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ABSTRACT 

Previously, the authors prepared a model of the coherent acoustic reflection loss at the ocean surface by 

combining an existing model of roughness loss with a description of surface grazing angle which accounted 

for the near-surface sound speed reductions due to an assumed distribution of wind-driven bubbles.  More 

recently, the authors showed that the full derivation of surface incidence angle, which was based on an 

analysis by Brekhovskikh, could be approximated by a simple expression in terms of the physical parameters 

of the assumed model of bubble population, together with wind speed and frequency.  In an extension to this 

work, the practical limits to the application of this approximated solution are examined, in terms of the wind 

speed-frequency combinations, and the range of grazing angles, for which it is adequate.  The adequacy of 

the approximated model is tested by incorporating it within a Gaussian-beam acoustic propagation code and 

generating loss values for surface ducted transmission scenarios, to compare against data obtained by Monte 

Carlo runs of Parabolic Equation (PE) transmission calculations for which the sea surface is roughened and 

the near-surface sound speed reductions from the bubble distribution are included. 
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1. INTRODUCTION 

The propagation of sound in a mixed layer surface duct may be affected significantly by a 

wind-roughened ocean surface.  Due to the roughness, acoustic energy can be scattered in 

non-specular directions thus causing a reflection loss.  Near surface bubbles generated by the wind 

may change the sound speed, and may be a direct cause of sound scattering and absorption.  As a 

result, the condition of the ocean surface must be taken into consideration in any realistic model of 

sound propagation within the surface duct.  In the work of this paper, the acoustic frequencies are 

assumed sufficiently low that bubble scattering and absorption may be neglected.  

Existing models of surface reflection loss usually take the grazing angle at the ocean surface as an 

input parameter, and usually this angle is computed from sound speed using Snell’s law.  However, in 

situations where the sound speed change is considerable on the scale of the acoustic wavelength, 

Snell’s law is not necessarily applicable and a wave-based theory becomes necessary.  The presence 

of wind-induced air bubbles in the ocean near the surface may cause significant reduction of the sound 

speed near the surface and so an improved model is required. 

Jones et al. (1) suggested a model for evaluating the loss of acoustic energy due to reflection from 

the wind-roughened ocean surface.  The model was called “JBZ” by the authors and is based on 

combining a model of surface roughness loss with a novel method of evaluating the grazing angle at 

the surface.  The determination of surface angle uses a solution of the wave equation in a vertically 

stratified layer as formulated by Brekhovskikh (2) for a “transitional layer” between two media with 

different values of the equilibrium sound speed.  The sound speed variation assumed in the bubbly 

region in the ocean, which needs to be matched to an example of “transitional layer”, uses the model 

described by Ainslie (3), which in turn uses the Hall-Novarini bubble population model (Hall (4), 

Keiffer et al. (5)).  This solution for surface angle has been considered in detail by Zinoviev et al (6) 

who demonstrated that, if the incident grazing angle at the bottom of the bubbly layer is of the order of 

a few degrees or less, as will be the case for ducted transmission, the grazing angle at the surface may 
differ significantly from the value predicted by Snell’s law. 

The suitability of using the JBZ model of coherent surface reflection loss with a model of sound 
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transmission was successfully demonstrated by Jones et al. (7).  In the original JBZ model, the 

computation of the grazing angle at the surface contains a slowly converging infinite series and 

depends on parameters of the layer which need to be obtained from numerical matching the sound 

speed profile in the real layer and the transitional layer described by Brekhovskikh (2).  Therefore, to 

make the wave-based method of calculating the grazing angle at the surface more practicable, its 

theoretical formulation needed to be simplified. 

This paper describes an approximate solution for the grazing angle at the surface.  An 

approximation for the surface roughness loss is also presented, and the two are combined to create a 

“simplified JBZ” model.  Lastly, TL results are shown from the use of the simplified JBZ model with 

a Gaussian beam transmission model, for a surface ducted scenario, in comparison with results 

obtained using a PE code.  This paper extends a recent presentation of progress in this work (8) to 

consider the practical limits to the application of the simplified JBZ model, in terms of the wind 

speed-frequency combinations, and the range of grazing angles, for which it is adequate . 

2. SURFACE ROUGHNESS LOSS FUNCTION APPROXIMATION 

In earlier work involving the authors (1), it was shown that the coherent Reflection Loss (RL) in dB 

per surface reflection, obtained from the second-order small-slope approximation (SSA) method as 

used and described by Williams et al. (9) can be adequately approximated as a linear function in 

surface grazing angle s  for small angles, and by the Kirchhoff (KA) model of reflection loss for the 

surface grazing angles for which the Kirchhoff loss exceeds the linear approximation.  The 

expressions of loss for the linear approximation and KA model are as follows:  

  swfRL 3
5.19

2371079.2   linear approximation for small s  (1) 

  22
5.19 sin019.0 ss cwfRL   for KA model (2) 

where surface grazing angle s  is in radians; f is cyclic frequency, Hz; sc  is speed of sound in 

bubble-free seawater at ocean surface, m/s; 5.19w  is wind speed, m/s, and an example application is 

shown in Figure 1. 

 

Figure 1 – Coherent Reflection Loss per bounce, 8.5 m/s wind speed 5.19w , 3200 Hz 

With the full JBZ model in use with a ray model, an angle of surface incidence, determined by 

neglecting the bubble effects, is presumed to be the same as the angle of incidence 0  immediately 

below the bubbly region.  This angle is input to an analysis based on the Brekhovskikh “transitional 

layer” to determine a revised value of surface angle s  for input to the SSA model to determine the 

loss in dB to be applied.  The simplified JBZ model is similar, but the surface incidence angle s  is 

obtained using an approximation to the full analysis based on Brekhovskikh’s transitional layer, and 

then the greater of the loss values from Equations (1) and (2) is the loss value used in the ray model. 
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3. SOUND SPEED PROFILE IN THE SURFACE BUBBLE LAYER 

As shown by Zinoviev et al. (6), the sound speed profile in the “transitional layer” described by 

Brekhovskikh (2) is expressed in terms the vertical coordinate, z, which is zero at the ocean surface 

and positive with depth.  If the sound speed far below the surface is c0, the profile of the transitional 

layer can be determined by the following equation: 
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In Equation (3), N and m are parameters of the layer.  Setting z = 0, N follows as 

  22
0

2
21 ss cccN   (4) 

where cs = c(0) is the sound speed at the surface, and N is non-dimensional. 

In the application to the bubbly region near the ocean surface, the speed of sound c0 is the value 

existing below the bubbly region.  The nature of N and m may be more easily understood with 

reference to Figure 2.  Here, the variations in sound speed in the vicinity of the surface may be seen in 

their dependence on N and m.  In Figure 2(a), N may be seen to represent the (non-dimensional) 

magnitude of the sound speed variation in the layer (the “strength” of the layer), and for the appli cation 

to the wind-driven bubbly layer in the ocean, values are much less than 1.  In Figure 2(b), m may be 

seen to represent the thickness of the layer.  From Equation (3), m has dimensions of m
-1

.  A value of 

m = 0 corresponds to an infinitely wide layer, whereas at m → ∞ the layer is infinitely thin. 

 

Figure 2 – Normalised sound speed profiles for transitional layer for (a) different values N, m = 2, 

(b) different values of m, N = 0.03 

If the change in surface sound speed caused by the bubbles,  ccc s0 , is small relative to 0c , as 

will always be the case, the strength of the layer N may be approximated as 

04 ccN   (5) 

where c is regarded as positive when the sound speed is reduced by the bubbles. 

3.1 Determination of layer ”strength” N from physical parameters 

In an earlier formulation of this work, Zinoviev et al. (6) devised a numerical matching process by 

which the value of N was determined from the application of Equation (4) to sound speed data obtained 

using the analysis of bubble population and sound speed presented by Ainslie (3).  Subsequently, it 

was considered preferable to relate N directly to the parameters of the model of bubble population.  

This new analysis is described below. 

For the wind-driven bubble layer, sound speed values are modified as (after Ainslie’s Equation 14) 
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where 0c , in m/s, is the speed of sound in bubble-free seawater, and is assumed independent of 

c/c0 

(a) (b) 
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depth as the change in sound speed due to the pressure effect (about 0.017 s
-1

) may be considered 

negligible for relevant depths.  In addition  zc , in m/s, is the speed of sound in bubbly water at depth 

z; 0  is the density of bubble-free seawater in kg/m
3
 (assumed depth independent);  z  is the 

polytropic index for the gas in bubbles at depth z (where  z = 1.0 for isothermal compression and 

 z = 1.4 for adiabatic compression – isothermal compression assumed in this analysis);  zP  is the 

absolute hydrostatic pressure inclusive of atmospheric pressure, in Pa, at depth z; and  zU  is the air 

fraction of seawater at depth z.  Of course,  0c  is the same as sc . 

By evaluating the necessary terms in Equation (6), a modified profile of sound speed values  zc  

is determined.  It must be noted that Ainslie’s analysis is in terms of a value of wind speed 10w  

relevant to 10 m height above sea level.  In order to perform simulations at nominal wind speed 

values 5.19w , where those values are referenced to a height 19.5 m above sea level, the wind speed 

values input to Ainslie’s analysis were modified by the proportion 0.94, to account for the relationship 

5.1910 94.0 ww   that Ainslie attributed to Dobson.  Ainslie’s expression (3) for the air fraction of 

seawater at the surface,  0U , using Novarini’s modification of the bubble population model of 

M.V.Hall, then becomes 

   35.19
101072.70 wU  . (7) 

If Equation (6) is expressed in terms of surface values, for which z = 0, after some manipulation, 

and substitution of 1.0 for  z  as has been assumed, the surface sound speed   scc 0  is 

 
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  (8) 

where 0P  is absolute hydrostatic pressure at ocean surface, Pa.  Next, obtaining  ccc s0  and 

substituting in Equation (5) gives 

 

0

2
00 02

P

Uc
N


 . (9) 

Substituting for the air fraction at the surface using Equation (7), and for 0c  as 1500 m/s, 0  as 

1000 kg/m
3
, 0P  as 10

5
 Pa, gives 

 35.19
51047.3 wN   (10) 

and it is seen that N is determined from the assumed function of air fraction of the seawater at the 

surface,  0U , only.  The earlier numerical process devised by Zinoviev et al. ( 10 ) gave 

 35.19
51055.3 wN  , which is clearly close to Equation (10). 

3.2 Determination of layer ”thickness” m from physical parameters 

As in the case of the layer “strength” parameter N, the earlier analysis of Zinoviev et al. (6, 10) 

included a numerical process by which the value of m was determined by matching the sound speed 

profile of the “Ainslie” bubbly layer to the sound speed profile of the “Brekhovkikh” transitional layer.  

As with parameter N, it was considered preferable to obtain a derivation of m based on the parameters 

of the bubble population model.  This new analysis is described below. 

Examples of the SSPs obtained for Brekhovskikh’s transitional layer, where values of N and m were 

obtained by the numerical “best fit” process, are shown in Figure 3 for four values of wind speed.  

These SSPs are shown together with those obtained by application of the full analysis described by 

Ainslie (3), the latter being the profiles to which the values of N and m had been matched.  A set of 

layer boundaries indicated in this figure were arbitrarily specified as occurring at the depth at which 

the sound speed gradient is triple that for an isothermal gradient, that is, where the gradient is 0.051 s
-1

.  

It was considered that this was a reasonable means of defining a boundary for practical purposes. 
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Figure 3 – Sound speed profiles for wind speeds w19.5 5, 7.5, 10, 12.5 m/s based on (i) full bubble 

analysis of Ainslie (3), (ii) parameters N and m matched to Brekhovskikh’s transitional layer model (2).  

Depth of bubbly layer when gradient is 0.051 s
-1

 (dashed line). 

The depth-dependent air fraction described by Ainslie (3) is           
5.19

exp00 wLzJzJUzU  , 

which for depths relevant to these considerations may be shown to be adequately approximately as 

     
5.19

exp0 wLzUzU   (11) 

where 
5.19wL  is a wind speed dependent correlation depth, defined as [3] 

  m/s. 8for   m 8115.04.0

m/s 8for   m 4.0

5.195.19

5.195.19





ww

wLw
 (12) 

Ainslie attributes the origin of the exponential term incorporating the correlation depth 
5.19wL  to 

the bubble population distribution of the Hall-Novarini model.  By consideration of Equation (6), 

neglecting the depth dependence of  zP , and substituting for  zU  using the approximated form of 

Equation (11), it may be shown that  zc  will approach its limiting value ( 0c ) at a depth such that 

 
5.19

exp wLz  becomes very small.  Clearly, the key aspect of the bubble model in the determination 

of  zc  is the assumption of an exponential decline of bubble fraction with depth, and the nomination 

of the depth correlation constant. 

An estimate of m based on the physical parameters, may be made by matching the slopes of the two 

SSPs when the product zm  becomes >>1.  From the data in Figure 3, the slopes do appear well 

matched at locations which are deep in the bubbly layer. 

Firstly, the slope of the SSP for Brekhovskikh’s transitional layer may be ob tained using 

Equation (3) and approximating for zm  >>1.  In this process,  mzmz ee 1  is replaced by mze11 , 

then further approximation using Taylor series terms gives 
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After differentiating with respect to z, and substituting for N in terms of surface air fraction using 

Equation (9), the sound speed gradient is 
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The sound speed gradient for the Ainslie bubble profile may be obtained using Equation (6).  Here, 
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the equation is re-formed in terms of  zc , and then suitable Taylor series approximations are made.  

Next, substitution is made for the depth-dependent air fraction  zU  using the simplified form of 

Equation (11), and after some re-arrangement, the sound speed gradient follows as 
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where zgP 00   may be substituted for  zP , where 0P  is atmospheric pressure at the ocean 

surface and g is acceleration due to gravity, ms
-2

. 

If the sound speed gradients in Equations (14) and (15) are equated for a depth z equal to 4 times the 

wind speed-dependent correlation length 
5.19wL , the following expression may be obtained 
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 (16) 

A consequence of equating Equations (14) and (15) is the cancellation of the terms  0U .  The 

solution for m is then influenced mainly by the value for the correlation depth 
5.19wL . 

For wind speeds  8 m/s, for which m 4.0
5.19
wL , making substitutions for 0 , g and 0P  used 

earlier, it may be shown that m  3.147 m
-1

.  Taking account of the variation of 
5.19wL  with wind 

speed indicated by Equation (12), the full solution from Equation (16) may be shown to be 

  m/s. 8 if   35.0085.0

m/s 8 if                           147.3

5.19
1-

5.19

5.19


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 (17) 

These values of m, based on Equations (16), and ultimately on the bubble model, are close to those 

obtained early by Zinoviev et al. by numerical matching of the sound speed profile of the “Ainslie” 

bubbly layer to the sound speed profile of the “Brekhovkikh” transitional layer.  That earlier 

determination gave m  3.10 m
-1

 for m/s 85.19 w  and   -1-1
5.19 m31.0079.0  wm  for m/s 85.19 w . 

4. SOLUTION FOR THE GRAZING ANGLE AT THE SURFACE 

Brekhovskikh (2) showed that if a plane wave approaches the transitional layer from below, with 

the grazing angle 0 , between the bottom of the layer and the horizontal axis forming the surface, the 

solution for the acoustic pressure of the incident acoustic wave as it advances within the layer can be 

written with the use of hypergeometric series.  By applying Brekhovskikh’s solution for the acoustic 

pressure to the transitional layer, Zinoviev et al. (6, 10) derived a complex system of equations for 

determining the grazing angle, s , of the energy density vector at the surface.  This analysis 

determined that the series summations required to obtain s  were dependent the incident angle 0  

below the layer, the sound speed 0c  below the layer, plus two parameters  and , as follows: 

 0
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  as N is small, non-dimensional (19) 

The values of N and m may now be substituted in terms of the physical parameters of the bubble 

model, in particular, substituting for N from Equation (10) and for m from Equation (17) gives 

  m/s. 8 if 35.0085.01047.2

m/s 8 if                             1084.7
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4.1 Approximate solution for the grazing angle at the surface 

In Equation (19),  has the form of a non-dimensional frequency f.  From Equation (18), 

 002 cmf    for small 0 , and  may be considered to be a parameter in place of 0 .  The 

grazing angle at the surface s  may then be considered as a function of µ and , only, as they 

incorporate frequency f and incident angle 0 .  Assuming that values of m do not vary greatly, which 

is borne out by values that may be determined from Equation (17),    0,,  bas ff   where 

0  is considered to be small.  Using Taylor series expansions in terms of each of µ and 0 , 

considering now the resulting series for a particular value of µ, we may express s  in terms of 

functions of µ, such as  0g ,  1g ,  2g , …, as 

      ...2
2

0100   gggs  (21) 

Evaluation of the full function for s  in terms of µ and 0  shows that s  is always zero when 

0  is zero, so it follows that   00 g  in Equation (21).  By further consideration of examples of 

the full solution, it is observed that s is a linear function of 0  for very small values of 0 , so that 

terms in 
2

0  and higher powers may be assumed neglected for this approximate solution, hence 

 
 10

00
gs 


.  If µ is assumed < 1.0, a Taylor series expansion of function   10 g  then gives 

 n
n

s ffff 





 ...2
2

100
00

 (22) 

and it can be assumed that s  may be expressed as 0  multiplied by a polynominal function in µ, 

for small 0 .  Zinoviev (10) obtained a partial analytic solution for s , in which the full function 

for s  was expected to lie between  2
0 19.11    and  2

0 96.11   .  Here, there was an 

expectation that the next term in a more complete solution was 4
th

 order in , and so it was presumed 

that 1.04  , approximately, was a requirement for this solution.  Tests showed that 4  needed to 

be considerably smaller than 0.1 to use this solution, and by inspection of Equation (20) the relevant 

wind speed and frequency combinations were constrained to modest surface roughness.  For higher 

roughness levels, the full Brekhovskikh solution is still expected to converge to a relationship between 

s  in terms of 0  and µ for very small 0 , as in Equation (22) convergence is expected for  < 1, 

although it may not be practical to determine an analytic solution.  For this reason, the function 

  sf   ,0  was estimated numerically, based on values of s  determined in terms of 0  and µ 

from the full Brekhovskikh solution, for 0  near 0.0.  Including terms in µ to the power 6, this 

function was found to be 

 642
0 9.44.095.11  s . (23) 

This expression was determined from data within frequency values of 1 kHz and 9 kHz, and for 

wind speeds covering both modest and large roughness values with  < 1. 

4.2 Snell’s Law Solution 

The surface grazing angle s  obtained using the full Brekhovskikh solution may be shown to 

approach the Snell’s law result in both the high frequency limit and the limit of steep incidence angle 

0 .  The analysis in section 4.1 is not relevant under these conditions as (i) high frequency implies 

that  >> 1, (ii) large incidence angle violates the assumptions for Equation (22).  When Snell’s law 

applies, the angle of incidence at the surface is exactly  00cosarccos ccss   .  If c  is the 

change in surface sound speed caused by the bubbles, Snell’s law leads to the approximation 

2
002    ccs  (24) 

and as c  is finite, s  is not zero even if the incident grazing angle 0  approaches zero. 
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4.3 Example of Surface Incidence Approximation 

Figure 4 shows the surface grazing angle s  as a function of the incidence angle 0  below the 

bubbly region for two wind speed-frequency examples for which 4  is 0.3 (for which  = 0.740).  

These results are typical of those for other wind speed-frequency combinations for which 4  is as 

large as 0.5.  Here, the value of µ = 0.740 was determined using values for N and m which were 

obtained from the numerical matching to the sound speed profile described by the full analysis of 

Ainslie.  This was done in order to test the use of the simplified analysis, in which µ is obtained from 

Equation (20) and s  from Equation (23). 

The full Brekhovskikh solution, shown by the red curve, approximates a near-linear function in 0  

for small angles, and approaches the Snell’s law solution at steeper incident angles 0  as expected.  

The green line represents the case for which the bubbly layer is absent, for which there is no change in 

angle.  The difference between the green line and the full solution in red illustrates the change in 

angle caused by the thin layer of sound speed change.  It is also clear that Snell’s law is not correct for 

small incidence angles 0 .  The analytic function, shown by the two cyan curves, is not accurate for 

this value of 4 , as was expected.  In Figure 4 (a), the dashed line, obtained by computing a value of 

  0.7535 using Equation (20), then substituting into Equation (23) to obtain 087.2  s , clearly 

adheres to the full Brekhovskikh solution for very small values of incident angle 0 .  For 

Figure 4 (b) the corresponding value of  is 0.7315, giving 068.2  s  and again the dashed line is 

very close to the full Brekhovskikh solution for very small values of 0  

 

Figure 4 – Grazing angle s  at surface as function of incident angle below layer 0  for µ
4
 = 0.3, 

(a) w19.5 = 8.58 m/s, f = 3.2 kHz, (b) w19.5 = 6.23 m/s, f = 6 kHz.  Top and bottom cyan lines - 

 2
0 96.11   and  2

0 19.11    respectively, red line – full solution for Brekhovskikh transitional 

layer, dotted line – Equation (23), green line – no layer, blue line – exact Snell’s law. 

The approximation that has been adopted for the simplified JBZ model is to take as surface grazing 

angle s  the lesser of the value from the uniform slope approximation (Equation (23)) and the Snell’s 

law solution.  This nature of the error, relative to the full solution, is worth some consideration. 

From Equation (20),  incorporates the term 
23

5.19wf , so for a given value of , if frequency is 

low, wind speed is high, and vice versa.  Now, from Equation (24), substituting for c  in terms of N 

using Equation (5), and for N using Equation (10), for an incident angle 00  , it follows that 

  23
5.19

3

0
102.4

0
ws







 . 

Hence, for a given value of , a higher frequency will be associated with a lower wind speed and the 

Snell’s law curve on Figure 4 will appear to be shifted to lower angles s .  The slope of the full 

Brekhovskikh solution at small angles, approximated by Equation (23), is unchanged for a given , 

(b) (a) 
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and so the full solution approaches Snell’s law at smaller values of incidence angle 0 .  The angle 

0  at which the Snell’s law solution is approached is reduced, ensuring a good fit for that value 0  

and greater, as seen in Figure 4 (b).  For lower frequencies, the Snell’s law curve will be shifted to 

larger values of s  and the full Brekhovskikh solution will approach Snell’ law at a larger value 0 .  

However, this extends the span of small values of 0  for which the linear result approaches the full 

Brekhovskikh solution.  Thus it appears that taking the lesser of the value from Equation  (23) and the 

full Snell’s law solution as s  will be adequate for any frequency/wind speed combination. 

5. DEMONSTRATION OF APPROXIMATE SOLUTION 

A demonstration of the use of the full JBZ model, run with a Gaussian beam transmission model, 

had been presented by Jones et al. (7).  Work of this type has now been repeated using the simplified 

JBZ model of surface reflection loss as outlined in section 2.  Here, simulations of TL versus range 

were carried out for a surface ducted scenario - an isothermal surface duct of depth 64 m over an 

infinitely deep, isovelocity ocean, with sound source and receiver at 18 m depth.  TL effects may then 

be attributed solely to sound travelling within the surface duct.  The Gaussian beam model was run, 

firstly, with the simplified JBZ model describing surface reflection loss, and then, for comparison, 

with Beckmann-Spizzichino (B-S) surface reflection loss model described by Hodges (11).  Runs of 

the Gaussian beam model were also made with the surface loss fixed at zero, to simulate a smooth 

surface.  In all cases, the summation of multi-path energy was incoherent.  Values of the component 

of TL due to coherent surface reflection loss, labelled cTLTL , were obtained as a function of range by 

subtracting corresponding values of smooth-surface TL from with-wind TL data.  These derived 

values of cTLTL  are compared with the data from the use of the B-S model, in Figure 5. 

 

Figure 5 – Loss due to coherent surface reflection loss (TLcTL), RAMSurf (black), Gaussian beam 

model with simplified JBZ (red), Gaussian beam model with B-S (blue), source & receiver at 18 m, (a) 

w19.5 = 8.6 m/s, f = 3.2 kHz (µ
4
 = 0.31), (b) w19.5 = 8.8 m/s, f = 3.2 kHz (µ

4
 = 0.42). 

Also shown are values of cTLTL  derived from Monte Carlo runs of the RAMSurf PE code (12) for 

the same scenarios.  As described briefly by Jones et al. (7), for each scenario RAMSurf included the 

sound speed variation due to wind-induced bubbles added to the isothermal variation.  Here, Ainslie’s 

full model of sound speed variation (3) was used.  RAMSurf was used to compute the coherent 

pressure field, in range r and depth z, for each of a large number (typically 40) of Monte Carlo 

realisations of the rough surface in accordance with the appropriate spectrum of surface waves.  The 

mean received coherent pressure field was obtained by coherent averaging of the pressure values at all 

grid points in range and depth.  For each scenario, RAMSurf was also run with the effects of wind 

removed, that is, with a smooth sea surface and with an isothermal sound speed variation, only, i n the 

surface duct.  The coherent loss due to surface loss was obtained by subtracting the smooth surface TL 

from the wind-roughened surface TL. 

5.1 Discussion 

The data shown in Figure 4 (a) are relevant to the values of cTLTL  shown in Figure 5 (a).  Now, 

(b) (a) 
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for an isothermal surface duct of thickness 64 m, the angle of surface incidence for a limiting ray may 

be shown to be about 2.2.  For this isothermal duct overlaid by a wind-induced bubble region of 

about 3 m thickness, the incidence angle 0  for sound at the base of the bubbly region will be almost 

the same, about 2.2.  There will, of course, be incident rays for which the turning point is above the 

base of the duct, and for which the incidence angle will be < 2.2.  From Figure 4 (a) it may be seen 

that the values of s  returned by the full Brekhovskikh solution will be slightly less than those from 

the approximate solution.  The impact on cTLTL  obtained using the simplified JBZ appears to be 

insignificant, as the values obtained using it with the Gaussian beam model, the red curve, agree very 

well with those obtained by the RAMSurf modelling.  The corresponding B-S data are not as close. 

The data in Figure 5 (b) again show good agreement obtained by using the simplified JBZ model, 

for this example with higher surface roughness, for which 42.04  . 

6. CONCLUSIONS 

A significant simplification has been made to the JBZ model of coherent surface loss for 

application to forward transmission of underwater sound in scenarios involving small angles of 

incidence at a wind-roughened surface incorporating near-surface bubbles.  The simplified JBZ 

model includes an approximation to the angle of surface incidence and an approximation to the 

second-order small-slope model of surface roughness loss, that appear adequate for any angle of 

below-bubble layer sound incidence including very small angles.  The determination of surface 

incidence angle appears to be largely related to the bubble-related air fraction at the surface and the 

assumed rate of change of air fraction with depth.  The simplified JBZ model has been verified to a 

limited degree by comparison with data obtained from Monte Carlo runs of RAMSurf in simulation of 

wind-roughened ocean scenarios which include the effects of near-surface bubbles on sound speed.  

The roughness situations for which the simplified JBZ model appears adequate are expressed in terms 

of a parameter incorporating a product of wind speed to the power 1.5 and acoustic frequency.  
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