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ABSTRACT 

Operational modal analysis (OMA) seeks to determine a structure’s dynamic characteristics from 

response-only measurements, which comprise both excitation and transmission path effects. The cepstrum 

has been used successfully in a number of applications to separate these source and path effects, after which 

the poles and zeros of the transfer function can be obtained via a curve-fitting process. The contributions 

from the individual poles and zeros can then be added (in log magnitude) to regenerate the frequency 

response function (FRF). This paper discusses a number of observations relating to this FRF regeneration 

process, as well as a number of broader points explaining FRFs from a pole-zero perspective. Among the 

topics covered in the discussion are: the required distribution of poles and zeros for the successful 

regeneration of FRFs; node points and weak modes in a pole-zero model; the differences in pole-zero 

distribution between receptance, mobility and inertance FRF forms; and, how to deal with the very low 

frequency region when regenerating FRFs. It is hoped that the discussion will assist in the application of 

cepstrum-based OMA methods and will lead to improved understanding of the FRF regeneration process and 

of frequency response functions more broadly. 
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1. INTRODUCTION 

Cepstrum-based operational modal analysis (OMA) was developed in the 1990s (1-5), and has 

recently received further attention (6-8). OMA seeks to determine the dynamic characteristics of a 

structure from response-only measurements, which comprise excitation and transmission path effects, 

which must be separated to obtain the latter. In certain cases, mostly involving a single input, the 

cepstrum can be used to conduct the separation, provided the two effects dominate distinct regions of 

the cepstrum. This relaxes the common assumption in OMA techniques that the input must be 

frequentially white. 

Once the separation is complete, the frequency response functions (FRFs) of the system can be 

regenerated using the poles and zeros (resonances and anti-resonances) identified by curve-fitting the 

cepstrum of the corresponding transmission path. Through this process, the system is implicitly 

described using a pole-zero model, as opposed to the more common pole-residue model, the two being 

identical only for ‘complete’ models including all poles and zeros. Yet in practice there will almost 

inevitably be some truncation, in which only poles and zeros in a limited frequency band are used to 

describe the system as a whole. The FRFs regenerated from such a model have correctly located poles 

and zeros in the considered frequency band, but are subject to the effects of out-of-band poles and 

zeros, which manifest as a distortion of the general slope of the regenerated FRFs. 

A number of techniques have been proposed to correct for this magnitude distortion, as outlined in 

Section 2.4 and addressed by the authors in (7). Through this process of refining techniques to 

regenerate FRFs from poles and zeros, the authors have identified a number of issues that warrant 
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further discussion and explanation, and this is the basis of the present paper. It is hoped the discussion 

will assist in the application of cepstrum-based OMA methods and will lead to improved 

understanding of the FRF regeneration process. 

2. BACKGROUND ON CEPSTRUM-BASED OMA 

2.1 The cepstrum defined 

Various definitions for the cepstrum exist (9); here we shall use the so-called ‘real cepstrum’ x̂  

and ‘complex cepstrum’ cx̂ , defined for some time signal x(t) as: 

     fXx logˆ 1   and       fXxc logˆ 1  (1) 

where     txfX   is the (complex-valued) Fourier transform of x(t). Table 1 includes a 

number of terms often employed when using the cepstrum. Note that the real cepstrum includes no 

phase information, so the original time signal is not recoverable after liftering in the cepstrum domain. 

However, the process from the amplitude spectrum to the real cepstrum is reversible, and so the 

amplitude spectrum can be obtained after cepstral editing (10), as exploited in this paper. The 

‘complex’ cepstrum is also real-valued, but includes phase information from the spectrum so is fully 

invertible; thus, x(t) can be recovered after liftering the cepstrum. 

Table 1 – Cepstrum terminology 

Frequency domain Cepstrum domain 

Frequency  Quefrency  

Spectrum  Cepstrum  

Filtering  Liftering  

Low-pass filter Short-pass lifter 

High-pass filter Long-pass lifter 

2.2 Separation of source and path effects 

While OMA possesses a number of advantages over EMA (where excitation forces are measured), 

its reliance on response-only measurements requires different techniques in order to extract modal 

properties. Response measurements, of course, typically comprise both excitation and transmission 

path effects, and these need to be separated before the structural properties can be determined. 

For a linear time-invariant (LTI) system subjected to a single input x(t), the system response y(t) is 

the convolution of the input and the impulse response function h(t): 

   dtxhtxthty  



)()()()(  (2) 

In the frequency domain, expressing the relationship in terms of the complex spectra (or Fourier 

transforms of the time records), the convolution becomes multiplicative:  

)()()( fXfHfY   (3) 

in which H(f) is the frequency response function (FRF). For the real cepstrum the respective moduli 

can be used. Taking the log and the inverse Fourier transform, we obtain the cepstra, in which source 

and path effects are additive: 

      xhy ˆˆˆ   and       ccc xhy ˆˆˆ   (4) 

Thus in circumstances in which the input occupies defined regions of the cepstrum, the source 

effects can easily be separated (via appropriate liftering) from those of the transmission path, which 

usually occupy a broader quefrency range. Examples of such inputs include frequentially smooth and 

flat forces, which are concentrated in the low quefrency region, such as a hammer blow, which does not 

have to be white (4). Such an input can be removed from the response cepstrum via long-pass liftering, 

leaving only the path cepstrum, from which the system’s FRF can be recovered. It should be noted that 
this is a much less restrictive requirement than the common white noise input assumption made by 

most other OMA techniques. 
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2.3 Representation of transmission path effects 

Employing a pole-zero (as opposed to pole-residue) model, the transfer function (from which the 

FRF is obtained by evaluating along the imaginary axis) can be represented as: 

  
  
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where Np is the number of modal frequencies (or poles) considered in the model, pk are the system’s 

(complex) poles, Nz is the number of (complex) zeros (anti-resonances), zn, considered in the model, 

and B is a scaling factor. As can be seen, the poles and zeros occur in complex conjugate pairs, 

although in some cases there are also real poles and zeros, as discussed in later sections.  

Any real structure will have an infinite number of modes, and so by limiting Np (and Nz) to a finite 

value (by restricting the frequency range of interest, say), the model becomes a truncated 

representation of the complete system. The numerator and denominator in  Eq. (5) can be visualised as 

being the product of distances from a given point in the s-plane to the zeros and poles, respectively. 

Thus poles and zeros outside the frequency band of interest manifest as a distortion of the magnitude 

of H(s) in a frequency-dependent manner; the in-band poles and zeros will be represented accurately, 

but the residues will be distorted. Transfer functions with a greater imbalance between numbers of 

poles and zeros will be more susceptible to this magnitude distortion. In the context of a chain -like 

structure, such as a beam, the greater the distance between source and response, the greater the 

imbalance between the numbers of poles and zeros (5). 

For a sampled sequence, the transfer function of Eq. (5) can be expressed in the z-plane as: 
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where ak and ck represent the zeros and poles inside the unit circle, and 1/bk and 1/dk the zeros and 

poles outside the unit circle, respectively (where 1,,, kkkk dcba ). 

Based on a more general expression by Oppenheim and Schafer (11), Gao and Randall (2) showed 

that for a stable minimum phase system (applies to many simple mechanical systems), the complex 

cepstrum corresponding to H(z) can be expressed in terms of the zeros and poles inside the unit circle: 


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in which n is the quefrency index and where, for example, a pair of poles, ck, has been replaced by 

)cos()/2( nAn ck

n

ck  , in which kck cA   and kck c  represent, for each pole, the damping and 

the damped natural frequency, respectively, and likewise for the zeros ak. (Implicit in the above is that 

the Fourier transforms of Eq. (1) have been replaced by z-transforms in the calculation of the 

cepstrum.) 

Thus, according to Eq. (7), by curve-fitting a liftered form of the response cepstrum (to remove 

source effects), one can obtain the transfer function’s poles and zeros. From these poles and zeros, the 

FRF can be regenerated to within a scaling factor, since B is not recovered from the curve-fitting 

process. However, the obtained FRF will still be subject to the previously-mentioned distortion 

associated with truncation. In general, therefore, to obtain the system’s true FRFs, the FRF 

regeneration process needs to account for both overall and relative scaling factors. 

2.4 Magnitude equalisation of regenerated FRFs 

A number of techniques have been proposed to generate a magnitude equalisation curve to correct 

for the effects of truncation, including the ‘phantom zero’ approach of Randall et al. (5). Hanson et al. 
(12, 13) applied cepstrum OMA to certain multiple-input-multiple-output (MIMO) applications. Their 

technique to determine the magnitude equalisation curve was to compare the OMA-regenerated FRF 

with one obtained from an updated finite element model. The poles and zeros found via the OMA 
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process were used to update the FE model, from which an FRF was determined and compared with the 

OMA-regenerated FRF. The (log magnitude) difference between the two FRFs was then used to 

develop the equalisation curve, which was in turn used to correct the distorted slope of the 

OMA-regenerated FRF. 

One difficulty that arises in basing the magnitude equalisation curve on the difference between two 

FRFs is that any misalignment of the poles and zeros in the FRFs results in a series of peak/notches that 

need to be smoothed or filtered out. Hanson et al. (12, 13) achieved this by transforming the difference 

curve into the cepstrum domain, short-pass liftered the resulting cepstrum – since the peak/notches 

would typically occupy the higher quefrency region – and then transforming back to the frequency 

domain. The resulting equalisation curve, however, had a noticeable ‘ripple’ throughout the frequency 

range, presumably caused by end effects during the Fourier transform(s). 

The present authors proposed a simple alternative approach to obtain a smoothed equalisation curve, 

based on polynomial curve fitting of the (log magnitude) difference between the regenerated and 

reference FRFs (7). The reference FRF could be found by a finite element model, as used by Hanson et 
al., or simply the FRF measured through conventional experimental modal analysis (EMA) techniques, 

but not under operational conditions.  

The method has a number of advantages over the aforementioned phantom zeros and cepstral 

filtering approaches. When executed with a basic constrained optimisation algorithm, for example, it 

allows the user to specify a particular point, or points, through which the scaled FRF curve must pass. 

This would be especially useful for the correct scaling of the very low frequency (VLF) region of the 

FRF, which was not executed well with the liftering approach (7). This is particularly important 

because the behaviour of structures in the VLF region is usually well understood theoretically but is 

often masked in EMA-based measurements. 

Fig. 1 shows the proposed OMA process summary as outlined by the authors in (7). 

 

Figure 1 – Summary of proposed OMA process (7) 

3. INITIAL EXPERIMENTAL RESULTS 

3.1 Experimental setup 

The technique outlined in the previous sections was applied to a steel beam test rig, as outlined in 

(13) and shown in Fig. 2. The beam (20 x 50 x 1000 mm) was supported on soft springs to represent 

free-free boundary conditions, with the highest rigid-body mode at 5 Hz well separated from the first 

bending mode of 95 Hz. 

The beam was excited with a frequentially smooth input through a shaker mounted at one end of the 
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beam (point 1 in Fig. 2) and on its longitudinal centreline. This ensured for simplicity that only the 

bending modes were excited. The excitation was burst random noise with a cycle of 250ms on / 250ms 

off. The noise, with frequency content ranging from 0–2048 Hz, was subjected to coloured filtering to 

approximate pink noise. This was done to introduce distortion of the response spectra – an intentional 

violation of the typical OMA ‘white noise’ assumption – while maintaining a ‘frequentially smooth’ 

input, to allow for cepstrum-based source-path separation. Such distortion means that both the overall 

and relative scaling of each mode is lost in the response spectra.  

The acceleration response was measured at 11 equi-spaced points along the longitudinal centreline 

of the beam, as shown in Fig. 2. Each response was measured for a duration of ten minutes and was 

sampled at 4096 Hz. The long measurement record allowed for sufficient averaging to obta in for each 

response a smooth spectral density. The applied force was also measured to allow for the determination 

of reference FRFs through conventional EMA techniques. 

 

Figure 2 – Representation of steel beam test setup (adapted from (12)) 

3.2 Results and discussion 

Shown in Fig. 3 (top) are the frequency response functions (expressed as accelerance) regenerated 

using the cepstrum OMA approach before carrying out any scaling. These were first reported by the 

authors in (7). Included in the plots for comparison are the FRFs obtained through conventional EMA 

techniques. The FRFs relate to points 1 (driving point) and 11, which were chosen to represent the two 

extremes, one having (nearly) equally balanced poles and zeros, and the other having only poles. The 

effect of this (im)balance between numbers of poles and zeros is clearly seen in the general slope of the 

regenerated FRFs as compared with their measured counterparts, with the regenerated FRF of point 11 

exhibiting significant distortion (up to 40 dB difference from the EMA value).  

Note that the poles and zeros above about 1600 Hz are not represented in the regenerated FRFs 

because they were filtered out prior to conducting the cepstrum curve-fitting (based on Eq. (7)). Also 

filtered from the response spectra prior to the cepstrum curve-fitting were the low-frequency 

rigid-body modes of the beam oscillating on the soft spring supports, which were not of interest in this 

study and could have distorted the response cepstra. 

Shown in Fig. 3 (bottom) are the scaled versions of the regenerated FRFs, again plotted alongside 

the EMA results. The regenerated FRFs have been scaled by the polynomial-based equalisation curve, 

as outlined previously. It can be seen that now the regenerated and measured FRFs are almost 

indistinguishable from one another.  

Fig. 4 shows the equalisation curves used to scale the regenerated FRFs from Fig. 3. Also plotted 

are the log magnitude difference curves between the measured and regenerated FRFs , in which the 

series of peak notches is clearly seen. To obtain the equalisation curves, polynomials were fitted to the 

difference curves with the only constraint being that the curves pass through the theoretical 

zero-frequency accelerance value (shown as a small dot in Fig. 4). This process was implemented as a 

constrained linear least-squares optimisation problem using MATLAB’s in-built ‘lsqlin’ function. 

Although this equalisation process ultimately produced very good results, the authors were 

concerned about the FRF behaviour in the VLF region. In particular, it was thought that outside the 

frequency range containing poles and zeros, the equalisation curve should be monotonic, as from 

observation it seems that the effects of (high frequency) out-of-band modes have a monotonic nature. 

Yet the equalisation curve for the transfer point in Fig. 4 is far from monotonic, requiring a tenth order 

polynomial to properly represent the abrupt change in curvature in the VLF region. This prompted an 

investigation of FRF behaviour in this frequency range.  

Point 11 

Point 1 
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Figure 3 – Drive point (left) and transfer (right) FRF comparison. Top: effect of truncation: measured (—), 

regenerated from OMA without scaling (···). Bottom: effect of polynomial-based equalisation curve: 

measured (—), regenerated from OMA and scaled (···) (7) 
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Figure 4 – Drive point (left) and transfer (right) equalisation curves obtained from polynomial curve-fitting, 

as used in Figure 3: equalisation curves (—), raw difference curves between measured and OMA-regenerated 

FRFs showing series of peak/notches (···) (7) 

4. INVESTIGATING FRF BEHAVIOUR IN THE VERY LOW FREQUENCY REGION 

4.1 Fixed boundary system 

To investigate the behavior of the regenerated FRFs in the VLF region, a simple undamped 2DOF 

model was established, as shown in Fig. 5. 

 

Figure 5 – Undamped 2DOF model 
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Assuming steady state conditions, we can express the output of the system as a function of the 

excitation force and FRF terms: 

)()()(  FHX r  (8) 

in which  T
XX 21,X  and  T

FF 21,F , and rH  is the receptance FRF matrix, which can be 

easily obtained as: 

















tot

r
kmk

kkm

aaa 2

12

22

2

2

0

2

1

4

2

1
)(






H  (9) 

in which 212 mma  , 2212211 kmkmkma  , 210 kka   and 21 kkktot  . The roots of the 

denominator and numerator in Eq. (9) represent, for the given FRF, the poles and zeros, respectively.  

This equation illustrates or conforms to a number of well-known points for the FRFs of chain-like 

structures: that there generally exists (almost) as many zeros as poles in driving point FRFs (H11 and 

H22) but as the distance between the input-output points increases the number of zeros decreases, until 

at the extreme transfer case there are no zeros (H12 and H21). This can be physically understood as 

extreme transfer points alternating in relative phase relationships in successive resonances, while 

driving points maintain the same phase relationships in successive resonances and thus require a zero 

between each pair of poles to ‘reverse’ the phase jump from the last resonance. 

Another feature of Eq. (9) is that in general there will be no DC (zero frequency) poles or zeros, but 

non-DC poles and zeros will occur symmetrically about the zero-frequency axis. (In the general case 

involving damping, it is well-known that the poles and zeros will either be purely real or appear in 

complex conjugate pairs; this is assumed but not proven here.)  
This form of the FRF represents the receptance case, but mobility )/( FX  and especially 

accelerance )/( FX  are often used, in which case we need to multiply Hr by j and (j)
2
, 

respectively, to give the correct FRF form: 

)()(  rm j HH   and )()( 2  ra HH   (10) 

In bringing extra  terms into the numerator, DC zeros are created – one in the mobility case and 

two in the accelerance case.  

4.2 Free boundary system 

Now let us take the free support case, which is the one most often used in laboratory modal testing. 

Setting k1 = 0 in Fig. 5, the receptance FRFs matrix becomes: 

  















2

2

12

22

2

2

1

2

2

2

1
)(

kmk

kkm

aa
r






H  (11) 

in which  2121 mmka   and the constant term (a0) in the denominator of Eq. (9) vanishes to 

create two DC poles, which is not surprising since with any free boundary structure we should expect 

rigid body modes. Following the same conversion to mobility and accelerance as in Eq. (10) again 

yields one DC zero in the mobility case and two in the accelerance case.  

4.3 DC poles and zeros summarised 

These DC pole-zero characteristics are summarized in Table 2. It can be seen that the only cases for 

which the DC poles and zeros balance are the fixed boundary receptance FRF and the free boundary 

accelerance FRF. 

Table 2 – DC pole-zero characteristics 

FRF form Fixed boundary Free boundary 

Receptance no pole, no zero two poles, no zero 

Mobility no pole, one zero two poles, one zero 

Accelerance no pole, two zeros two poles, two zeros 
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Now we can relate these DC pole-zero characteristics back to the well-known classical (log-log) 

FRF forms, as given for example in (14, 15) and shown in Fig. 6 for our 2DOF model. It can be seen 

that the FRF is asymptotic to lines of constant mass or stiffness (straight lines on a log-log scale) in the 

VLF and very high frequency (VHF) regions, and in particular we note that the asymptotic slope of a 

given FRF in the VLF region is determined by the balance of DC poles and zeros, taking an integer 

value (on a log-log scale) from –2 in the free boundary receptance case (two poles, no zero) to +2 in the 

fixed boundary accelerance case (no pole, two zeros). Perhaps a more familiar representation of these 

gradients is in terms of decibels (shown in the figures), where a slope of 1 is 20 dB/decade – 

unsurprisingly, the roll-off gradient for a first order filter. 

 
Figure 6 – Drive point frequency response functions for fixed (left) and free (right) boundary conditions: 

receptance (top), mobility (middle) and accelerance (bottom); corresponding mass and stiffness lines 

representing asymptotic VLF (···) and VHF (···) characteristics 

Yet despite this explanation for the behaviour of FRFs in the VLF region, it does not explain the 

VLF zero-gradient characteristics of the balanced DC pole-zero cases (fixed boundary receptance and 

free boundary accelerance), which of course is what prompted the initial investigation. 

4.4 New results including negative frequency poles and zeros 

It has since been realised that to achieve these characteristics with a pole -zero model, the negative 

frequency poles and zeros (or, more generally, the complex conjugate pairs) must be included in the 

regeneration process. To neglect them is in fact to truncate the model unnecessarily, and although 

earlier papers (2, 12) had focused precisely on this point in regard to high frequency modes, the same 

truncation effect from the negative frequency region had not been appreciated. Indeed, this was so 

even in the present authors’ recent work (7), as discussed previously and shown in Fig. 3, where the 

(unscaled) regenerated transfer FRF (top-right) does not follow the mass line in the VLF region, and 

consequently the corresponding equalisation curve (Fig. 4) requires an abrupt change in curvature to 
achieve a sufficient correction. In the context of a polynomial-based equalisation curve (7), this means 

a much higher order polynomial would be used than what was truly required. 
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Fig. 7 illustrates this point by using the same data as in Fig . 3, but now including the regenerated 

FRF (transfer case only) using both positive and negative frequency poles and zeros. It is seen here that 

the new FRF conforms to the expected VLF behaviour, flattening out to the mass line near zero 

frequency. Meanwhile, the corresponding FRF difference curve – on which the equalisation curve is 

based – now shows the basic monotonic trend that had initially been expected. 
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Figure 7 – Transfer FRFs (left) and corresponding raw difference curves between measured and 

OMA-regenerated FRFs (right): measured (—), regenerated from OMA without negative frequency poles 

and zeros (···), regenerated from OMA with negative frequency poles and zeros (—) 

5. IMPLICATIONS FOR REGENERATING FRFS FROM POLES AND ZEROS 

It is clear from the preceding section that a certain distribution of poles and zeros is required to give 

the best regeneration of FRFs. That section concentrated on FRF characteristics in the VLF region, 

where DC and negative frequency poles and zeros were shown to dictate VLF behaviour. But it is 

perhaps worth mentioning a couple of further points that will hopefully guide the analyst in the FRF 

regeneration process. A key point here is that all FRF information should be contained in the poles and 

zeros, except for an overall scaling factor and the effects of out-of-band modes, and so any FRF 

phenomenon should be describable in terms of its poles and zeros.  

5.1 Weak modes and node points 

One phenomenon that is perhaps not so clear from a pole-zero perspective is that of a weak mode. 

Unlike in a pole-residue model, where modal contributions are scaled explicitly, a pole-zero model 

relies on the scaling effect of neighbouring poles and zeros, the individual contributions of which are 

simply added (in log magnitude) to give the complete FRF. Thus it becomes clear that to represent a  

weak mode with a pole-zero model, the placement of a zero in close proximity to the pole would 

generally be required (this may not be so if the pole is in a region of relative modal sparsity) . 

Following on from weak modes, we must also be able to describe node points with a pole-zero 

model. Given that poles are global system properties, they do not simply disappear in the event of node 

points. Thus the only way to negate the effects of a pole is through cancellation with a zero, i.e. a zero 

must occur at exactly the same frequency as the pole to be negated. This was explained by Mottershead 

and Lallement (16), and although pole-zero cancellation is well-known in the control field, its use in 

describing vibration nodes does not seem to have been widely appreciated.  

The weak pole and node point concepts can be easily linked, at least in chain-like structures, by 

considering a zero to ‘pass by’ a given pole, reducing the strength of the pole until the point of 

intersection, whereupon a node occurs. 

5.2 Practical implications 

The practical implications of the above points are particularly apparent when considering zeros. 

Unlike poles, the zeros in practical measurements are often buried in noise and are not always so clear.  

In the application of cepstrum OMA, this makes it difficult to choose how many zeros to use when 

establishing the pole-zero model. This issue was considered recently by Dackermann et al. (8), where 

different numbers of zeros were used to regenerate FRFs for structural health monitoring purposes. In 

such cases, a thorough understanding of expected pole-zero distributions can help the analyst to 

regenerate better FRFs. For example, the knowledge that in a pole-zero model, a weak mode can only 

be represented by placing a zero in close proximity allows the analyst to achieve such a feature.   
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6. CONCLUSIONS 

This paper has discussed a number of issues surrounding the regeneration of frequency response 

functions from poles and zeros. This is particularly relevant to cepstrum-based operational modal 

analysis, which requires the use of a pole-zero model to represent the system. Emphasis is given to the 

behaviour of FRFs in the very low frequency region, and in particular to the specific distribution of 

poles and zeros required to regenerate FRFs correctly. It is pointed out that negative frequency poles 

and zeros should be included in the regeneration process, along with the correct balance of DC poles 

and zeros. 

It is hoped the discussion will assist in the application of cepstrum-based OMA methods and will 

lead to improved understanding of the FRF regeneration process and of frequency response functions 

more broadly. 
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