

    Only the dynamics of the system in the steady sliding state is considered so that the stick-slip 
effect can be ruled out (14). The equations of motion be written as 

0UFKUUCUM =+++ )(Nl
&&&                                (1) 

with ( )T2211 ,,, yxyx=U being the displacement vector and ( )⋅  its time derivative. M, C and K are the 

diagonal mass, damping matrices and the asymmetric stiffness matrix respectively (15). )(UFNl is a vector 

containing the nonlinear expressions T
53535353

3
21 ),,,()( kkkkyy −−⋅− µµ . 

2.1 Linear stability analysis (CEA) 
Perturbing the equilibrium point of Equation (1) and linearising the resultant nonlinear equations 

using a first-order Taylor expansion leads to a set of equations as 

0UKUCUM =++
~~~ &&&

                                 (2) 
The solution of Equation (2) is 
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where sj and jψ are the jth complex eigenvalue and eigenvector of Equation. (2). If any sj has a positive real 
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part, the perturbed displacement U
~

would exponentially increase indicating an instability. If there is at 
least one zero real part with all others being negative, the stability of the equilibrium point is not conclusive 
(16).  

2.2 Nonlinear stability analysis 
 
The system matrix of Equation (1) without nonlinear forces (17), can be transformed as (details in 

appendix A.1) 

),,,( 4141
2 zzzzqzz nnnn &K&K&& εω =+                         (4) 
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where ε is a dimensionless small positive constant, representing the nonlinear stiffness characteristics 
of the brake lining; nz  are the unknown variables;nω are the natural frequencies of the un-damped 
linear system; niα , niβ , nijγ and nijkδ are known constants determined in the process of transformation 
(details in appendix A.2).    

The solution of Equation (4) can be approximated by a truncated series in ε   (18) 
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For smallε , the nonlinearity is assumed to be weak, and those terms in Equation (6) of higher order 
will have diminishing contribution (12). Equation (6) can be truncated with two terms as 

)(),(),( 2
101100 εε Ο++= TTzTTzz nnn                              (7)  

where tT =0 , tT ε=1 are two time scales so that the derivative of a variable with time is written as (19) 

10
10

DD
TTdt

d
εε +=

∂
∂+

∂
∂=                                    (8) 

10
2
02

2

2 DDD
dt

d
ε+=                                        (9) 

Substituting Equation (7) into Equation (4) with the aid of Equations (8) and (9) and balancing the left 
and right hand side of the resultant equation according to the power ofε leads to 
The zeroth order of ε  
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The first order of ε  
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The solution of Equation (10) is 
00 )()( 110

Ti
n
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where e is the exponential function and i= 1− . By substituting Equation (12) into Equation (11) the 
unknown variables zn1 can now be solved in a closed form. By substituting zn0 and zn1 into Equation (7)). 
an approximate solution to the truncated original Equation (6) can be obtained.. 

However, to obtain a bounded solution of zn1, the terms on the right hand side of Equation  (11) 
with frequency equating tonω have to be artificially set as zero (so-called ‘solvability condition’ of 
perturbation techniques (7, 14), details in appendix A.3). The solvability condition would be a set of 
equations governing the amplitude )( 1TAn . If )( 1TAn reaches a non-zero steady state, the original 
nonlinear system is unstable.  
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3. Results and discussion 
Results from the linear and the nonlinear stability analysis are compared by varying the friction 

coefficient µ  and the spring stiffness k2. The other values are set as m1=1 kg, m2=100 kg, k1, k3, k4, 
k51, k53 are 2.49, 1, 1, 1.33, 1 N/m, c1~4=0.05 Ns/m, 1α , 2α are 300 and 1500, respectively. These 
parameters values are chosen because, in a brake system, the mass of the rotor is typically about 100 
times bigger than the mass of the pad. Other parameter values are chosen to be similar to those 
reported in Hoffmann et al. (20). 
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Figure 2 – Comparison between stable and unstable region predicted by linear (CEA) and 

nonlinear stability analysis 
   The stable and unstable region predicted by the CEA and nonlinear stability analysis is given in Figure 
2. The nonlinear stability analysis predicts a larger area unstable region than the linear CEA highlighting 
the under-predictive character of the CEA as a squeal propensity assessment tool. Some area predicted to be 
stable by CEA is actually unstable in the nonlinear stability analysis. As predicted by the nonlinear stability 
analysis, every point in the region between the linear and nonlinear stability boundary in Figure 3 would 
show two possible solutions, one is stable as it decays to zero, while the other reaches a limit cycle (not 
predicted by CEA). 
 The 4th order Runge-Kutta method is applied to numerically integrate Eq.(1) with these points to check 
if a limit cycle can be reached By choosing an arbitrary point in the region between the linear and nonlinear 
stability boundary (µ is 0.5 and the stiffness of spring2k are 1.21 N/m, respectively), the response of the 4- 
DOF friction oscillator indicates a periodically varying velocity (Figure 3).  
   By integrating the friction (& damping) forces along the path of the relative (absolute) 
displacement between 1m  and 2m  in the in-plane (x) direction, the friction (and damping) work 
over one cycle is calculated (Figure 4). The amount of work performed by friction and damping 
force (in absolute values) converges to about 2.45 J. This indicates that the energy provided by the 
friction force would balance the damped energy in the steady state, which is a necessary condition 
for the existence of a limit cycle (21). From the derivation of the solvability condition Equation (13), 
one could see closeness of natural frequencies would destabilise the dynamics in terms of the 
positive friction work while separation of circular frequencies would take the opposite effect 
(Appendix A.3).  

4. Conclusions 
Friction-induced self-excited vibration is usually considered as the primary cause of brake squeal. 

In this work, a linear and nonlinear stability analysis is performed to assess an analytical 4-DOF 
friction oscillator with cubic nonlinearity as a simplified brake model for predicting the instability 
region. Results show that either a nonlinear stability analysis or nonlinear time domain analysis is 
necessary to reliably predict the occurrence of a limit cycle.  The linear stability analysis (CEA) 
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has been shown here to under-predict stability behaviour; not only chaotic regimes, but even limit 
cycles (6,7) might not be predicted numerically. In contrast to the linear the CEA (22), the nonlinear 
stability analysis is able to estimate the limit cycle’s phase space diameter (3, 22, 23). The predicted 
instability is due to the positive work performed by friction force which is here the sole energy 
source leading to self-excitation (12). The nonlinear stability analysis has not been applied to a finite 
element model with many thousand DOFs due to its mathematical complexity and computational 
resources required; reduction methods are difficult to apply for nonlinear systems. Also, a priori 
knowledge of the type and the degree of nonlinearity is necessary and the effect of truncation of a 
series of solutions remains outstanding issues in brake squeal research.   
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 Figure 3. Velocity of the 4-DOF friction oscillator 
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Figure 4. The evolution of friction and damping work per cycle 
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APPENDIX 

A.1 Transforming Equation (1) to Equation (4) 
The left and right modal matrix V and D of the undamped linear part of Equation (1) can be 

determined as an eigenvalue problem by  
VMVK TT

Vλ= , MDKD Dλ=                             (A.1) 

where Vλ and Dλ are the corresponding eigenvalues.  

Transforming the original unknown vector by using DZU = and substituting it into Equation (1), 
then left- multiplying VT, one obtains 
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3TTTT )( DZKVZCDVKDZVZMDV f+−=+ &&&                    (A.2) 
where  
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Kf represents the friction and normal force acting on m1 and m2 due to the nonlinear element of the model. 

Left-multiplying Equation (A.2) by the invers matrix of MDVT  leads to 
3T1TT1TT1T )()()()()()( DZKVMDVZCDVMDVZKDVMDVZ f

−−− +−=+ &&&      (A.4) 
Equation (4) is just an abbreviation of Equation (A.4). 

A.2 Determination of the coefficients in Eq. (5) 
Equation (5) is the right hand side of Equation (A.4) and it takes the form as 
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The value of nlα is determined by just multiplying the element locates at the nth row and lth column 
of matrix )()( T1T CDVMDV −

− with -0.5. Determination of nlβ , nljγ , nljkδ requires first expanding the 
3T1T )()( DZKVMDV f

−  and then determining the corresponding coefficients. 

A.3 Determination of solvability condition 
Take Eq. (11) as an example: 
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By imposing the solvability condition eliminates all the terms on the right hand side of Equation (A.5) 
which include the circular frequency1ω .  

 As 10z  has been obtained in Eq. (12) as 
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TiTi eTAeTAz ωω −+=                               (A.6) 

Then the first term on the right hand side of Eq. (A.5) would become 
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The second term on the right hand side of Eq. (A.5) would become 
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As can be seen in Eq. (A.7- A.8), 1
2

111111121 3)(2 AAAADi βαω ++− has to be set as zero. Similarly, we 

can find other terms with the circular frequency of 1ω  from the left two terms on the right hand side of 

Eq. (A.5) and in conjunction with 1
2

111111121 3)(2 AAAADi βαω ++− , this constitutes the solvability 
condition for Eq. (A.5).   

If 21 ωω ≈ (mode coupling), additional terms like 2
2

2123 AAβ will come into the solvability 

condition which in turn influences the amplitude of the solution ( 1A ). For a certain parameter 

combination, a stable nontrivial1A bifurcates which is related to a super-critical Hopf bifurcation. 


