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ABSTRACT 

This work compares results from analytical and numerical techniques to predict the modal contributions to 

the radiated sound power and far-field sound pressure for structures submerged in a heavy fluid medium. A 

fluid-loaded cylindrical shell with hemispherical end caps is examined. The cylinder is excited by either axial 

or transverse forces acting at one end, to predominantly excite the lowest order cylinder circumferential 

modes. A modified variational method combined with a spectral boundary element method is used to develop 

an analytical model of the coupled hemispherical and cylindrical shells under heavy fluid loading conditions. 

The displacement components and the sound pressure are expanded in the form of a double mixed series 

using Fourier series and Chebyshev orthogonal polynomials. A fully coupled finite element/boundary 

element model of the same coupled hemispherical-cylindrical shell is also developed. A numerical technique 

for modal decomposition of the acoustic responses of the structure using the fluid-loaded structural modes is 

implemented. The individual contributions of the cylinder circumferential modes to the sound power and 

directivity of the radiated sound pressure are observed. The techniques presented here provide greater 

physical insight into structure-borne radiated noise from fluid-loaded shells. 

 

Keywords: Radiated sound power, cylindrical shell, fluid loading  I-INCE Classification of Subjects 

Number(s): 54.3 

1. INTRODUCTION 

Predicting the vibro-acoustic responses of thin shell structures in contact with an unbounded fluid 

is important in various engineering applications including underwater vehicles and submarines. Low 

frequency vibration modes of a thin shell can be easily excited by external forces, which may result 

in a high level of radiated noise. Identifying the modal contributions to the sound radiation of shell 

structures is useful to reduce the noise by refining the design of the structure. For an elastic shell in 

air, the structural and acoustic responses can be subsequently solved. However, for the case of a shell 

immersed in water where the fluid impedance is comparable to that of the shell, the fluid-structure 

interaction is strongly coupled and the structural and acoustic responses have to be simultaneously 

solved. 

Prediction of the structure-borne radiated noise from fluid-loaded shells is a well defined 

fluid-structure interaction problem. A large amount of work has been devoted to this subject in the 

past few decades, for example, see Refs. (1-3). In general, analytical approaches for fluid-structure 

interaction problems are restricted to spherical shells and infinite cylindrical geometries using the 

classical method of separation of variables. For an arbitrarily shaped shell of revolution submerged in 

an unbounded fluid and subject to external forces of arbitrary type, numerical methods are preferable 

to analytical approaches. The coupled finite element method/boundary element method is a very 

powerful and popular tool for computing the vibro-acoustic responses of fluid-loaded structures (4-8). 

The finite element method is generally employed to describe the dynamic behavior of the structure 

whereas the boundary element method is used to represent the fluid domain and predict the acoustic 

responses.  

The work examines the acoustic responses of a submerged vessel immersed in a heavy fluid of 
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infinite extent. The vessel is simplified as a coupled shell consisting of a closed cylindrical shell 

with two hemispherical end caps. Since the geometrical configuration of the coupled shell is 

complex, analytical solutions for the fluid-structure interaction problem of the shell are not possible. 

A modified variational method in conjunction with a multi-segment partitioning technique is 

employed to formulate the structural model. A spectral Helmholtz integral equation is used to model 

the exterior fluid. The displacement components and radiated sound pressure are expanded in the form 

of a double mixed series using Fourier series and Chebyshev orthogonal polynomials.  A finite 

element/boundary element model of the same coupled shell is also developed, in which the structural 

and fluid domain models are fully coupled using the mortar method. Modal decomposition of the 

acoustic responses of the structure using the fluid-loaded structural modes is implemented. Analytical 

and numerical results for the coupled shell subject to different excitation loads are presented. The 

individual contributions of the circumferential modes to the sound power and directivity of the 

radiated sound pressure are examined. 

2. THEORTICAL FORMULATIONS 

2.1 Model Description 

Consider a cylindrical shell closed by two hemispherical end caps, as shown in Fig. 1. The 

hemispherical caps are described by spherical coordinates ( ,  )  . The displacement components of 

the hemispherical shell in the  ,   and normal directions are denoted by 
su , 

sv  and 
sw , 

respectively. For the cylindrical shell, the middle surface is defined by the cylindrical coordinates 

( ,  )x  . The displacements related to the x ,   and normal directions are given by 
cu , 

cv  and 
cw , 

respectively. The coupled shell is made from an isotropic, homogeneous and linearly elastic material 

with Young’s modulus E , Poisson’s ratio   and density  . The coupled shell structure is 

submerged in an unbounded heavy fluid. A global cylindrical coordinate system ( ,  ,  )r z  located at 

the geometrical centre of the coupled shell is introduced to describe the acoustic field. All pressures, 

displacements and velocities are presented by their complex, frequency dependent Fourier 

components with time dependence
i te 

, where   is the angular frequency.  
 

 

 
 

Figure 1 – Geometrical model and coordinate systems of the coupled cylindrical and hemispherical shells 

2.2 Semi-analytical Model 

Reissner’s thin shell theory in conjunction with the modified variational method proposed by the 

first author and co-workers (9) is employed to formulate the structural model of the coupled shell. 

The structure is preliminary divided into cylindrical and hemispherical shell components at the 

junctions. The cylindrical shell component is further decomposed into 
cN  cylindrical shell 

segments in the x -direction. Similarly, each spherical shell is divided into 
sN  segments along the 

coordinate  . The modified variational principle requires all displacements to satisfy the interface 

continuity conditions and the prescribed initial conditions at times 
0t t  and 

1t t  as follows 
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where N  is the total number of shell segments, given as 2c sN N N  . 
mT  and 

mU  are the 

kinetic and strain energies of the m
th

 shell segment, respectively. δ is a variational operator. s

mW  

denotes the virtual work done by mechanical forces that drive the coupled shell and f

mW  represents 

the virtual work corresponding to the acoustic loading of the fluid external to the shell. 
,m m   is the 

interface potential on the common boundary of adjacent shell segments m  and m , which is used 

to enforce interface continuity conditions on common boundaries. A detailed expression for 
,m m   

can be found in Ref. (9). 

The kinetic and stain energies of the m
th

 shell segment are given as 

 2 2 2

, , ,

1

2 m
m m m m

S
T h u v w dS     , ,  s c                     (2) 
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K  and D  are respectively the extensional and flexural rigidities, defined as 2/ (1 )K Eh    and 
3 2/ [12(1 )]D Eh   , where h  is the thickness of the shell. 

mS  is the area of the m
th

 shell segment. 

0

 , 
0

   and 
0


 

are the membrane strains of the reference surface. 0

 , 
0

  and 
0

  denote the 

curvature changes of the shell segment. Detailed expressions for the strain components and curvature 

changes of cylindrical and spherical shells are also found in Ref. (9).  

The virtual work done by the mechanical forces is given by 

 , , , , , ,
m

s

m m u m m v m m w m
S

W u f v f w f dS             (4) 

where ,u mf , ,v mf  and ,w mf  are the mechanical forces acting on the coupled shell in the meridional, 

circumferential and normal directions, respectively. The virtual work done by the sound pressure of 

the external fluid is given by 

  ,
m

f

m m m
S

W w p dS          (5)      

where mp  is the sound pressure acting on the m
th

 shell segment.  

The displacement components of each shell segment are expanded by means of a double series. A 

Fourier series is used for the circumferential variable and orthogonal polynomials for the meridional 

variable. As a result, a two-dimensional problem is transformed into a set of uncoupled 

one-dimensional problems, which correspond to the harmonics of the Fourier expansion. For the m
th

 

shell segment, the displacement components are expanded as follows 
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( )qT 
 
is the q

th
 order Chebyshev orthogonal polynomials of the first kind. Non-negative integer n  

represents the circumferential mode number. Q
 
and N  are respectively the highest degrees taken in 

the Chebyshev polynomials and Fourier series. ,

q

n mu , ,

q

n mv , ,

q

n mw , ,

q

n mu , ,

q

n mv
 
and ,

q

n mw
 

are the 

generalized coordinate variables. ,mU , ,mV  and ,mW
 
denote the polynomial function vectors; u , 

v  and w  are vectors containing the generalized coordinate variables.  

Substituting Eqs. (2)-(6) into Eq. (1) and omitting the harmonic time dependence 
i te 

, the 

discretized equations of motion of the coupled shell can be described as follows 

 2
ps s s      M q K K K q f f                       (7) 
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q  is the vector of global generalized coordinates. sM  and sK  are respectively the disjoint 

generalized mass and stiffness matrices of the coupled shell, which are obtained by the assembly of 

the corresponding segment matrices. K  and K  are the generalized interface stiffness matrices 

generated by the interface potentials. sf  is the generalized force vector due to external structural 

excitation. pf  is the generalized load vector representing the acoustic fluid pressure acting on the 

shell. Dissipation within the coupled shell is introduced in the form of a complex Young’s modulus 

)1( iEE  , where   is the loss factor associated with internal dissipation. 

The sound pressure p  radiated by the coupled shell satisfies the Kirchhoff-Helmholtz integral 

equation (2) 

     
 

 
 

0

0 0

0 0

,
,

S

G p
C p p G dS

n n

   
  

  


r r r
r r r r r                   (8) 

where ( , , )r zr  and 0 0 0 0( , , )r zr  are respectively the field point vectors exterior to and on the 

exterior acoustic surface 
0S . The quantity ( )C r  is a coefficient depending on the position of field 

point r , given as follows: ( ) 1C r  for r  inside the acoustic domain, ( ) 0C r  for r  outside the 

acoustic domain, and ( ) 0.5C r  for r  on the acoustic surface 
0S . n  is the outward normal 

direction at a point on the shell surface. / n   denotes the outward normal derivative. 0( , )G r r is 

the three-dimensional free-space Green's function, expressed as:  

 
0

0

0

,
4

ikR
e

G
R



r r                                 (9) 

where k  is the acoustic wave number. 
0R  is the geometrical distance between points r  and 0r  

defined as  0 0 0,R  r r r r . 

Considering the axisymmetric property of the coupled shell, the variables ( )p r , 0( )p r , 0( , )G r r  

and 0( , ) /G n r r  in Eq. (8) can be expanded by a Fourier series as follows: 
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np  are Fourier coefficients of ( )p r . 
sy

np  and 
nsy

np  are Fourier coefficients of 0( )p r . 

nH  and 
nH  are Fourier coefficients of the Green’s function and its normal derivative, which can be 

determined by standard Fourier transformation as follows 
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The surface pressure 0( )p r  can be related to the normal displacement component w  of the 

coupled shell by 

 0 2

f

p
w

n
 






r
                             (12) 

where f  is the density of the fluid.  

Substituting Eq. (10) into Eq. (8) and using the orthogonality properties for integrals involving 

trigonometric series, a modified form of the Kirchhoff-Helmholtz integral equation is obtained as 

follows: 

   sy sy 2 sy

0n n n f n n
l

C p H p H w r dl  r ,    nsy nsy 2 nsy

0n n n f n n
l

C p H p H w r dl  r     (13) 
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For the m
th

 shell segment, the Fourier coefficients of the pressure corresponding to 
s

np  and 
c

np  

are expanded by orthogonal polynomials as follows 

 
1

, , , ,

0

J
m m m m

n j j n n

j

p P p    




  P p  , sy,  nsy                    (14) 

( )jP   is the j
th

 
order Chebyshev orthogonal polynomials of the first kind. J

 
is the highest degree 

taken in the Chebyshev polynomials.   is a dimensionless local coordinate varying in [-1,1]. ,m

n


P  

is the polynomial function vector. 
,m

n


p  is the column vector containing generalized pressure 

variables.  

Substituting Eq. (14) into Eq. (13), the two Helmholtz integrals can be combined and written in a 

compact form as 

       2

0 0

1 1m m

N N
m m m m

n i n i n n m n f n n m n
l l

m m

C H r dl H r dl 
 

   P r p r P p W w           (15) 

For the solution process, a collocation scheme is applied to the above equation. The collocation 

points ( )i r  are naturally taken as the roots of the Chebyshev polynomial of the first kind. In the 

local coordinate, the roots 
j  are given as: cos[(2 1) / (2 )]j j J   , 1, 2, ,j J . This collocation 

method results in a set of ( 2 )c sN N J   linear algebraic equations for each circumferential mode 

number. Considering circumferential mode numbers 0,1, ,n N , the following equation is 

obtained: 

Hp Gw                                  (16) 

where H  and G are coefficient matrices for all circumferential mode numbers, expressed as 

0 1diag [ , , , , , ]n N
H H H H H  and 

0 1diag [ , , , , , ]n N
G G G G G . 

nH  and 
nG  are the coefficient 

matrices related to circumferential mode number n . p  and w  are the vectors containing the 

generalized pressure variables and the normal displacement components of the shell, respectively.  

Inserting Eqs. (6), (10) and (14) into Eq. (5), and introducing the coordinate transformation: 

w Tq , the generalized load vector pf  in Eq. (7) is obtained as: 

   T 1 2
p f fi          f T GH GTq M C q                  (17) 

where G  is the fluid-structure coupling matrix, defined as 1 2diag [ , , , , , ]n N
G G G G G . nG  is 

the coupling matrix for circumferential mode n  given by 1 2
ˆ ˆ ˆ ˆdiag [ , , , , , ]m NG G G G G , in which 

,Tˆ
m

m m
m S

dS G W P . 
2

f M and fC  are frequency-dependent matrices, which are the real and 

imaginary parts of T 1
T GH GT , respectively. 

Substituting Eq. (17) into Eq. (7), the governing equation for the fluid-structure interaction 

problem of the coupled shell becomes 

     2
f f ss si             M M q C q K K K q f              (18) 

The above equation indicates that the effect of the fluid can be viewed as added mass and damping. 

Once q  is known, the generalized pressure vector p  on the acoustic boundary is computed 

accordingly by Eq. (16). Then, the pressure at any position in the fluid can be determined from Eqs. 

(10) and (15).  

2.3 Numerical Model 

A numerical model using finite elements for the structure and boundary elements to represent the 

exterior fluid is developed to predict the acoustic responses of the fully coupled problem. The coupling 

conditions at the fluid-structure interface corresponding to equilibrium of the acoustic pressure and the 

normal stress at the interface and the continuity of the velocities of the fluid particles and the structure 

in the normal direction across the interface. This leads to a global system of equations as fol lows (10) 
2

ssf

ifsi


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     
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fuK M C
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The matrices K and M are the stiffness and mass matrices of the structure, respectively and are 

constructed using the software package ANSYS. The matrices H and G are the BEM influence 

matrices obtained through collocation using AKUSTA (11). The vectors p and u are, respectively, the 

vectors with the nodal values for pressure and displacement. The vectors fs and pi are the nodal 

structural forces and the nodal values of the incident pressure field, respectively. ω is the angular 

frequency and i is the imaginary unit. Csf and Cfs are structural-acoustic coupling matrices. The 

radiated sound power P is defined as 

 *T

2

1
ffP Zvv                             (20) 

where vf is the particle velocity and Z is the acoustic impedance matrix. The contributions of the 

fluid-loaded structural modes to the radiated sound power are given by (8) 

*T2

2

1
jiijP Zdd                            (21) 

where di is the modal fluid displacement vector. 

3. RESULTS AND DISCUSSION 

Results for the sound pressure and power radiated by the coupled shell under different external 

loads are compared using the semi-analytical and numerical methods. The geometrical dimensions of 

the cylindrical shell are length 45L  m, radius 3.25R  m and thickness 0.04h  m. The two 

hemispherical end caps also have 3.25R  m and 0.04h  m. The overall length of the coupled 

structure is 51.5m. The coupled shell structure is made from steel with material data given as 

Young’s modulus 210E  GPa, Poisson’s ratio 0.3   and density 7860  kg/m
3
. The coupled 

shell is submerged in either air or water. For air, the density and speed of sound are respectively 

given as 1.204f  kg/m
3 

and 340fc  m/s, and 1000f  kg/m
3
, 1482fc  m/s are considered for 

water. Three types of excitation loads are examined corresponding to an axial point force, and axial 

and transverse ring forces, as shown in Figure 2. The point force is acting in the axial direction at the 

junction of the cylindrical shell and hemispherical shell at the left end, of which the location defined 

in the global cylindrical coordinate system is given as ( ,  ,  ) ( ,  0,  / 2)r z R L   . The ring force in the 

axial or transverse direction is applied uniformly at the junction of the cylindrical shell and 

hemispherical shell at the left end. The magnitude of each force is unity. In the global cylindrical 

coordinate system, the transverse ring force can be decomposed into the following relations: 0uf  , 

cos / (2 )vf R  , sin / (2 )wf R  .  

 

Figure 2 – Loading cases for the cylindrical shell with hemispherical end caps 

Figure 3 presents the radiated sound power of the coupled shell subject to the axial ring force. 

The surrounding acoustic medium is air. Structural damping of the coupled shell was not considered, 

that is, 0  . In the semi-analytical model, the cylindrical shell was discretized into 
cN =14 

segments and each hemispherical end cap was divided into 
sN =4 segments. For each segment, the 

terms of the Chebyshev orthogonal polynomials expanded are 7Q   for the displacement 

components and 2J   for the sound pressure. Since the axial ring force can only excite 

axisymmetric vibration modes of the coupled shell, the circumferential mode number of the 
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displacement and pressure variables is truncated as 0N N  . In the fully coupled numerical FE/BE 

model, the structure is discretized using quadratic finite shell elements (Shell281 in ANSYS 12.1), 

and the fluid of infinite extent is modelled using super-parametric discontinuous linear boundary 

elements. The two models are coupled using a mortar coupling method adapted for quadratic shape 

functions (10). As shown in Figure 3, a comparison of the results for the sound power obtained 

semi-analytically and numerically is found to be excellent. Under axial ring excitation, the peaks in 

the radiated sound power correspond to successive 0n   circumferential modes of the shell. 

Figure 4 presents the radiated sound power for the coupled cylindrical/hemispherical shell subject 

to transverse ring force excitation. Again, the external fluid is assumed to be air and the structural 

loss factor of the shell is taken as 0  . For the shell subject to the transverse ring force, only the 

rigid and elastic modes corresponding to successive 1n   modes are excited. In the semi-analytical 

model, the circumferential mode number of the displacement and pressure variables is chosen as 

1N N  . Similar to Figure 3, excellent agreement in the results for the radiated sound power 

obtained from the semi-analytical model and the fully coupled FE/BE model can be observed. Under 

the transverse ring excitation, the peaks in the radiated power correspond to successive 1n   

bending modes of the coupled shell. 
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Figure 3 – Sound power of the coupled shell immersed in air and under axial ring force excitation 
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Figure 4 – Sound power of the coupled shell immersed in air and under transverse ring force excitation 
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Figure 5 shows the radiated sound power of the coupled shell immersed in water and subject to an 

axial point force at the junction of the cylindrical and hemispherical shells at one end. The point 

force excitation represents a more complex excitation case than ring force excitation as it excites all 

axisymmetric and non-axisymmetric vibration modes of the shell. Structural damping is considered 

with the loss factor taken as 0.01   in both the semi-analytical and numerical models. As for the 

previous results, in the semi-analytical model the cylindrical shell was discretized with 14cN   

segments and the hemispherical shells were discretized with 4sN   segments each. This excitation 

case results in excitation of the 0n   breathing and 1n   bending modes, as well as excitation of 

higher order circumferential models of the coupled shell. It is observed in Figure 5 that the results for 

the radiated sound power obtained from the semi-analytical model agree well with those from the 

fully coupled FE/BE model.  

In Figure 6, the modal contributions from individual circumferential modes to the radiated sound 

power of the coupled shell are presented. Again, the shell is submerged in water and under axial 

point force excitation. Structural damping is assumed as 0  . Contributions to the radiated sound 

power for grouped 0n  , grouped 1n   and grouped 2 :10n   circumferential modes. It is 

observed from Figure 6 that the higher order circumferential modes ( 2n ) do not significantly 

contribute to the radiated sound power for the frequency range considered. This implies that even 

though the vibration modes corresponding to higher circumferential mode numbers  of the coupled 

shell may be excited by the point force, only successive 0n   axisymmetric breathing modes and 

successive 1n   bending modes contribute to the overall sound radiation. 

Figure 7 presents the directivity patterns for the first two resonances of the coupled shell 

immersed in water and excited by an axial point force, corresponding to 40 Hz and 54 Hz as shown 

in Figure 5. The directivity pattern is plotted at a distance of 1000PR  m with 
00 360  , where 

PR  and   are defined in Figure 1. In Figures 7(a) and 7(b), the total radiated sound pressure and 

modal contributions grouped by the 0n  , 1n   and 2 :10n   circumferential modes of the 

coupled shell are presented. As expected, for the two frequencies considered, the 2 :10n   modes 

do not significantly contribute to the far-field radiated sound pressure. In Figure 7(a), the 0n   

breathing modes dominate the total far-field sound pressure since the chosen frequency of 40 Hz 

corresponds to an 0n   resonance. In Figure 7(b), both the 0n   breathing modes and 1n   

bending modes contribute to the total far-field sound pressure. However, the contribution to the total 

sound pressure is greater from the 1n   modes than from the 0n   modes since the chosen 

frequency of 54 Hz corresponds to an 1n   bending resonance. By observing the individual 

contributions of the circumferential modes to the sound power and directivity of the radiated sound 

pressure, greater physical insight into the fluid-structure interaction problem of the coupled 

cylindrical shell can be obtained.  
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Figure 5 – Radiated sound power of the coupled shell in water and under axial point force excitation 
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Figure 6 - Modal contributions from grouped circumferential modes to the radiated sound power of the 

coupled shell in water and under axial point force excitation 
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                          (a)                                              (b) 

Figure 7 - Directivity plots for the shell immersed in water and under axial point force: (a) 40Hz; (b) 54Hz 

4. CONCLUSIONS 

Modal contributions to the radiated sound power and far-field sound pressure for a cylindrical shell 

with two hemispherical end caps submerged in a fluid medium are investigated using both 

semi-analytical and numerical methods. For the semi-analytical method, the Reissner’s thin shell 

theory combined with a modified variational method is employed to formulate the structural model of 

the shell, whereas a spectral boundary element method is used to model the external fluid loading. 

The displacement and sound pressure variables are expanded by Fourier series and Chebyshev 

orthogonal polynomials. As a result, a two-dimensional problem is transformed into a set of uncoupled 

one-dimensional problems, which correspond to the harmonics of the Fourier expansion. Numerical 

solutions obtained using a fully coupled finite element/boundary element model are also presented. 

The modal contributions to the radiated sound power and far-field sound pressure for the coupled 

shell immersed in air/water and subjected to different excitation forces are investigated . Identifying 

the individual contributions of circumferential modes to the radiated sound power and directivity of 
the radiated sound pressure provides greater physical insight into the structure-borne noise 

characteristics of fluid-loaded shells.  
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