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ABSTRACT
In recent years, time-domain numerical analysis for sound wave propagation has been investigated widely
as a result of advances in computer technology. For sound field imaging and/or prediction, the development
of accurate numerical schemes is an important issue. A method of characteristics (MOC) is used as a time
domain numerical analysis method, examples of which are the constrained interpolation profile (CIP) method,
the LAX method, and the QUICKEST method. We used the MOCs for numerical analyses of sound wave
propagation in an earlier study. However, new grid systems are required for the CIP large-scale simulations of
wave propagation. Additionally, for multidimensional analysis, the high-efficiency outer absorbing boundary
is also required. To overcome these problems, we introduce the non-uniform grid system with perfectly
matched layer (PML) technique. The purpose of this study is to evaluate these techniques for two-dimensional
(2D) sound field numerical analysis using the MOCs. The present results indicate that these techniques for
MOCs have advantages of small memory requirements and less calculation time.

Keywords: constrained interpolation profile (CIP) method, method of characteristics (MOC), non-uniform
grid, perfectly matched layer (PML)
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1. INTRODUCTION
To date, as a result of computer development, numerical analysis for sound wave propagation in time-

domain has been investigated widely. The development of accurate numerical schemes is an important is-
sue [1]. The finite-difference time-domain (FDTD) method [2, 3, 4] using the staggered grid is one of the
most well-known schemes used in acoustics, although many numerical schemes have been proposed for time
domain analysis. However, we know that, using Yee’s leapfrog algorithm [2], finite difference approximation
certainly causes error owing to numerical dispersion. This means that the scheme is not so suitable for the
analysis including rapid change in sound pressure or large-scale modelling of wave propagation.

In this study, we examine the methods of characteristics (MOCs) [5] using the collocated grid as a numer-
ical analysis method. These methods have an advantage that the treatment of the interface of different media
is simpler than the staggered grid-based methods.

The constrained interpolation profile (CIP) method [6, 7, 8, 9, 10, 11], a method of characteristics (MOC),
is a novel low-dispersive numerical scheme. In our past sdudy, we have applied the CIP method to numerical
analyses of sound wave propagation. The feature of the CIP method is that it uses the values of acoustic
field and their spatial derivatives at grid points to solve the problem of wave propagation. The family of this
scheme is called ”multi-moment Scheme". By these treatment of fields, the CIP method has high accuracy in
numerical phase velocity for very wide frequency bands [7, 8, 9].

On the other hand, new grid systems are required for the CIP large-scale simulations of wave propagation.
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In the previous study, sub-grid techniques [12] are proposed for the CIP method to reduce the calculation
time and memory usage. However, handling the derivatives of the perpendicular directions at the interface
between different sizes of grid is complicated in this technique.

Therefore, we introduced the non-uniform grid for the CIP method. This technique as well as sub-grid has
an advantage of using a small amount of memory. Additionally the acoustic numerical analysis by MOCs,
including CIP method, requires to set the absorbing-boundary condition (ABC), because the so-called au-
tomatic absorbing boundary (without additional outer boundary treatment) does not exhibit high-efficiency
absorbing performance for multidimensional analysis. Consequently, we introduce the perfectly matched
layer (PML) [14] technique into the non-uniform grid system for MOC simulations of wave propagation.
In this study, we evaluate the non-uniform grid technique with PML for two-dimensional (2D) sound field
numerical analysis.

2. NON-UNIFORM GRID SYSTEM IN CIP-MOC METHOD
2.1 CIP method

The governing equations for linear acoustic fields are given as

∇ · u⃗ =− 1
K

∂ p
∂ t

, (1)

ρ
∂ u⃗
∂ t

=−∇p. (2)

Therein, ρ denotes the density of the medium, K represents the bulk modulus, p is the sound pressure, and u⃗
is the particle velocity. We assume that the calculation is for a lossless medium. Here, for simplicity, assuming
u⃗ = (ux, 0, 0) in order to analyze one-dimensional (1-D) acoustic field propagation of the x-direction, we can
obtain the following equations:

∂
∂ t

p+ c
∂
∂x

Zux = 0, (3)

∂
∂ t

Zux + c
∂
∂x

p = 0. (4)

In those equations, Z indicates the characteristic impedance (i.e. Z =
√

ρK) and c represents the sound ve-
locity in the medium (i.e. c =

√
K/ρ).

Then, in CIP analysis, by addition and subtraction of these two equations, we obtain

∂
∂ t

(p±Zux)± c
∂
∂x

(p±Zux) = 0. (5)

In addition, through simple spatial differentiation of the equations, the equations of the derivatives are
given as

∂
∂ t

(∂x p±Z∂xux)± c
∂
∂x

(∂x p±Z∂xux) = 0. (6)

Therein, ∂x =
∂
∂x .

We show the procedure to calculate the fields of the (n+ 1) time step from the fields of n time step,
applying the MOCs (inc. the CIP method) to discretized acoustic field components. The calculation method
of the ±x-direction propagation is described below according to Fig. 1. We define Fx±, and Gx± as follows:
Fx± = p±Zux, and Gx± = ∂x p±Z∂xux. Consequently, the field components defined on grid points (x = i∆x)
at the time step n give Fx+, Fx−, Gx+ and Gx− as

Fn
x±(i) = pn(i)±Z un

x(i), (7)
Gn

x±(i) = ∂x pn(i)±Z ∂xux
n(i). (8)

Applying the interpolation operators (H and H’) to Fn
x±(i) and Gn

x±(i) yields the following equations related
to propagation to the ±x-direction.

Fn+1
x± (i) ← H(Fn

x±,G
n
x±), (9)

Gn+1
x± (i) ← H’(Fn

x±,G
n
x±). (10)
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Figure 1 – The calculation method of Fx+(i),
Fx−(i), Gx+(i) and Gx−(i) to ±x direction using
the CIP method.
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Figure 2 – Collocated grid of the acoustic field in
MOC /CIP analysis.

Moreover, using the following eqs. (11), (12), (13) and (14), one can obtain acoustic field components (p
and ux) of time step (n+1).

pn+1(i) ←
Fn+1
+ (i)+Fn+1

− (i)
2

(11)

un+1
x (i) ←

Fn+1
+ (i)−Fn+1

− (i)
2Z

(12)

∂x pn+1(i) ←
Gn+1
+ (i)+Gn+1

− (i)
2

(13)

∂xun+1
x (i) ←

Gn+1
+ (i)−Gn+1

− (i)
2Z

(14)

It is noteworthy that we can calculate sound wave propagation of the y-direction in a similar manner to
that of calculation of the x-direction. Fig. 2 depicts the 2-D grid model used in this analysis, in which both
acoustic field components (p, ux and uy) and the derivatives of fields (∂x p, ∂y p, ∂xux and ∂yuy) are located on
the same grid(i.e., collocated grid). Acoustic field propagation is solvable using these discretized components.

2.2 Non-uniform grids
Figures 3(a) and 3(b) show the schematic of a non-uniform grid and sub-grid system. Memory required

for the non-uniform grid system is slightly larger than that of the sub-grid as shown in these figures. However,
handling the interface between different sizes of grid is more complicated in the sub-grid system. Here, ∆xc
and ∆yc represent the course grid size, while ∆x f and ∆y f are fine grid size, respectively.

Figure 4 shows the aspect of the discretized sub-grid for the CIP method. The difference between the
type-M and type-C CIP methods is the handling of a second-order special derivative [11]. The type-M CIP
method is a simple technique with smaller memory use and less calculation time required than the type-C
CIP method.

2.3 PML in non-uniform grid
Next, we show the PML [14] formulation for MOCs. In the PML region, the advection equations are given

as
∂
∂ t

Fx±± c
∂
∂x

Fx± =−rFx±, Fx± = p±Zux, (15)

∂
∂ t

Gx±± c
∂
∂x

Gx± =−
(

∂
∂x

r
)

Fx±− rGx±, Gx± = ∂x p±Z∂xux. (16)

These equations are for calculations in the x-direction. We treat the advection and non-advection phases
separately in the PML region [13]. The non-advection phase is solved by the simple finite difference method.

If we let here results of the advection calculations at a time step n be Fn∗
x± and Gn∗

x±, in the non-advection
phase, the solution of Eqs. (15) and (16) gives Fn+1

x± as

Fn+1
x± = (1− r)Fn∗

x± (17)
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Figure 3 – Non-uniformity grid and sub-grid model
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Figure 4 – Discretized acoustic field components in Non-uniform grid model

Figure 5 – Non-uniform grids model with PML

Gn+1
x± = Gn∗

x±−
(

∂
∂x

r
)

Fn∗
x±− r Gn∗

x± (18)

where r is the attenuation parameter in the PML region. Here, note that we can also calculate the propagation
in the y-direction as well as in the x-direction. Figure 5 depicts the schematic of a non-uniform grid model
with PML, where L is the number of layers in the PML region.
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Figure 6 – Calculation model

Table 1 – The value of the constant used in the analysis

∆x x-direction’s grid width 0.01 m
∆y y-direction’s grid width 0.01 m
∆t The discrete time width 2.0×10−2 ms
c Sound velocity 330 m/s
L the number of PML layer 32
Z the characterisitic impedance 415.03 Pa· kg/m3

analysis domain 8 m × 8 m
non-uniform grid domain 2 m × 2 m

3. SIMULATION RESULTS AND DISCUSSIONS
Figure 6 shows the geometry of the calculation model. The calculation parameters are as follows: Direc-

tion of acoustic field propagation, ±x and ±y (2-D analysis); fine grid size, ∆x f = ∆x = 0.01m, ∆y f = ∆y =
0.01m; course grid size, ∆xc = m∆x, ∆yc = m∆y, where m is a ratio of course grid size and fine one. Other
calculation parameters used in the calculations are summarized in table 1.

We present numerical results obtained using the non-uniform grid technique for type-M / type-C CIP anal-
ysis. Figure 7 shows the sound pressure distribution obtained by type-M CIP analysis with non-uniform grids
at t = 10∆t, t = 300∆t, t = 500∆t, and t = 800∆t. The input pressure is driven from region of the non-uniform
grids. We can ascertain the propagation behaviour including the non-uniform grid region and find little reflec-
tion waves from PML boundaries. Figure 4 evaluates the error using non-uniform grid by means of compari-
son of the absolute pressure value at some points ((x,y)= (4.5[m],4.5[m]),(4.0[m],1.8[m]),(1.8[m],1.8[m])).

The blue solid line indicates the sound pressure using non-uniform (m = 2) grid (|P|), and the red dashed
line shows the difference between P and Pe (|P−Pe|), where Pe is sound pressure using uniform grid (i.e.,
m = 1) as a reference. As a result, we also find the boundary in the non-uniform grids has good permeability
characteristics with an extremely low reflection.

We also investigated the calculation time required for some non-uniform grid models. Here, we used a PC
with Intel Core i7- 980X Extreme Edition 3.33GHz. This processor has 6 cores and 12 hyperthreaded cores,
or effectively scales 12 threads. For all analyses, parallel computation using OpenMP was applied.

Tables 2 and 3 show a comparison of the calculation times using type-C and type-M CIP method, respec-
tively, where calculations are divided into 500 time steps. These results illustrate that the non-uniform grid
(m ̸= 1) system requires less calculation time and uses less memory than the fine grid (m= 1). The calculation
time of the type-M CIP method is about 0.7 times smaller than that of the type-C CIP method, whereas the
memory use of the type-M CIP method is about 0.58 times smaller.
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(a) t = 10∆t (b) t = 300∆t (c) t = 500∆t (d) t = 800∆t

Figure 7 – Analysis of type-M CIP method using non-uniform grid

(a) (4.5[m],4.5[m]) (b) (4.0[m],1.8[m]) (c) (1.8[m],1.8[m])
Figure 8 – The numerical error at each point of type-C CIP method using non-uniform grid

(a) (4.5[m],4.5[m]) (b) (4.0[m],1.8[m]) (c) (1.8[m],1.8[m])
Figure 9 – The numerical error at each point of type-M CIP method

4. CONCLUSIONS
Using the type-C and type-M CIP-MOC methods, we assessed non-uniform grid systems for the numerical

simulation of sound wave propagation. The numerical results obtained by the type-C and type-M CIP methods
with non-uniform grid techniques were compared for a two-dimensional acoustic field. Examinations reveal
that the correct treatment of the interface between the course grids and non-uniform grids causes extremely
low reflection from the boundaries. The use of a suitable non-uniform grid reduces the time and memory
necessary for calculation.

we also examine the PML absorbing boundary condition for the CIP-MOC 2D simulation using non-
uniform grid system in this study. From the numerical results, PML implementation can be an effective
method for non-uniform grid system.
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