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Abstract: Visualisation of the reflection of waves off objects is useful in education, because we cannot see sound
wes. Techniques for visualising sound fall into four groups: listening, mechanical analogues, measurement,
computer simulation. This paper describes efforts to develop the computer graphics equivalent of a ripple tank.

1. INTRODUCTION

The most common means of visualising sound propagation is
a ripple tank, where an observer can watch the motion of
waves in an artificial physical environment, The aim of our
work is to produce the computer equivalent of a ripple tank by
displaying the propagation of sound waves on a graphics
display. While our motivation is to produce a visualisation
system for research into ultrasonic sensing for mobile
robots[1], such a system is very useful for teaching wave
motion.

Educational software must run on a personal computer,
placing considerable importance on the selection of
algorithms. Also, educational software requires a good user
interface to enable the student to interact with the system by
changing parameters to see what happens.

The following models of wave propagation are examined:
physical models, Transmission Line Matrix models and
Lattice Gas models. Models for visualising wave
propagation, the interference between multiple sources,
reflection, and diffraction are discussed in Sections 3,4 and 5.

2. VISUALISATION TECHNIQUES

Techiniques for visualising sound fall into four groups:
listening, mechanical analogues, measurement, and computer
simulation.

2.1 Listening

People usually perceive sound through their ears. Humans
have highly developed auditory perception for speech, music
and other sounds. Wenzel et al. utilised this ability to develop
an acoustic display for a virtual environment workstation[2).
‘This system generates localised acoustic cues in real time
over headphones. Their aim is to make their virtual world
sound real as well as look real.

2.2 Mechanical Analogues

Physics teachers use mechanical analogues to visualise
sounds during laboratory classes. They demonstrate one
dimensional wave propagation with springs and wave
machines, and two dimensional wave motion with ripple
tanks. Some ripple tanks have transparent bases to enable an
image of the waves to be projected onto a screen using an
overhead projector.

However, repeatable demonstrations are difficult to
achieve due to the cumbersome nature of ripple tanks. For
this reason, teachers refer their students to photographs of
wave motion printed in most physics text books. A ripple
tank can be used to visualise wave propagation, reflection,
interference and diffraction.

2.3 Measurement
‘While a researcher can observe a ripple tank and record it
i urate of wave i

is required in order to do calculations. All measurement
techniques use microphones to measure the instantaneous
sound pressure. These measurements can be recorded and
displayed for visualisation purposes. To build up a picture of
a sound field, a microphone is scanned or an array of
‘microphones is used.

Prior to the availability of low cost computers, Winston
Kock developed a method for recording an acoustic field on a
photographic plate(3]. He attached a microphone to the end
of a scanning device: a long rod oscillated by a motor to move
the microphone in an arc transverse to the axis of the field to
be measured. A second motor moved the scanning device
linearly along the axis of the field to be measured. Fixed to
the microphone was a lamp whose intensity was modulated by
the measured sound field. A time lapse camera recorded the
intensity of the lamp as it moved in the two dimensional
scanning plane.

To show the intensity of the sound waves at points in the
scanning plane, the measured and reference signals were
summed to produce a standing wave pattern. With this
apparatus he was able to photograph sound including
diffraction at the edges of shadowing objects.

2.4 Simulation
‘The problem with measurement is that many points have to be
measured in the acoustic field to gain an accurate
representation of wave motion. This process takes a long time
and requires expensive equipment. To gain an understanding
of wave propagation and scattering, we are developing
simulations.

To develop a useful simulation we have to choose a
suitable model. This choice is constrained by the desired
accuracy of the simulation, the required update rate of the
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graphical display and the method of presenting the
information on the display. Complex models and complex
rendering often result in simulations that are too slow for
dynamic visualisation.

1t is difficult to achieve dynamic displays on a personal
computer with all but the simplest models. An example of a
simple model used to produce a dynamic display for robotics
research s the arc model[4]. In this technique, a sound chirp
is modelled as an arc with arc angle equal to the beam angle
of the transducer. This model has helped us to understand the
problems that occur when using ultrasonic sensing to guide a
mobile robot (Figure 1).

Sound waves can be modelled using geometric, physical
and discrete models. Physical models, based on the wave
equation, are the most accurate but take the longest to
compute. Geometrical models, based on ray tracing, are
useful for tracing the path of a wave envelope but give no
detail of wave structure. In order to reduce the execution time
of simulation, discrete models are solved with numeric
techniques, with resultant loss of information. In the
following sections, we examine the Transmission Line Matrix
model (TLM)[$], the wave model, and the Lattice Gas model
LG)6).

Figure 1. Simulator using arc model to show motion of
chirp and reflection off specular surfaces. Reflection off
1. surfuce B, 2. surface A then B, then A, 3. surface D,
then 4, 4. corner between surface B and E, 5. surface B
travels through opening between C and E, and 6. surface
C during return of chirp.

3. DISCRETE MODEL - TLM

TLM modelling is a numerical method for solving scattering
problems. This method produces a computer simulation of
electric fields in both space and time. The two dimensional
TLM model has a network analogue in the form of a mesh of
orthogonal transmission lines (Figure 2). There is a direct
equivalence between the voltages and currents on the lines in
the mesh and the pressure and intensity of sound. With this
mesh we can model two dimensional wave problerms.

Figure 2. The building blocks of the two-dimensional
TLM network. Equivalent lumped element model.

The model operates by propagating sine waves along the
lines and, due to the simulated discontinuity at the nodes,
results in transmitted and reflected waves being scattered
back into the lines. These scattered waves then become
incident on adjoining nodes at the next time instant (Figure 3).

3
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a) Incident wave on line 1. b) Reflected waves.

¢) Scatter (t)).

) Connect (t)).

Figure 3. Transmission Line Matrix model.

The analogous relationships among the electrical and
acoustic wave parameters are as follows:

Voltage V Pressure P
Current i Particle speed u
Inductance L Density P
Capacitance C Compressibility B
Impedance \E Impedance [Bp

Each iterative step includes two processes, scattering and
connection (Figure 3, c.f). The scattering process is that
waves scatter from a node after impulses incident on the node;
the connection process is that waves propagate toward its
neighbours after waves scatter from a node. The computation
for the scattering process at each node, within cach iteration,
i the weighted sum of impulses incident on the node.
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where
V4 s the incident impulse at time step on k
line 7, and
the rsuperscript of ,V; denotes the scattering impulse.
‘The formulae for the connection process are:
PRACEEACEI]
WV3@X)= V] (5 + 1)
V2@ ViE-1%)
V@)=V (@ +1,x) @

‘The mathematics of the TLM model is simple and hence
rapid to compute. At each iteration step, values are calculated
at nodes in the mesh. To render a continuous or a smooth
image, we must have sufficient nodes per wavelength to
enable accurate interpolation of the values between nodes. 1f
we use linear interpolation, we can get the result quickly, but
the image looks rough. If we use nonlinear interpolation, we
get a better result at the cost of increased calculation time.

To smooth the image and to avoid the long time required
for nonlinear interpolation, we use grey scale to render the
sound pressure at all points in 2D space. A human’s eyes are
much more sensitive to the straightness of a line than
variation in grey scale. The images in Figure 4 were
calculated at time steps proportional to wave travel of one
wavelength, with 20 nodes per wavelength. Then they were
stored and displayed at the end of the simulation. Even with
grey scale rendering, noise produced by this method can be
seen in the images.

Figure 4. Play back of a time sequence of grey scale
images of wave propagation and reflection off a flat
surface calculated with the TLM model for one cycle.

4. CONTINUUM WAVE MODEL

diffraction. As the properties of sound waves are similar to
the properties of light waves, models for light can be applied
to acoustics after modification for medium properties and
wave energy characteristics.
4.1 Propagation
Sound propagation is described by the wave equation:
2

VP2 &)

‘where c

P is the instantaneous pressure of the wave,
V2is the Laplacian operator (the divergence of the gradient),

¢ is the propagation velocity of the wave, and
1 is the time.

This expression applies to waves moving through non-
dispersive mediums. The solution of the wave equation for a
cylindrical source [8, p. 357) is:

P = AL (kr) + Ny (kr)]e™ @

— 2 itr-en-icais
tkr ®

—— i
n ®
where
A is constant,
@ is the angular frequency,
k is the wavenumber,
T is the distance from the source,

J, denotes the Bessel function of first kind of zero
order, and

Niydenotes the Bessel function of second kind of
zero order.

To model wave propagation in two dimensions, as
required to produce the graphical equivalent of a ripple tank,
we use Equation (5) and place objects at several wavelengths
from the source. Although not correct near the source it is a
sufficiently good approximation to Equation (6) to produce an
acceptable visualisation (Figure 5). Using Equation (5)
results in faster calculation and in smooth rendering.

To obtain a more accurate vi we can

models based on the physical properties of sound waves.
However, each property must be modelled separately and then
combined to produce the final visualisation. Thus, we require
models for propagation, interference, reflection, and

42

Another important area of ripple tank simulation is the
interference of waves, as this allows us to study beam forming
by arrays of sources. In a linear medium, one can apply the
principle of superposition to obtain the resultant disturbance.
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Th i that the actual di
of any part of the disturbed medium equals the algebraic sum
of the displacements caused by the individual waves.

Suppose we have waves P, and P, emitted from
sources, P, = P(ry,t) and P, = P(r,,t). where 7, lnd
r, are the dmxnces of the wavefronts from the two sources
attime t. The interference wave Py, i

(=PAP, =PO 04RO )

Figure 5 shows the interference between waves from two
point sources.

Figure 5. Wave int m two point sources,
cateulated with the Equations ) and. (7).

43 Reflection

Waves are reflected when they reach a barrier. The law of
reflection for specular surfaces states: the angle of reflection
6, equals the angle of incidence 6,.

To calculate the wavefront reflected off a barrier, we use
the mirror equation(7] from optics which approximates the
law of reflection when the incident waves strike the obstacle
st ot i the paroialarea. This spproimation spees up

1
A —>

Figure 6. Graphical representation of mirror equation for
a point source S and a concave object. S is the focal
point for the reflected paraxial rays.

Figure 7. Spherical waves reflected from a convex surface
appears to originate at the virtual source S".

‘We use the mirror equation to simulate wave reflection off
obstacles with simple shapes, - planes and arcs. For more
complex curved shapes, we are experimenting with
algorithms to calculate the amplitude of a reflected wave at a
point in space from the curvature of the object.

between the wan it curvature of mcxdem waves and
reflected waves. That is:

1,12 ®
s

‘where
s is the distance of the wave source from the obstacle,
" is the distance of the focus point from the obstacle,

and
R s the radius of the obstacle.

In the case of a concave barrier, the reflected rays near the
axis pass through a focal point in front of the object (S” in
Figure 6). In the case of a flat barrier, the reflected spherical
waves appear to come from a point behind the barrier. This
point, called the imaginary point, is the same distance from
the flat reflector as the source S is.

Spherical waves reflected from a convex curved barrier
appear to originate from a focal point behind the barrier but
closer to the barrier than the source (S’ in Figure 7).

Each geometric shape has to be modelled separately and
the results combined using superposition (Figure 8).

4.4

‘When waves encounter an obstacle, they tend to bend around
the obstacle. Diffraction is apparent by the waves in the
shadow region and the interference between the diffracted
‘waves and the incident and reflected waves near the edges of
the object.

Figure 8. Reflection of spherical waves from a straight
edge obstacle.
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One way to model diffraction is to place secondary point

sources at the edges causing diffraction. A simple source

produces a wave front with equal intensity in all directions.

As this is an inaccurate model of diffraction, we use the

following equation to display the diffraction from a knife
e[9]:

P(r,¢) = Ae"”""‘E[w/mms%(p] +

A LT cus(%n _wo %o)] ©
where
P(r,9) : wave pressure at a point (>9) relative to the
edge (Figure 9),
7 the distance from the knife edge to observation point,

@ the angle of the direction of incident waves to the
direction of the obscrvation point, (Figure 9),

W : the angle of the obstacle plane with the orthogonal
direction of incident waves, anc

E(2) is defined as:
1 i
—_— dt

=l
1"%[1*C(lz)‘S(lz)]—%ﬂc(zz)’s(lz)] z
%[l—C(z’)-S(z’)]+%i[C(z’)—S(Z’)] 250

E(2)=

0

(10)

Fresnel integrals C(2%) , (%) are defined as:

2
C(w) = J: cos(5-)du

2
S(w) = fu”sin(’"‘T)du

Observation
point

Incident
waves P> Obstacle with a

Figure 9. Parameters used in the model of diffraction
(Equation 9).

Equation (9) is used to model the diffraction which occurs
on both the transmitted waves and reflected waves as shown
for diffraction from a knife edge in Figure 10. The diffraction

of the transmitted waves can be seen in the region (B). The
diffraction of the reflected waves is visible in the region (D).

5. LATTICE GAS MODEL

The complexity of continuous models results in long
computation times. To reduce this time we use discrete
techniques to solve the physical model. One approach is the
LG model which is based on cellular automata theory. A
cellular automata model is a grid of cells each with a finite
number of states. At each time step a set of rules defines the
evolution of these states. The rules for a cell involve a finite
number of neighbouring cells and can be either deterministic
or nondeterministic.

The LG model emerged as a means of modelling fluid
dynamics by modelling the molecular dynamics of the fluid in
order to calculate transport coefficients. The first application
of this technique to sound waves was reported by Kadanoff
and Swift[10], who used a continuous time model. Krutar et
al(6] were the first to apply a discrete time model to sound
waves. The of the Lattice Gas imati
introduces some noise into the visualisation.

Obstacle

Figure 10. Wave reflection and diffraction, showing 4 the
transmitted waves, B diffracted waves from a knife-edge,
C reflected waves, D diffracted waves from reflected
waves, E interference of incident waves with reflected
waves.

5.1 Lattice Gas Calculation

The LG method models macroscopic wave motion by
modelling microscopic particle motion. The cells in the lattice
are connected in a square configuration[10] and, thus, each
cell is connected to four others. The particles can be modelled
as single particles, counts of particles or pressures[6]. These
particles (or pressures) move along the links between cells. At
each time step, the particles collide at the cells and then
propagate out from the cells. Krutar developed a finite
difference solution (Equation (11)) for the acoustic wave
equation to calculate the derivative of pressurc at a cell at cach
time step to generate a set of rules for the cellular automata.

dP(x,t +dt2) = P(x,t +dt) - P(x,1)
ddP(x,t) = dP(x,t + dt | 2) - dP(x,t - dt | 2)

ddP(x,1) = 2m.P(x+dx.,t) an
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where

P(x,1) is the pressure at time t and location x, equivalent
to an integer number of particles,
dt is the time step,
the subscript @ represents one of the five directions, N,
S, E, W, and at the cell, and
m,jis weighted coefficient of the pressure Pat the direc-
tion a.

The first two equations are discrete derivatives. The third
equation is the finite difference equation used to represent the
wave equation (Equation (3)). It calculates the double
derivative of pressure as a weighted neight average of
pressure. By changing the speed of sound at a cell we can
simulate a different medium (Figure 11).

From Krutar's model, we derived the following equations
o be applicd at cach cell at cach time step,

P(x,y,t +1) = 2P(x,y,1) = P(x,y,t = 1) +
¢ (LYY P(x+1Ly,0)+ P(x-1y,0)+
P(x,y+1,0+ P(x,y =10 - 4P(x,31) (13

where
€,(x,)is the simulation speed (cells propagated / simulation
step), and

P(x,,1)is the wave pressure at location (X, y) and time ¢,

region

region

region

Figure 1. Wave propagation through different media.
Left region : Speed = 2c. Middle region: Speed = c.
Right region: Speed = 0.5c.

In a square grid the maximum speed of the simulated wave
s 0.707 cells per time step[6]. Thus, the maximum speed of
sound in any of the mediums, (there could be more than one
medium), in the simulation is equivalent to this rate. In
practice, the user wants to specify the frequency (), spatial
resolution (model scale) and the mediums used in the
simulation. From this, the simulator calculates the simulation
rate, based on the maximum speed of sound (C,,,,) in any of
the mediums, where

simulate rate R EL‘ss s / second,
0.707 P

.
model scale S = "L cells / meter, and
Cmn

m s the number of cells / wavelength.

Figure 12 shows that the LG model can simulate all wave
phenomena: propagation, interference, ~reflection and
diffraction. In this figure specular reflection is visualised by
setting all cells on a straight line to have zero speed to
represent an obstacle. As there are 20 cells per wavelength,
diffusion may be modelled by modelling the texture of the
surface.

Figure 12. Wave propagation, reflection and diffaction
visualised with the LG model.

6. VISUALISATION

Physical parameters of waves include: space, time, velocity,
pressure, and intensity. In the figures in this paper space is
represented by the 2D graphics screen, time by animation and
wave pressure by grey scale or wire frame. Grey scale gives
an image that looks like a photo of waves moving on a ripple
tank.

Wave motion can be visualised with a variety of graphical
representations. In Figure 13, wave generation by a point
source is visualised with wire frame rendering.

Figure 13. Wire frame rendering of a point source,
modelled with the wave equation.
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Most of the images in this paper are grey scale images at
an instant in time, that is a snap shot. More information can
be visualised by a time sequence of images to show the
motion of waves (Figure 4). Animation is achieved by
displaying the simulation results at the end of each time step.
However, on a personal computer the update rate is very slow,
50 better animation is obtained by recording the images from
cach time step and replaying them.

7. CONCLUSION
A simulation of a ripple tank is a useful tool for teaching wave
motion conceps. Further, it is useful in the study of sonnd
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lowever, a number of problems arise as a result of the
discretisation. First, special processing has to be done at the
boundaries. Second, quantisation errors in the discrete
calculations appear as small noise waves (Figure 4). Third,
wire frame rendering shows this noise as a zigzag on all the
lines. The result is rough looking images, unless nonlinear
interpolation is used. These variations are not so visible if
grey scale rendering is used.

The continuous model requires separate models for each
wave motion property, which must be combined using
superposition o produce the final result. Also, the complexity
of the calculation increases rapidly with the number of
obstacles in the environment. As pressure is cxlculmed at
every point in space without reference to points,
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continuous models do not have the window edge problem.

When calculating the pressure at a point at an instant in time
the calculation is fast. But a simulation using a wave model may
only be fast enough to display a snapshot of the output at regular
time intervals. As the output is based on a continuous model, it
i suitable for both grey scale and wire frame rendering.

Finally, a very powerful computer is required for
animation. For this reason, discrete models will be used in
educational tools which must execute on personal computers.
Researchers who are interested in the greater accuracy of
continuous models will either require access to a powerful
computer or be content with snapshots. With all models, it is
difficult to achieve real-time animation, so the computer
equivalent of a ripple tank will calculate and store the images
and then play them back in real time.
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