
Self-noise prediction of a flat plate using a hybrid RANS-BEM
technique

P. Croaker1, N. Kessissoglou1, M. Karimi1, C. Doolan2 and L. Chen3

1 School of Mechanical & Manufacturing Engineering, UNSW Australia, Sydney, Australia
2 School of Mechanical Engineering, the University of Adelaide, Adelaide, Australia

3 Maritime Division, Defence Science and Technology Organisation, Melbourne, Australia

ABSTRACT
The self-noise generated by a flat plate immersed in low Mach number flow is predicted using a hybrid
RANS-BEM technique. A Reynolds Averaged Navier-Stokes (RANS) simulation is performed of the turbulent
flow over the flat plate. The predicted flow field data, such as mean velocity, turbulent kinetic energy and
turbulent dissipation rate, is then processed using a statistical noise model and combined with a boundary
element method (BEM) model of the flat plate to predict the far-field sound. The results from the hybrid
RANS-BEM technique are presented for turbulent flow past a flat plate, with Reynolds number based on chord
Rec=2.0×105 and Mach number M=0.044. The computed aerodynamic and acoustic results are compared
with numerical and experimental results from the literature.
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1. INTRODUCTION
Lighthill (1, 2) reformulated the Navier-Stokes equation into a wave equation that represents the acoustic

source generation by fluid motion and the propagation of these acoustic sources. He derived an acoustic
analogy that demonstrates sound generated by a turbulent fluid flow is equivalent to the sound generated by a
distribution of acoustic quadrupoles computed from the instantaneous velocity fluctuations. Curle (3) extended
Lighthill’s acoustic analogy to include the effect of stationary boundaries present in the turbulent flow on
the sound generation. He showed that the contribution of a stationary rigid body on the sound generated by
unsteady flow is equivalent to a surface distribution of acoustic dipoles computed from the instantaneous
pressure fluctuations on the body.

An important result from Lighthill’s work is that the acoustic source terms can be calculated from
hydrodynamic flow field variables. This has prompted the development of a wide range of hybrid methods that
use computational fluid dynamics (CFD) to calculate acoustic source terms from transient flow variables and
Lighthill’s acoustic analogy to predict the acoustic source propagation. These hybrid methods typically make
use of the Green’s function solution of the wave equation to reformulate the acoustic propagation problem
into a boundary integral equation. The most common approach is to employ a free-field Green’s function
or its spatial derivatives to predict the propagation of the acoustic waves. These free-field Green’s functions
do not directly account for the influence of solid bodies on the acoustic wave propagation. Hence, if solid
bodies are present, Curle’s (or a similar) analogy must be used. However, it is possible to use a hard-wall, or
geometry-tailored, Green’s function which explicitly includes the presence of the rigid bodies on the wave
propagation. In such cases, only the volumetric acoustic sources derived by Lighthill are required because the
hard-walled Green’s function automatically accounts for the scattering and diffraction of acoustic waves by
the body (4, 5). For certain applications, a suitable approximation to the hard-wall Green’s function can be
made, such as using the Green’s function of a semi-infinite plane to approximate the hard-wall boundary of
an airfoil’s trailing edge (6, 7). For more complex geometries, such approximations no longer hold and the
hard-wall Green’s function must be numerically predicted using boundary element methods (8). The boundary
element method (BEM) is particularly well suited to model acoustic propagation in an exterior unbounded
fluid because the BEM formulation automatically satisfies the Sommerfeld radiation condition.
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Ffowcs Williams and Hall (6) considered the case of turbulent eddies convecting past a sharp edge, such as
encountered at the trailing edge of a hydrofoil. A theoretical model based on a vanishingly thin half plane of
infinite extent was developed. The acoustic waves emitted from a volume quadrupole source and the interaction
of these waves with a rigid half plane was considered. They showed that the far-field sound intensity for trailing
edge noise had a scaling of M5 and identified that the mechanism responsible for this trailing edge noise was
the scattering and diffraction of the flow induced acoustic waves by the thin trailing edge. Furthermore, they
concluded that this trailing edge noise must be the dominant source of noise generated by marine vessels based
purely on the low Mach numbers encountered in marine applications.

Flow induced noise generated by a marine vessel is characterised by low Mach number flows with very
high Reynolds numbers and presents unique challenges to flow induced noise modelling. Accurately resolving
wall-bounded flow at very high Reynolds numbers requires a high fidelity mesh. Computing the time resolved
hydrodynamics on this mesh is a computationally demanding task in terms of data storage and simulation time.
Hence transient hydrodynamic simulation techniques, such as unsteady RANS, large eddy simulation (LES) or
direct numerical simulation (DNS) are impractical for hydroacoustic flow noise predictions of full scale marine
vessels. An attractive alternative is to develop noise models based on the turbulence statistics available from a
steady-state RANS simulation. Such RANS based techniques require a method to predict fluctuating flow noise
sources from the average flow quantities obtained from the RANS simulation. The stochastic noise generation
and radiation model (SNGR) is a RANS based technique where a prescribed two-point turbulence statistics is
applied to spatially filtered white noise to create a synthetic turbulence field (9). This synthetic turbulence field
is then applied to a linearised Euler equation solver to predict the propagation of the acoustic waves, interaction
with acoustically hard surfaces and the resulting far-field radiated sound. The SNGR method has successfully
been applied to predict the sound generated by turbulent flow past a trailing edge (9, 10, 11). However the
generation of the synthetic turbulence field is computationally demanding (12). Another approach is to use
a trailing edge noise model that predicts the far-field sound based on the surface pressure spectrum near the
trailing edge (13, 14). Lee et al. (15) developed a technique to predict the surface pressure spectra from RANS
mean flow data. Albarracin et al. (12) state that these surface pressure based RANS flow noise models assume
homogeneity of the turbulence in the spanwise and chordwise directions. For trailing edge flows where there is
an adverse pressure gradient, or spanwise variation in trailing edge geometry, this assumption of homogeneous
turbulence is not valid. Albarracin et al. (12) proposed a RANS-based statistical noise model (RSNM) that
uses an assumed turbulent velocity cross spectrum defined in terms of RANS mean flow data to characterise
the flow noise sources in the boundary layer. The turbulent velocity cross spectra are then combined with a
Green’s function for a semi-infinite half-plane to predict the scattering and diffraction of sound by the trailing
edge. The model of Albarracin et al. (12) does not make any assumption regarding the homogeneity of the
turbulence.

Many of the control surfaces and appendages of a marine vessel have relatively thick profiles and are
not well represented by a vanishingly thin plane. To accurately resolve the scattering and diffraction from
such appendages requires a technique such as the boundary element method. Ostertag et al. (16) developed
a BEM technique to predict flow induced noise from RANS data. Monopole sources were placed at each
field point location and the acoustic pressure at each source point was recorded. The double spatial derivative
of the pressure at the source points were calculated and the reciprocal theorem was used to determine the
tailored Green’s function of the body. This approach relies on taking the double spatial derivative of a
volume distribution of acoustic pressures to determine the tailored Green’s function. Significant errors can be
introduced by spatial discretisation and differentiation on a numerical grid (17).

This paper presents a hybrid RANS-BEM technique to predict flow induced noise produced by turbulent
flow past a body. The flow noise sources are modelled using the RANS-based statistical noise model (RSNM)
technique developed by Albarracin et al. (12). The incident acoustic field produced by these statistical flow
noise sources are then calculated and applied to a BEM-based prediction of the scattering and diffraction.
The spatial derivatives are applied to the Green’s functions instead of the flow noise sources, hence avoiding
any errors associated with numerical differentiation. The hybrid RANS-BEM technique is applied to predict
the far-field sound produced by turbulent flow over a flat plate with Reynolds number based on the chord
Rec=2.0×105 and Mach number M=0.044.

2. NUMERICAL PROCEDURE
2.1 Incident Pressure From a Single Turbulent Source

To determine the far-field pressure from a single turbulent source (for example, a single CFD cell), the
incident pressure on the body is calculated using:
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p∗c,inc (x,ω) =
∫

Ωc

(ρUi,cU j,c)
∗ ∂ 2Gh (x,y)

∂yi∂y j
dΩc (1)

where p∗c,inc (x,ω) is the Fourier transform of the incident pressure at field point x and angular frequency ω

due to the cth CFD cell. ρ is the density of the fluid Ui,c is the fluid velocity in the ith direction at CFD cell c
and consists of a mean component Ūi,c and a fluctuating u

′
i,c component as follows

Ui,c = Ūi,c +u
′
i,c (2)

Ωc is the computational domain occupied by the cth CFD cell. Gh (x,y) = eĩkar

4πr is the harmonic free-field
Green’s function. ka is the acoustic wave number, r = ‖x−y‖ is the distance between the source and field
points and ĩ =

√
−1. Initially considering only two dimensions, assuming the fluid is incompressible and that

the velocity is constant over Ωc, equation (1) is represented by

p∗c,inc (x,ω) = ρ0
(
U2

1,c
)∗ ∫

Ωc

∂ 2Gh (x,y)
∂y2

1
dΩc +2ρ0 (U1,cU2,c)

∗
∫

Ωc

∂ 2Gh (x,y)
∂y1∂y2

dΩc

+ρ0
(
U2

2,c
)∗ ∫

Ωc

∂ 2Gh (x,y)
∂y2

2
dΩc (3)

where ρ0 is the density of the fluid at rest. Using the following approximations (6)(
U2

1,c
)∗ ≈ 2Ū1,cu

′∗
1,c(

U2
2,c
)∗ ≈ 2Ū2,cu

′∗
2,c (4)

(U1,cU2,c)
∗ ≈ Ū1,cu

′∗
2,c +Ū2,cu

′∗
1,c

equation (3) can then be expressed as

p∗c,inc (x,ω) = 2ρ0Ū1,cu
′∗
1,c

∫
Ωc

∂ 2Gh (x,y)
∂y2

1
dΩc +2ρ0

(
Ū1,cu

′∗
2,c +Ū2,cu

′∗
1,c

)∫
Ωc

∂ 2Gh (x,y)
∂y1∂y2

dΩc

+2ρ0Ū2,cu
′∗
2,c

∫
Ωc

∂ 2Gh (x,y)
∂y2

2
dΩc (5)

Introducing an anisotropy factor fa and assuming that the fluctuating velocity components are related to
each other as follows

u
′∗
1,c = fau

′∗
2,c (6)

allows equation (5) to be represented by

p∗c,inc (x,ω) = 2ρ0u
′∗
2,c

(
faŪ1,c

∫
Ωc

∂ 2Gh (x,y)
∂y2

1
dΩc +(Ū1,c + faŪ2,c)

∫
Ωc

∂ 2Gh (x,y)
∂y1∂y2

dΩc

+Ū2,c

∫
Ωc

∂ 2Gh (x,y)
∂y2

2
dΩc

)
(7)

Dividing both sides of equation (7) by u
′∗
2,c/Ucon (where Ucon is the convection velocity) yields the following

expression

p†∗
c,inc (x,ω) = Ucon

p∗c (x,ω)

u′2 (y)
∗ (8)

= 2ρ0Ucon

(
faŪ1,c

∫
Ωc

∂ 2Gh (x,y)
∂y2

1
dΩc +(Ū1,c + faŪ2,c)

∫
Ωc

∂ 2Gh (x,y)
∂y1∂y2

dΩc

+Ū2,c

∫
Ωc

∂ 2Gh (x,y)
∂y2

2
dΩc

)
(9)

where p†∗
c,inc (x,ω) is the incident pressure normalised by the ratio of the fluctuating velocity of cell c to the

convection velocity.
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2.2 Scattered Pressure Field Using the BEM
The non-homogeneous Helmholtz equation is given by (18)

4p∗a (x,ω)+ k2
a p∗a (x,ω) =−Q (10)

where p∗a (x,ω) is the acoustic pressure at field point x and Q is an acoustic source. As described by Marburg
and Nolte (18), a solution of the non-homogeneous Helmholtz equation can be obtained by calculating the
incident pressure on the body radiated by the source and applying it as a load to the boundary integral equation
as follows

c(y) p∗a (y,ω) = −
∫

Γ

∂Gh (x,y)
∂n(x)

p∗a (x,ω)dΓ(x) (11)

+ĩρ0c0ka

∫
Γ

Gh (x,y)v∗a (x,ω)dΓ(x)+ p∗a,inc (y,ω)

p∗a,inc (y,ω) is the pressure incident on the boundary Γ as a result of the acoustic source. c(y) is a free-term
coefficient equal to 1 in the domain interior and 0.5 on a smooth boundary. n is a unit vector in the direction
normal to the boundary and va is the fluid particle velocity. For the hybrid RANS-BEM approach, the velocity
normalised pressure p†∗

c,inc (x,ω) is substituted into equation (11) to yield

c(y) p†∗
c (y,ω) = −

∫
Γ

∂Gh (x,y)
∂n(x)

p†∗
c (x,ω)dΓ(x) (12)

+ĩρ0c0ka

∫
Γ

Gh (x,y)v†
c (x,ω)dΓ(x)+ p†∗

c,inc (y,ω)

where p†∗
c is velocity normalised scattered pressure on the body due to the flow noise source in the cth CFD cell.

p†∗
c,inc (y,ω) is the velocity normalised incident pressure due to the cth CFD cell, calculated in the preceding

section and v†
c (x,ω) is the velocity normalised particle velocity on the body arising from the flow noise sources

in CFD cell c. Solving equation (12) will predict the distribution of velocity normalised pressure p†∗
c (y,ω)

over the body that occurs when the incident field interacts with the geometry of the body, with the normal
derivative of the normalised pressure constrained to zero on the body (for a rigid body).

The velocity normalised pressure in the far-field p†∗
c (xf,ω) due to the flow noise source in the cth CFD cell

can be determined by solving

p†∗
c (xf,ω) =−

∫
Γ

∂Gh (x,y)
∂n(x)

p†∗
c (x,ω)dΓ(x) (13)

The far-field pressure p∗c (xf,ω) can then be expressed as

p∗c (xf,ω) =
u∗2,c

Ucon
p†∗

c (xf,ω) (14)

The scattered fields were obtained using the AEBEM2 subroutine of Kirkup (19). AEBEM2 is a two-
dimensional solver and the scattered pressure calculated by the subroutine must then be converted from
two dimensions to three dimensions. The following technique of Oberai et al. (20) is used to convert the
two-dimensional pressure calculated by AEBEM2 into three-dimensional pressure

p∗c,3D (xf,ω)≈ p∗c (xf,ω)
1+ ĩ

2

√
ka

πr
(15)

where p∗c (xf,ω) and p∗c,3D (xf,ω) are respectively the two and three-dimensional far-field pressures produced
by the cth CFD cell at angular frequency ω .

2.3 Far-field Power Spectral Density
The power spectral density (PSD) S (xf,ω) at the far-field point xf is calculated by the double summation

as follows

S (xf,ω) =
M

∑
b=1

M

∑
c=1

p∗b,3D (xf,ω) p̂∗c,3D (xf,ω) (16)
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where M is the total number of CFD cells. Substituting equation (8) into equation (16) yields

S (xf,ω) =
M

∑
b=1

M

∑
c=1

[
u∗2,bû∗2,c

]
U2

con

[
p†∗

b (xf,ω) p̂†∗
c (xf,ω)

]
(17)

where
[
u∗2,b û∗2,c

]
is the turbulent velocity cross spectrum

Φ(b,c,ω) =
[
u∗2,b û∗2,c

]
(18)

and is the only unknown quantity in the model. It is possible to measure this turbulent velocity cross spectrum
experimentally, predict it numerically from a transient fluid dynamics simulation or to apply an analytical or
empirical model to describe the turbulent velocity cross spectrum. In this work, an analytical model is applied
and is described in the proceeding section.

2.4 Turbulent velocity cross spectrum
Following the work of Albarracin et al. (12), the turbulent velocity cross-spectrum is represented as

Φ(b,c,ω) =
A
√

π

ωs
u2

s exp

(
−|yc−yb|2

l2
s

)
exp
(
− ω2

4ω2
s

)
(19)

where us is the characteristic velocity, ωs is the characteristic frequency and ls is the characteristic length scale
of the turbulence associated with each CFD cell. The model parameters are linked to the RANS turbulence
data using the following (12)

us =
√

2k/3, ωs = 2π/τs, τs = cτ k/ε, ls = clk3/2/ε (20)

where k is the turbulent kinetic energy, ε is the turbulent dissipation rate and cl , cτ are semi-empirical
parameters. Albarracin et al. (12) determined that cl = 0.11 and cτ = 0.012U∞ +0.73 where U∞ is the free
stream velocity. For the case considered here, a correlation strength parameter of A = 1/6300 was required to
produce good agreement between numerical and experimental results.

2.5 CFD Model
A sharp-edged flat plate with a chord of 200 mm and a thickness of 5 mm was modelled. The leading edge

was circular with a diameter of 5 mm while the trailing edge was a symmetric wedge shape with an apex angle
of 12 degrees. Moreau et al. (21, 22) conducted experiments on the same plate in the University of Adelaide’s
anechoic wind tunnel. Their experimental measurements are used to validate the numerical models and results
presented in this paper. In the experiment, the flat plate had a span of 450 mm, however a two-dimensional
CFD simulation was performed in the present work. Incompressible flow field past the flat plate is simulated at
a Reynolds number based on chord Rec=2.0×105 and Mach number M=0.044. The two-dimensional steady
RANS simulation was performed in Fluent on a C-grid domain with approximately 1.0×105 quadrilateral
cells. The computational domain extends for two chord lengths above and below the plate as well as upstream
of the leading edge. Downsteam of the trailing edge the computational domain extends for an additional three
chord lengths. The boundary layer mesh is well resolved, with y+ ∼ 1 for the cells immediately adjacent to the
plate.

The inlet velocity was set to 15 m/s on the semi-circular boundary, with a turbulence intensity of 0.3%
which matches the turbulence intensity at the inflow plane of the experimental facility at the University of
Adelaide (22). A zero average pressure boundary condition was imposed at the outlet. A no-slip condition was
applied on the surface of the plate, and the top and bottom boundaries are considered as free-slip walls. The
k−ω SST turbulence model was applied, with a low inflow turbulence intensity specified. Figure 1 shows the
mesh resolution used in the vicinity of the trailing edge.

2.6 BEM Model
The two-dimensional BEM model consisted of 180 linear one-dimensional boundary elements distributed

around the flat plate. A greater concentration of boundary elements were placed around the leading edge and
along the tapered wedge at the trailing edge to ensure that interaction of the incident field with the geometry of
the plate is accurately captured. The vertices of these BEM elements also represent the field points used to
calculate the incident normalised pressure using equation (9). The AEBEM2 subroutine of Kirkup (19) was
used to solve equation (12) to predict the scattered normalised pressure. Equations (9) and (12) must be solved
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Figure 1 – CFD mesh near trailing edge of the plate

once for each CFD cell. The far-field power spectral density is then calculated by solving equation (17). This
suggests that a separate BEM solution is required for every CFD cell which would render the proposed method
incredibly inefficient. However, this is not the case. The BEM matrices must be inverted only once for all CFD
cells. The scattered far-field pressures produced by each CFD cell are then obtained by performing an efficient
matrix multiplication of the inverted BEM matrices with the incident normalised pressure.

3. RESULTS
3.1 Turbulent Flow Field

Figure 2 shows the turbulent kinetic energy (a) and turbulent dissipation rate (b) predicted for the sharp-
edged flat plate. All contours are shown on a log scale to highlight the main features. Figure 2 reveals that
immediately downstream of the rounded leading edge, a region of high turbulent kinetic energy and dissipation
occurs. The rounded leading edge causes the flow to separate and a laminar separation bubble forms (22).
The resulting separated shear layer generates a significant amount of turbulence which is then transported
along the plate and convected past the sharp trailing edge. Figure 3 compares the normalised mean Ū/U∞ and
root mean square (rms) velocity u′rms/U∞ obtained from the present RANS simulation with the experimental
measurements of Moreau et al. (22). The mean flow in the near wake is well predicted using the present
two-dimensional RANS simulation. Figure 3(b) shows some slight discrepancy between the predicted and
measured u′rms. For a Reynolds number based on chord of Rec = 2.0×105, the flow is in the turbulent unsteady
regime and the flow structures are three dimensional. The present two-dimensional RANS simulation assumes
that there is no spanwise variation in the flow field and this may contribute to the observed discrepancy in the
u′rms prediction. Also, the current CFD model only extends three chord lengths downstream of the trailing
edge and this truncation of the flow domain may adversely effect the upstream flow field. Nevertheless, good
agreement between the RANS simulation and the experimental measurements is obtained.

Based on the turbulent kinetic energy and dissipation rate, as well as using the values for the parameters
cl = 0.11 and cτ = 0.012U∞ +0.73, the distribution of characteristic velocity us, characteristic frequency ωs
and characteristic length ls used in the RANS-based statistical noise model are calculated. Figure 4 shows the
characteristic velocity us, the characteristic frequency ωs and the characteristic length scale ls around the flat
plate, with the contours displayed on a log scale to show the vast range of scales present in the model. The
distribution of the characteristic velocity us reveals that the largest characteristic velocity occurs at the leading
edge in the vicinity of the laminar separation bubble. Significant characteristic velocity is also evident in the
turbulent boundary layer of the plate and near the trailing edge. Close inspection of Figure 4(b) reveals that the
characteristic frequency ωs of the turbulent fluctuations is greater than 1kHz everywhere within the turbulent
boundary layer and near-wake of the flat plate. The characteristic length scale ls of the turbulent fluctuations
is zero on the surface of the flat plate and then increases to a maximum approximately mid way through the
turbulent boundary layer. The length scale then decreases slightly further out in the turbulent boundary layer.
Figure 4 also reveals that the characteristic length scale of the turbulent fluctuations increases downstream
of the trailing edge. These distributions of the characteristic velocity, frequency and length scales are then
combined with equation (19) to compute the turbulent velocity cross spectra.
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(a) Turbulent kinetic energy, k

(b) Turbulent dissipation rate, ε

Figure 2 – Turbulent properties in the flow past the sharp-edged flat plate

(a) Normalised mean velocity, U/U∞

(b) Normalised rms velocity, u
′
rms/U∞

Figure 3 – Normalised velocity in the near wake of the trailing edge
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(a) Characteristic velocity us

(b) Characteristic frequency ωs

(c) Characteristic length scale ls

Figure 4 – Distributions of us, ωs and ls used in the RSNM

3.2 Acoustic Results
The turbulent velocity cross spectra obtained in the preceding section are then applied to the normalised

far-field pressures of equation (17) to predict the far-field power spectral density. As only a two-dimensional
CFD simulation was performed, the following procedure was adopted to predict the far-field PSD of the
450mm span:

1. The span was divided into 450 equal segments of 1mm;
2. The far-field PSD of one segment was calculated from equations (14) and (15);
3. The far-field PSD was then modified to account for scattering by the entire span using the following

correction (23)
PSDt = PSDs +PSDc (21)

where PSDt and PSDs are the power spectral density for the entire span and simulated span, respectively, and
PSDc is a correction given by

PSDc =


10log(N) , L

′
c

Ls
≤ 1√

π

10log
(

L
′
c

Ls

)
+10log

(√
πN
)
, 1√

π
< L

′
c

Ls
< N√

π

20log(N) , L
′
c

Ls
≥ N√

π

(22)

where N is the total number of segments. Ls is the length of the simulated span and L
′
c is the spanwise coherence

length and is approximated by L
′
c = 2.1Ucon/ω (24).

Figure 5 compares the power spectral density of the far-field sound predicted with the hybrid RANS-BEM
technique to the experimental measurements of Moreau et al. (22). The far-field sound predicted with the
proposed RANS-BEM technique compares favourably with the experimental results at frequencies above
approximately 600 Hz. As the frequency decreases the difference between the numerical prediction and
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experimental measurement increases. The interaction between the leading edge and incoming turbulent gusts
is believed to dominate the low frequency noise generated by the flat plate. The present RANS-BEM technique
is unable to resolve these turbulence gusts. Hence it cannot accurately predict the low frequency component of
the far-field sound.

Figure 5 – Comparison of numerical and experimental far-field sound

4. SUMMARY
A hybrid RANS-BEM technique has been proposed to predict the flow induced noise generated by turbulent

flow over a body. The method is based on mean flow field data produced by a steady state RANS simulation
of turbulent flow over a body. This flow field data is then processed by a statistical noise model to estimate
the turbulent velocity cross spectra. These turbulent velocity cross spectra are then combined with a BEM
model to predict the scattering and diffraction of the flow induced sound by the body. This hybrid RANS-BEM
technique has been applied to predict the flow induced noise generated by turbulent flow over a sharp-edged
plate at a Reynolds number based on the chord of Rec = 2.0×105 and a Mach number of M = 0.044. The
near-wake mean and rms velocity profiles predicted with the RANS CFD simulation compares favourably
with published experimental measurements. The far-field sound predicted with the proposed RANS-BEM
technique was observed to agree well with the experimental results at higher frequencies.
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