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ABSTRACT 
Orthotropic multi-layered panels are well-spread in transport industry. Specific methods of prediction need to 
be addressed depending on construction. Laminate models based on zig-zag theory are useful for aircraft 
fuselage prediction and more generally for composite panels. As soon as a very soft layer is inserted between 
stiff layers, breathing modes are occurring in mid and high frequencies and assumed zig-zag displacement 
field is no more representative of the actual behavior. It has to be replaced by 3D FEM modeling increasing 
cost of calculation. In Statistical Energy Analysis (SEA) models, because of the extended calculation range, 
the ‘classical’ laminate equations are limiting the class of simulated systems and zig-zag theory is most often 
pushed outside its natural limits. A new multi-scaled dynamic laminate model has thus been developed to 
take into account transverse decoupling of layers while converging correctly to equivalent static plate at low 
frequency. This laminate model accepts any kind of mechanical orthotropic layers as well as thin 2D acoustic 
layers. They may be ribbed or not to increase stiffness. Damping loss factor of the assembly is predicted from 
internal damping of the various layers. Basic equations will be presented as well as some early validation 
work. 
 
Keywords: SEA, Laminate, Structural Dynamics I-INCE Classification of Subjects Number(s): 47.3 

1. INTRODUCTION 
For fast modeling of complex multi-layered plate-like floors or curved composite sandwich panels, 

dedicated analytical Dynamic Laminate theory has been developed and implemented in SEA+ 
software based on SEA for overcoming limitations experienced in FEM solvers. 

The mean Damping Loss Factor (DLF), the modal density and the wavenumber of laminate plates 
and shells are then predicted from properties of individual layers over a broadband frequency range. 
This theory is multi-scaled as it supports motion transition from global panel modes at low frequency 
to local modes of individual layers above first transverse resonance frequencies (along normal axis to 
plate). The actual 3D dynamical behavior of the system is described by a set of 2D inter-coupled thin 
layers. Each layer may oscillate at high frequency on its uncoupled degrees of freedom i.e. 
displacement in x, y, z directions. The theory is validated against FEM calculations and measurements. 
[7] provides the necessary background to composite simulation and [6] is reviewing all general 
formulations. General motivation about proposed theory has been initiated in [5]. 

2. COUPLING GLOBAL AND LOCAL DISPLACEMENTS 
Modeled systems are composed of flat or curved contiguous-panel layup with constant thickness 

per panel as shown in Figure 1. If any curvature, related radius is assumed to be the same for all layers. 
Retained degrees of freedom are motions (u, v, w) of layers at their neutral fiber resp. in the x, y, z 
directions, expressed as sum of two displacements: 

• a global displacement (u0, v0, w0) expressed at the neutral fiber of which elastic coefficients 
provided by Hooke’s Law, are computed assuming static bending, shear or extension and 
integrated over the total thickness of the layup; 

• a local relative displacement of each layer (ui, vi, wi) expressed at the individual neutral fiber of 
each layer. 
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Figure 1 - Degree of freedom of the laminate assembly 

 
The absolute displacement of a specific layer is then the sum of global and relative displacements: 

( ) ( )0 0 0 0, , , ,i Ri Ri Ri Riw w w u v w u v w= + = +
  

. 
Vertical direction vibration is given by the absolute displacements of the various neutral fibers. A 

common-to-all layers space function g(x,y), describes the displacement field along x and y coordinates. 
It then gives: 

( ) ( ){ }0 0 0( , , ) ( , ) , , , ,i Ri Ri Riw x y z g x y U V W U V W= +


 

where ( )0 0 0, ,U V W represents the low frequency equivalent plate global amplitudes and 

( ), ,Ri Ri RiU V W  the local relative ones for a given i-layer in the coupled dynamics of the assembly. 
The uncoupled dynamics of i-layer is described by its orthotropic dynamic stiffness and mass 

operators Li and Mi which are defined in the principal axis of orthotropy as follows: 
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where I is the identity matrix and lkC , lkD  the elastic parameters. Li is then rotated in the global (x, 

y) plane before any use in the dynamic matrix of the layup. Similarly, 0w  is described by L0 and M0. 

Because of the non-null virtual work of Riw  in the force field due to 0w , Li and L0 are cross-coupled 
by the operator L0R as well as Mi and M0 by M0R. 

The coefficients lkl of L0R are obtained by first expressing the Lagrangian related to total kinetic and 
potential energies using virtual work principle and then by applying Euler-Lagrange's equations to get 
the equilibrium equations. 
For example, the total kinetic energy Tz per unit m² summed-up in z-direction is related to the kinetic 
energy Tiz of individual i-layer by herebelow relationship: 
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with it  thickness of i-layer. From zT expression are deduced the coefficients 0im  of M0R which 

couple w0 and wRi: 0i i im tρ= . 
The potential energy coupling global and local degrees of freedom is not so easy to derive. Example 

of calculation is given for the coupling terms related to bending energy carried by w0 to wi.  

0 1x ixσ σ+  and 0 1xx ixε ε+ are respectively the absolute extensional stress and strain exerted in the 
local layer by the global bending. The total potential bending energy is obtained by integrating the 
work σε  along z. We see from next result (integrated along x direction only for simplification) that 
each local layer is working in the displacement field of global 0-layer, creating coupling between 
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di are distances between i-layer neutral fibers and global neutral axis of the assembly. g(x) is the 
assumed wave function along x. 

Coupling bending energy to in-plane energy and in-plane energy to in-plane energy is performed in 
a similar way providing at the end all coefficients to fill M0R and L0R coupling operators. 

3. COUPLING RELATIVE DISPLACEMENTS 
Individual layers are mutually excited both side of their boundary surfaces. As chosen motion 

variables are not continuous along z but only defined at neutral fibers, the coupling along z is described 
in term of coupling impedances by spring-like relationships. 

To avoid redundancy in degrees of freedom, the relative displacement is thus taken as the blocked 
displacement of one layer when the others are clamped. For example, if three layers are coupled (see 
Figure 2) with blocked neutral fibers of the two extreme ones, the displacement of the mid layer 
neutral fiber in z-direction is generating a compression field and the related compression energy U can 
be estimated from the compression impedance Kzz.  

Assuming a linear compression strain continuous at interfaces A and B, potential energy is thus 
given by:  

( ) ( ){ }2 2
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and zzK  both sides of i-layer by: 
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The parameter β is depending on g(x,y) function as zzK is a stiffness per unit m², proportional to 

,

1 ( , )
x y

g x y
A ∫ . More generally all stiffness's generated by stress components on upper and lower (x,y) 

boundaries are proportional to β.  
 
Calculation of inter-forces between adjacent layers is extended to shear and bending-to-shear coupling 
and provides the necessary additional coupling terms between local layers in matrices KRiRj. Four 
interactions between adjacent layers are taken into account. Compression along z through Kzz, 
boundary in-plane shear through Kxy, transverse section shear through Kzs and a more subtle force 
coupling rotation of transverse section of one layer to the in-plane shear in the adjacent layer, through 
Kws. 

 
 

Figure 2 - Left, Sketch for z-stiffness term derivation of Kzz impedance and right the four coupling 
impedances introduced in the laminate model 
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4. MASS AND STIFFNESS MATRICES OF THE ASSEMBLY 
The full analytical mass and stiffness matrix operator is built from the Mi, M0i, L0, Li L0Ri and KRiRj. 

Figure 3 shows the structure of the resulting linear equations. 
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Figure 3 - The pattern of dynamic equations for 3 coupled layers 

 
To get a fast analytical solution, displacements in the (x,y) plane are constrained to 

( , ) sin sin
x y

m x n yg x y
L L
π π

=  in case of simply supported edges at boundary. 

When applying the differential operators to g(x,y), L and K matrices are becoming functions of 
quantic m and n numbers. For each pair (m,n), an eigenvalue problem is solved, leading for N 
assembled layers system to 3x(N+1) eigenvalues, imnλ . After extraction, imnλ  are sorted into 
extensional, shear and bending categories analyzing the relative importance of eigenvector amplitudes 
in each u, v, w directions. 

Finally, the band-averaged modal densities and the band-averaged wavenumbers are estimated from 
the set of all discrete imnλ  up to some maximal m, n orders limited by the upper frequency of 
calculation. 
The model is made more general by introducing frequency-dependent elastic parameters. 
To estimate the mean DLF of the assembly, L and K matrices are made complex. For this, Young's and 

shear moduli of i-layers are multiplied by ( )1 ijη+  at the related frequency. 
The eigenvalue equation with frequency-dependent elastic coefficients is transformed into equation: 

( ) ² 0L Mω ω− =  
An approximate solution is found in two iterations: 

• L matrix is made real and problem { }0Re ( ) ² 0L Mω ω ω= − = is solved (classical eigenvalue 

problem) for a given set of (m, n) where 0( )L ω  is the dynamic matrix at first defined frequency 
of elastic coefficient spectra. Solutions are the real set of eigenvalues 

{ }( , ) ( , ) ( , )
0 1, ,..,m n m n m n

kλ λ λ . 

For same m, n values, stiffness matrix is then taken equal to: ( ), )
0
m nL ω λ= . The eigenvalue 

problem , )
0( ) ² 0m nL Mλ ω− =  is then solved with complex matrix L . Solutions are the complex set 

of eigenvalues { }( , ) ( , ) ( , )
0 1, ,..,m n m n m n

kλ λ λ   . 

• The second iteration provides better estimate for materials with frequency-dependent damping 
and elastic coefficients. The equivalent DLF of the assembly is finally computed from the 
band-averaged imaginary part of each complex eigenfrequencies. 

5. VALIDATION 

5.1 Modeling an aerospace structure (Case C1) 
Case C1 is a 1 m x 1 m plate made of sandwich construction with two 1 mm-aluminum skins and  

10 mm-core made of aluminum honeycomb with G = 2E8 Pa, E = 3E6 Pa, cρ  = 60 kg/m3. 
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SEA+ calculation is compared with two FEM simulations built for NASTRAN NX solver. 
• C1 "PSOLID" FEM model, skins are modeled using 2D-plate elements and glued to the core 

meshed with 3D-solid elastic elements, 
• C1 "PCOMP" FEM model, both skins and core are modeled with 2D PCOMP laminate elements 

within a single 2D-plate. 
 

Real eigenmodes are extracted from both models by FEM solver and imported in SEA+ Virtual SEA 
solver [1] [2] [3] [4] to calculate related SEA parameters: modal density, wavenumber and mean input 
mobility. Post-processed SEA parameters of FEM models are then compared to SEA+ analytical 
Dynamic Laminate model. Figure 4 shows good agreement between SEA and FEM models. 

The mid to high frequency slope of both flexural modal density and mobility spectra due to core 
shear is well-reproduced by SEA model. Shifting from PCOMP to PSOLID FEM models increases the 
first resonance frequencies. This is observed in the two selected boundary conditions: constraining one 
skin, then, two skins to simply-supported on edge, demonstrating the difficulty in predicting 
deterministic resonance frequencies even on simple systems.  
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Figure 4 - Case C1 validation: Left, modal density and right, driving-point conductance (input 

mobility) for resp. for SEA and FEM models (PSOLID & PCOMP) 

5.2 Modeling a thin steel sandwich (Case C2) 
Case C2 is still a 3-layered sandwich made of two 1 mm-steel skins separated by a 1 mm-thick 

resilient material with E= 2.6E+07 Pa, G = 1E+07 Pa, vρ =1400 kg/m3. Validation protocol is similar 
to previous case: the SEA model is compared to related FEM NASTRAN PCOMP and PSOLID models 
(resp. C2 “PCOMP” and C2-“PSOLID” FEM models). Figure 5 shows PCOMP model collapses above 
1600 Hz with large over-prediction compared to PSOLID model results. PCOMP formulation based on 
zig-zag theory is only a valid formulation at low frequency. PCOMP model is unable in this case to fit 
with the physical behavior in principle better represented by PSOLID model. SEA+ formulation 
matches very accurately PSOLID results up to 300 Hz. Above some slight increase of modal density 
and mobility is seen due to softness of internal layer. PSOLID result is questionable at high frequency 
as mesh size was tuned to fit the criterion of 1/6 of the wavelength of the standalone skin below 3000 
Hz and is then inappropriate for the core. 
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A correct mesh size based on the core wavelength would have made PSOLID model impossible to 
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solve. As seen in Figure 5, the Dynamic Laminate theory is matching with FEM results for the first 
modes then gives an intermediate result between PCOMP and PSOLID models with more robustness at 
high frequency where modal density is expected to converge to uncouple skin one with flat spectrum. 

5.3 Modeling damped steel plate (Case C3) 
Case C3 is also a 3-layered steel panel with very thin film of viscoelastic material bonding together 

two thin steel plates. Two similar samples of this kind from two manufacturers (Trelleborg and 
ThyssenKrupp) have been measured to compare with prediction arising from the various models. 
Characteristic used in the modeling are reported in next Table 1. 

 
Table 1 - Characteristic of tested samples 

Manufacturer Panel size Skin thickness Core thickness Core Young's modulus Shear modulus DLF core Skin Mat. 

Trelleborg 0.3m x 0.2m 0.8 mm 0.04 mm 50 MPa 40 MPa 1 Steel 

ThyssenKrupp 0.275m x .2m 0.75 mm 0.04 mm 50 MPa 40 MPa 1 Steel 

 
Measurements on both panels were given very similar results, hence core data estimated from 

Trelleborg data sheet were used to model ThyssenKrupp sandwich by Dynamic Laminate theory and 
by PCOMP and PSOLID models. 

Core material intrinsic DLF is taken equal to 1. Skin DLF are fixed arbitrarily to 0.01.  
Regarding measured data, a set of complex frequency transfer inertances were recorded under 

impact hammer for both test panels as well as driving point inertances converted into injected power 
per unit force per 1/3rd octave band. Reverberation time on free-free panels are also recorded and 
converted into DLF. 

FEM models were only created for the ThyssenKrupp configuration. SEA models were made for 
both ThyssenKrupp and Trelleborg panels.  

Mean DLF of PSOLID model is processed from synthesized numerical FRF by reverberation time 
analysis of the predicted impulse response obtained by inverse Fourier’s transform.  

In Figure 6 are reported calculated flexural modal densities and input conductances (including 
measurement) for the ThyssenKrupp panel. SEA+ modal density is very well fitted to both PCOMP 
and PSOLID results. For conductance, SEA result is best fitted to PSOLID model but PCOMP 
spectrum is not too different from other calculations above 400 Hz. SEA equivalent plate result is also 
given and is nearer from measured conductance. All Dynamic Laminate, PSOLID and PCOMP models 
seem then to over-predict by around 2 dB the measured conductance which seems not “feeling” any 
change in stiffness introduced by the thin film (closer to equivalent plate conductance). 
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Figure 6 - Case C3 validation (ThyssenKrupp panel): Left, Flexural modal densities of SEA+ and 

Nastran (PCOMP and PSOLID), Right, normal driving-point conductance for resp. for SEA+ laminate 
and equivalent plate, PSOLID & PCOMP and measured data 

 
SEA damping prediction (assuming 1%; 100%, 1% DLF distribution constant with frequency in the 

three layers) is given in Figure 7 compared to the measurement and to PSOLID prediction. The match 
between SEA and measured DLF is more representative than PSOLID model. Oddly, the latter 
under-predicts DLF for as much as 10 dB with same DLF layer-distribution. The core mesh is probably 
the cause of discrepancy, because the solid elements are 10 mm width with a thickness of only 0.05 mm 
and are certainly not representative of actual core behavior. Improving this ratio may be a rather 
difficult task due to necessary refinement of the mesh up to unbearable FEM model size. There is no 
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PCOMP DLF result as the NASTRAN PCOMP property only accepts one mean DLF value for all 
PCOMP sublayups. 
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Figure 7 - Case C3 : Left ThyssenKrupp panel; simulated (Dynamic Laminate, PSOLID) and measured DLF; 

Right Trelleborg panel, simulated (Dynamic Laminate) and measured DLF  

6. CONCLUSIONS 
A new type of subsystem (Dynamic Laminate) has been created in SEA+ software based on an 

original multi-scaled laminate theory taking into account global and relative displacements of the 
layup internal layers. Analytical modes of the laminate subsystem are solved to derive relevant SEA 
parameters as well as mean damping loss factor from individual layers. The theory is still in validation 
process. Presented test cases have been first restricted to plate-like behavior and are demonstrating the 
validity of this approach providing in several circumstances better results than FEM prediction. 
Further work will follow with validation of singly-curved and doubly-curved formulations with or 
without stiffeners as well as thin acoustic cavities insertion. 
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