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ABSTRACT 

In this paper, active control of harmonic sound transmitted through a soft-core sandwich panel is studied. As 

it has already been shown for the low frequency region, the noise transmission through a soft-core sandwich 

panel mainly occurs due to the flexural and the dilatational modes [Rimas Vaicaitis, NASA Technical Note, 

NASA TN D-8516, 1977]. Therefore, in this study, the volume velocity and weighted sum of spatial gradients 

methods are used to control these modes, and achieve sound attenuation in a broad frequency range. A point 

force actuator is used as the secondary force to control the radiation modes of the bottom faceplate. Radiated 

sound power from these two control theories are compared for different values of isotropic loss factor of core. 

Numerical studies indicate that irrespective of core loss factor weighted sum of spatial gradients method 

works well in a large frequency band without increasing the radiated sound power unlike the volume velocity 

method. 
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1. INTRODUCTION 

Light sandwich panels are extensively used in many fields, because of the advantages they offer of 

high strength-to-weight ratios. The most important advantage of sandwich structures is that op timal 

designs can be obtained for different applications by choosing different materials and geometric 

configurations of the faceplates and the core. However, the acoustical properties of these light and stiff 

structures can be less desirable at low frequencies. These undesirable properties can lead to high noise 

levels. Therefore, new means of providing noise attenuation at low frequencies need to be established.  

Sound transmission characteristics of sandwich panels have been investigated by many authors. 

Ford et al. [1] were the first to study the effects of dilatational modes of sandwich panels on sound 

transmission loss. They found that the dilatational mode of vibration depends primarily on mass of the 

face sheets and thickness of the core. Smolenski and Krokosky [2] included volumetric and shear 

terms in the strain energy calculation done by Ford et al. [1]. They noticed that the flexural modes of 

vibration do not change significantly with a change of the thickness or Poisson’s ratio of the core, 

whereas the dilatational modes of vibration respond dramatically to these properties of the core. Wave 

impedance analysis approach was used to calculate the sound transmission loss of sandwich panels by 

Dym and Lang [3,4]. They noticed that a high transmission loss can be achieved by choosing the 

faceplates, whose symmetric and anti-symmetric impedances have similar values. Vaicaitis [5] 

formulated a viscoelastic model of a sandwich panel by taking the core both as soft and hard, and 

analyzed the sound transmission properties of both the types of core. He found that the sandwich 

panels with soft viscoelastic cores exhibit noise transmission characteristics similar to those of double 

wall elastic panels except in the frequency range where dilatational mode occurs, and sandwich panels 

with hard core reduce noise significantly as compared to the elastic panels in a broad frequency range. 

Conventional methods of suppressing acoustic noise using passive sound absorbers generally do 

not work well at low frequencies. Therefore, active methods are used to attenuate the low frequency 

sound. Johnson and Elliot [6] studied the effect of minimizing the radiated sound power (SPM) and 

cancelling the volume velocity (VVC) on the global sound power reduction. They proposed that SPM  

strategy, which is difficult to implement in practice, can be replaced by VVC to get large amount of 
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reduction in sound power at low frequencies. By using VVC, Pan et al. [7] studied the control of sound 

transmission through a double-leaf partition. 

However, VVC strategy requires a large number of sensors. For example, to accurately measure the 

volume velocity of a plate of size 0.278 m x 0.247 m, 16 to 25 sensors are required [8]. The increase in 

the number of sensors can be avoided by using a distributed piezoelectric sensor to measure volume 

velocity [9]; however, this sensor would need to be designed for the specific geometry. A recent 

control metric, termed composite velocity (also referred to as WSSG or the weighted sum of spatial 

gradients), has shown promise in resolving these issues. Composite velocity was developed as a 

weighted sum of spatial velocity gradients requiring only four sensors to measure, and was found to be 

relatively insensitive to sensor location on a simply-supported plate [10].  

From all the above mentioned works, it is apparent that extensive studies have already been done to 

investigate the sound transmission through sandwich panels. However, active control of sound 

transmission through soft-cored sandwich panels by active means is a fairly unexplored topic. In the 

present investigation, an analytical study of a simply supported sandwich panel has been considered. 

Both VVC and WSSG strategies are used to drive a point force actuator, which is attached to the 

bottom faceplate of the sandwich panel. Also, the effectiveness of both the strategies has been studied 

for different values of isotropic loss factor of the core. 

2. MODELING 

Consider a physical system consisting of a rectangular soft-cored sandwich panel, as shown in 

Figure 1. A harmonic plane wave is incident on the top surface of the sandwich panel and the bottom 

face of the sandwich panel is subjected to a control force. It is assumed that the sandwich panel is flat 

and simply supported at all four edges. It is also assumed that the faceplates and the soft viscoelastic 

core of the panel are isotropic. 

Since a very soft viscoelastic core is considered, Poisson’s ratio of the material is nearly zero; 

hence, the core can be approximated as a viscoelastic spring. Assuming the small deflection theory of 

plates based on the classical plate theory, the governing equations of motion can be written as,  
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where   3 212 1t t t tD E h   and   3 212 1b b b bD E h   are the bending stiffness of the top and the 

bottom faceplates, respectively; 
4 4 4 4 2 2 4 42 ;x x y y          , , , , ,i i i i iw E h c  and i  are the 

displacement in the direction normal to the panel, density, Young’s modulus, thickness, damping 

coefficient, and Poisson’s ratio respectively; subscript ,i t b  and c  refers to the top and the bottom 

faceplates and the core, respectively; a superposed dot indicates a time derivative. The terms 

(1/ 3) c ch  and (1/ 6) c ch  represent the contributions of the mass of the viscoelastic core to the 

displacement amplitude of the top and the bottom faceplates. The viscoelastic spring constant of the 

core material is (1 ) ,c c ck E j h   where cE is the elastic modulus of the core in the direction 

normal to the plate surface, j  is the imaginary number,   is the isotropic loss factor of the core, ep  

and cp  are  the oblique plane wave incident on the top faceplate and the secondary force applied to 

the bottom faceplate, respectively.   

If the structural vibration is assumed to be described by the summation of M  modes, and both the 

top and the bottom faceplates are simply supported, the forced response can be expanded in terms of 

normal modes as [5], 
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where tmD  and bmD  are the generalized coordinates of the top and bottom faceplates, respectively; 

t  represents time, and the mode shape functions ( , )m x y  satisfy the orthogonal property and 

normalized as, 
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where 
pS  is the area of the sandwich panel. 
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Figure 1 - Sandwich panel excited by a plane wave incident at angles   and  , and a control force. 

Substituting Eq. (3) into Eqs. (1) and, (2) and omitting the co-ordinate axis and the summation sign 

in the interest of brevity and doing some algebraic manipulations, one will obtain the displacement of 

the top and the bottom faceplates as, 
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Here,   is the frequency of incident pressure. The expressions for 1,t

mH 2 ,t

mH 1b

mH  and 2b

mH  are 

given as, 
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The eigenfrequencies of the coupled system can be calculated by setting 0t bc c     and using 

0m m t b                                                   (7) 

Eq. (7) will give two characteristic values for each modal indices 1 2( , ).m m  Theses roots represent the 

in-phase flexural and the out-of phase dilatational vibration resonance frequencies of the sandwich panel. 

2.1 Overview of Control Theory 

Since the primary sound is incident on the top faceplate and the control force is implemented on the 

bottom faceplate, so only the expression for composite velocity or weighted sum of spatial gradients 

(WSSG) for bottom faceplate is calculated, which is given by [10], 

       
22 22 2WSSG b b b bw w x w y w x y                            (8) 

When the spatial derivatives 2, ,x y x y        of Eq. (6) are taken, it can easily be seen that 

each of these terms will be scaled by 2

1 2 1 2, , ,m a m b m m ab    respectively. This gives an obvious 

method to determine weights for each of these terms. By choosing 1,   1 ,a m   2b m   and 
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2

1 2ab m m  the magnitudes of each of the spatial gradient terms are scaled to be the same as the 

magnitude of the 
bw t   term. Using these weights yields an extremely uniform field over the surface 

of the bottom faceplate at a specific mode. 

As it is described above, only the volume velocity of bottom faceplate is needed, which is 

calculated using elemental radiator method given by Johnson and Elliot [6].  

3. RESULTS & DISCUSSIONS 

Here, the analytical results of radiated sound power from the bottom faceplate of the sandwich 

panel and its active control using volume velocity and weighted sum of spatial gradients (WSSG) 

methods are presented. A simply supported soft-core sandwich panel is considered for the numerical 

study whose top and bottom faceplates are assumed to be of aluminum alloy and the core is of 

lightweight low modulus viscoelastic material. The material properties of the faceplates and the core 

are given in Table 1 and the eigenfrequencies associated with the structural mode of the sandwich 

panel are calculated using Eq. (7) and shown in Table 2. The dimensions of the sandwich panel are 

same as taken by Vaicaitis [5], where the sandwich panel is 0.25 m 0.508 m and the thicknesses of 

each faceplate and the core are 0.51 mm and 6.35 mm, respectively. A plane wave of pressure 

amplitude 1 Pa is incident on the top faceplate of the sandwich panel at 
045   and 045 .   A 

control force in the form of a point force actuator is acted at the middle of the bottom faceplate and a 

sensor is located at  0.15m, 0.29m  to measure the WSSG. The magnitude and the phase of the 

control force for each frequency have been simulated to minimize the WSSG at the sensor location. 

For the analytical simulation, volume velocity has been found by discretizing the plate into 55 

elements and estimating the velocity across each individual element as the velocity at the center of the 

element. This number of elements was calculated as sufficient to give an accurate measure of volume 

velocity based on the methods described by Sors and Elliott [8]. A total of 55 structural modes are used 

for the simulations in the frequency range of 0 to 550 Hz and no significant difference has been noticed 

in simulations for higher number of modes. 

 

Table 1 – Physical parameters of faceplates and core 

Aluminum faceplates 
72.4 GPa,t bE E  0.3,t b    

327.13 N-sec m ,t bc c  32770 kg/mt b    

Viscoelastic Core 34500 Pa,cE  0,c  3277 kg/mc   

 

Table 2 – Eigenfrequencies of the sandwich panel 

Mode number Flexural eigenfrequency (Hz) Dilatational eigenfrequency (Hz) 

(1,1) 19.3 402.3 

(1,2) 30.6 403.2 

(1,3) 49.5 405.7 

(2,1) 66 408.9 

(1,4) 75.9 411.2 

 

The radiated sound power from the bottom faceplate at different values of isotropic loss factor of 

the viscoelastic core has been calculated and shown in Figure 2. Bullets and the small circles show the 

flexural and dilatational modes of the sandwich panel, respectively.  It can be observed from these 

figures that the noise transmission characteristic of an elastic panel ( 0)   and viscoelastic panel 

( 0)   are similar for frequencies upto 250 Hz, however, after this, viscoelastic panel with soft core 

significantly attenuates sound power as compared to the elastic panel, which very well agrees with the 

work done by Vaicaitis [5]. It can be observed that at 402 Hz, where the first dilatational mode occurs, 

a panel with viscoelastic soft core can attenuates around 40 dB of sound. These results show that the 
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noise transmission into the cavity mainly occurs by flexural modes till 250 Hz and by dilatational 

modes in the frequency region from 400 to 500 Hz. Therefore, in the following section, volume 

velocity and WSSG methods are used to control both the flexural and the dilatational modes to get 

control over the frequency range considered in this study that is from 0 to 550 Hz.  

 

 

Figure 2 – Radiated sound power from the bottom faceplate at different values of core loss factor 

 

Figure 3 – Radiated sound power from the bottom faceplate at 0   
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Figure 4 – Radiated sound power from the bottom faceplate at 0.1   

 

Figure 5 – Radiated sound power from the bottom faceplate at 1.0   

 

Both the uncontrolled and controlled radiated sound power using the two objective functions are 

plotted for 0, 0.1, 1.0   and shown in Figures 3, 4 and 5, respectively. The point force actuator 

convincingly control the flexural modes, which are dominating in the frequency region from 0 to 250 

Hz, and dilatational modes, which occur in the frequency range from 400 to 500 Hz and hence, 

attenuate the sound inside the cavity in a broad frequency range, that is, from 0 to 550 Hz. Also, it can 

be observed that volume velocity method does considerably better, but considering the number of 
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sensors involved, it is less practical in implementation. Also, an important note is that the maximum 

increase in radiated power is less for WSSG method as compared to the volume velocity method. This 

is an important consideration for cases where the structural excitation is narrowband in nature. For 

those cases, it is possible that implementation of active control could increase the radiation for some 

frequencies of excitation, and it is desired to minimize those possible undesired amplifications. Thus, 

having a small maximum increase in radiated power is a desirable feature of an effective active control 

scheme.  

4. CONCLUSIONS 

This paper reports a study of active control of the radiated sound power by controlling the flexural 

and dilatational modes of a soft-core sandwich panel using the volume velocity and weighted sum of 

spatial gradient (WSSG) methods. WSSG method shows better results while only measuring the 

displacement at four locations on the plate, whereas the volume velocity method requires 55 

accelerometers. In particular, WSSG achieved improved control when compared to volume velocity at 

natural frequencies and modes higher than the fourth mode. This is due to the fact that WSSG could 

control the second, third, and fourth radiation modes whereas volume velocity could not. Also, the 

maximum increase in radiated sound power is very high in volume velocity method as compared to 

WSSG method. However, both the volume velocity and the WSSG methods able to control the flexural 

and dilatational modes, and therefore control the radiated sound power in a large frequency band.  
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