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Abstract: First the classical derivationof the Sabineequation describing the decayofadiffuse soundfieldina
reverberantenclosedspace is reviewed.Nexta modaldescriptionof soundfield decayis proposedand three alter­
native methods of solution are considered:(a) With appropriatesimplificationsthe Norris-Eyering equation is
derived. From the latter equation the Sabineequationisderivedasafirst approxirnation.(b) Withaltemative
assumptionsthe Millington-Setteequationis derivedand the open windowdilemma,often cited, is resolved. (c)
With further argument and one assumption the modal analysis leads to the Sabine equation but not as a first
approximation.Experimental verification is demonstratedby making reference to data provided by a CSIRO
round robin which was conductedandreportedin 1980.It is shownthat all of the dataobtained in the latterinves­
tigation in the seven rooms ranging in size from 106cubic meters to 607 cubic meters whichhad sufficient aux­
iliarydiffusion and for all patch sizes tested may be redueedto one Iine in terms of the calculated statistical
absorptioncoefficient for an infinite patch.A simple empiricalexpressionbased upon assumededge diffraction
effects is shown to fairly well describe the data in its mid range. Explanations for departuresat low and at high
frequenciesfrom the proposedexpressiondescribingthe results aresuggested.

1. INTRODUCTION
When the reflective surfaces of an enclosure are not too
distant one from another and none of the dimensions are so
large that air absorption becomes of controlling importance,
the sound energy density ofa reverberant field will tend to
uniformity throughout the enclosure. Generally, reflective
surfaces will not be too distant, as intended here, if no
enclosure dimension exceeds any other dimension by more
than a factor of about three. As the distance from the sound
source increases in this type of enclosure, the relative
contribution of the reverberant field to the overall sound field
will increase until it dominates the direct field (Beranek. 1971
seeCh,9;Smith.197IseeCh3).Thiskindofenclosedspace,
in which a generally uniform (energy density) reverberant
field,characterisedbyamean sound pressure and standard
deviation, tends to be established, has been studied extensively
because it characterises rooms used for assembly and general
living and will be the subject of this paper. For convenience,
this type of enclosed space will be referred to asa Sabine
enclosure named after the man who initiated investigation of
the acoustical properties of such rooms.

All enclosures exhibit low and high frequency response
and generally all such response is of interest. However,only
the high frequency sound field in an enclosure exhibits those
properties which are amenable to the Sabine type analysis;
thus, the concepts of the Sabine room are strictly associated
only with the high frequency response. For more on this
malterreference may be made to Bies and Hansen (1995).

2. TRANSIENT RESPONSE
If sound is introduced into a room, the reverberant field level
will increase until the rate of sound energy introduction is just
equal to the rate of sound energy absorption. If the sound

source is abruptly shutoff,the reverberant field will decay at
a rate determined by the rate of sound energy absorption. The
time required for the reverberant field to decay by 60 dB,
called the reverberation time, is the single most important
parameter characterising a room for its acoustical properties.
For example, a long reverberation time may make the
understanding of speech difficult but may be desirable for
organ recitals.

As the reverberation time is directly related to the energy
dissipation in a room, its measurement provides a means for
the determination of the energy absorption properties ofa
room. Knowledge of the energy absorption properties of a
room in turn allows estimation of the resulting sound pressure
level in the reverberant field when sound of given power level
is introduced. The energy absorption properties of materials
placed in a reverberation chamber may be determined by
measurement of the associated reverberation times of the
chamber, with and without the material under test in the room.
The Sabine absorption coefficient, which is assumed tobea
property of the material under test, is determined in this way
and standards (ASTM C423 - 1984a; ISO R354 - 1963; AS
1045 - 1971) are available which provide guidance for
conducting these tests.

In the following sections two methods will be used to
characterise the transient response ofa room. The classical
description, in which the sound field is describedstatistically,
will be presented first and a new method, in which the sound
field is described in terms of modal decay, will be presented
second. It will be shown that the new method leads to a
description in agreement with experiment.

2.1. Classical Description
At high frequencies the reverberant field maybe described in
terms ofa simple differential equation which represents a
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gross simplification of the physical process but none-the-less
gives generally useful results. The total mean absorption
coefficient a ,includingairabsorption,m(dBperl,OOOm),
may be written in terms of the volume, V, and total surface, S,
of the room as follows.

a = aw+9.21xlO-4mV/S (1)

Using the well known expression for the energy density,
ljJ = (i) / (Pe2) ,where p is the root mean square sound
pressure,pisthe density and e the speed of sound in air the
following equation may be written for the power, W., or rate
of energy absorbed:

W. = ljJSea/4 = (l)Sa/(4pe) (2a,b)

Using the above equation and observing that the rate of
change of the energy stored in a reverberant field equals the
rateofsupply,Wo,lesstherateofenergyabsorbed,W.,gives

the following result.

W = va1J1lat = Wo-1J1Sca /4 (3a,b)

Introducing the dummy variable,

X = [4Wo/ Sea]-ljJ (4)

and using Equation 4 to rewrite Equation 3, the following
result is obtained: I dX Sea

Xdt = -- (5)

Integration of the above equation gives:

X= X oe·,xW/4Y (6)

where Agis thc tninal value.

Two cases will be considered. Suppose that initially, at
time zero, the sound field is nil and a source of sound power
Wo is suddenly turned on. The initial conditions are time

t = oandsoundpressure(p~) = 0. Substitution of Equation
4 into Equation 6 gives, for the resulting reverberant field at
anylatertimet,

(/) = 4~;:-(I_e·s,m/4Y) (7)

Altematively, consider that a steady state sound field has
been established when the source of sound is suddenly shut
off. In this case the initial conditions are time t= O,sound
power Wo = 0, and sound pressure (i) = (p~). Again,
substitution of Equation 4 into Equation 6 gives, for the
decaying reverberant field at later time t:

(P2)= <p~)e·s,ml4Y (8)

Taking logarithms to the base ten of both sides of Equation
8 gives the following result.

Lpo-Lp = ID86Scai/V (9)

Equation 9 shows that the sound pressure level decays
linearly with time and at a rate proportional to the Sabine
absorption Sa. It provides the basis for the measurement and
thedefinitionoftheSabineabsorptioncoefficienta.
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Sabineintroducedthereverberationtime,T60(seconds),as

the time required for the sound energy density level to decay
by 60 dB from its initial value. He showed that the
reverberation time, T60 , was related to the room volume, V, the
total wall area including floor and ceiling, S, the speed of
sound, C, and an absorption coefficient. trwhich was
characteristic of the room and generally a property of the
bounding surfaces. Sabine's reverberation time equation,
which follows from Equation 9 with Ls«: L, = 60, may be
written as follows

T60 = 55.25V/ScrT (10)

2.2. Modaldescription

The discussion thus far suggests that the reverberant field
within a room maybe thought of as composed of the excited
resonant modes of the room. This is still true even in the high
frequency range where the modes may be so numerous and
close together that they tend to interfere and cannot be
identified separately. In fact, if any enclosure is driven at a
frequency slightly off-resonance and the source is abruptly
shut off,the frequency of the decaying field will be observed
to shift to that of the driven resonant mode as it decays
(Morse,1948).

In general, the reflection coefficient, ~, (the fraction of
incident energy which is reflected) characterising any surface
is a function of the angle of incidence. It is related to the
corresponding absorption coefficient, o, (the fraction of
incident energy which is absorbed) as a + f3= I. Let (p(t)2)
be the mean square band sound pressure leveJ at time tina
decaying field and (p.(t)2) be the mean square sound
pressure level of mode k. The decaying field may be
expressed in terms of the sum of the time varying modal
square pressure amplitudes (p,(t)2), mean reflection
coefficients ~. and modal mean free paths A, as follows,

(P(tj) = ~(p,(tl)13,"/A' (II)

where

In the above equationsNis the number of modes within a
measurement band. The quantities 13ki are the reflection
coefficients and S; are the areas of the corresponding
reflecting surfaces encountered by a wave travelling around a
modal circuit associated with mode k and reflection from
surface i(Morse and Bolt, 1944). The S.are the sums of the
areas of the Sj rcflecting surfaces encountered in one modal
circuitofmodek.

The modal mean free path Ak is the mean distance between
reflections ofa sound wave travelling around a closed modal
circuit and for a rectangular room is given by the following
equation (Larson, 1978).

A. = 2:'[~+T~J (\3)
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(20)

The quantities ~k are the reflection coefficients
encountered during a modal circuit and the symbol
IT.I re~res.ents the pr?duct of the n reflection coeffi~ients
wlieren ISeither a multiple of the number of reflections m one
modal circuit or a large number. The quantity fk is the
resonance frequency given by the following equation for mode
kofarectangularenclosure, which has the modal indices nx•

n

y

n

z

• r, = f~[~f + [Z-r + [zf (14)

In the above equation the subscriptkon the frequency variable
findicates that the particular solutions or "eigen" frequencies
of the equation are functions of the particular mode numbers
nx' ny, and n:.

The assumption will be made that the energy in each mode
is on average the same, so that in Equation II,Pkmay be

replaced with PoI.[N where Po is the measured initial sound

pressure in the room when the source is shutoff. Equation 11

may be re:~~;j: f~IO:S~;> i.f dot/h,)los/J-a,) (15)
N p ]

A mathematical simplification is now introduced. Inthe
above expression the modal mean free path length is replaced
with the mean of all of the modal mean free paths, 4 VIS,and
the modal mean absorption coefficient ak is replaced with the
areaweightedmeanstatisticalabsorptioncoefficienta"for
theroom. The quantity Vis the total volume and Sis the total
wall,ceilingandfloorareaoftheroom.lnexactlythesame
way as Equation 10 was derived from Equation 8, the well
known reverberation time equation of Norris-Eyring maybe
derived from Equation 15 giving an expression as follows.

T.-~ (16)
60 SclogJl-a,,)

This equation is often preferred to the Sabine equation by
many who work in the field of architectural acoustics. Note
thatairabsorptionmustbeincludedina"inasirnilarwayas
it is included in a. It is worth careful note that Equation 16
is a predictive scheme based upon a number of assumptions
that cannot be proven, and consequently inversion of the
equation to determine the statistical absorption coefficient
a.,isnotrecornrnended. With a further simplification, the
famous equation of Sabine is obtained. Whena,/ < 0.4, an error
of less than 0.5 dB is made by setting a,/ .Iog.(l-a,/)
in Equation 16. Then by replacing a,/with a, Equation 10 is
obtained.

Alternatively,ifinEquation 15 the (I-ak ) are replaced
with the modal reflection coefflcients s, and these in turn are
replaced with a mean value, called the mean statistical
reflectioncoefficient"iJ./,thefollowingequationofMillington
and Sette is obtained.

Too = -55.25VISc1og.i3" (17)

The quantity "iJ.,isgivenbyEquation 12 but with changes in
the meaning of the symbols.f', is replaced with "iJ.,whichis

Acoustics Australia

now to be interpreted as the area weighted geometric mean of
therandomincidenceenergyreflectioncoefficients,~i,forall

of the room surfaces; that is,

iJ,,-Of:l,s,1S (18)

The quantityfl.js related to the statistical absorption

coefficienta",i for surface i of areaSI by f3i = I-a",. It
is of interest to note that although taken literally Equation 18
would suggest that an open window having no reflection
would absorb all of the incident energy and there would be no
reverberant field, the interpretation presented here suggests

that an open window must be considered as only apart of the
wall in which it is placed and the case of total absorption will
never occur. Alternatively, reference to Equation II shows
that if any term f:li is zero it simply does not appear in the sum
and thus will not appear in Equation 17 which follows from it.

3. NEW ANALYSIS
When a sound field decays all of the excited modes decay at
their natural frequencies (Morse, 1948); the decay of the
sound field is modal decay (Lawson, 1978). In the frequency
range in which the field is diffuse it is reasonable to assume
that the energy of the decaying field is distributed among the
excited modes about evenly within a measurement band of
frequencies. In a reverberant field in which the decaying
sound field is also diffuse, as will be shown, it is also
necessary to assume that scattering of sound energy
continually takes place between modes so that even though the
various modes decay at different rates scattering ensures that
they all contain about the same amount of energy on average
during decay. Effectively, ina Sabine room all modes within
a measurement band will decay on average at the same rate,
because energy is continually scattered from the more slowly
decaying modes into the more rapidly decaying modes.

Let (p(t)2)be the mean square band level at time t in a
decaying field and (p(O/) be the mean square level at time t

= O. The decaying field may be expressed in terms of a time
varying mean square pressure amplitude p(t)2, modal mean
square pressure amplitude Blt), mean reflection coefficient ~i

and modal mean free paths Ai' Equation II may be rewritten

as follows. (p(tl) = (p(O/) ~ BP)f3~tfA,
MY ~, (19)

In the above equation the number of modes within a
measurementbandboundedbelowbyN] and above byN] is
MY. The reflection coefficient f3i is given by Equation 12. It
will be noted that Equation 19 is the same as Equation 15 with
the exception of the introduction of the modal amplitudes
B;(t).

It may readily be shown (Bies, 1984) that when a
reverberant field is diffuse the mean of the modal mean free
paths,Ai, is the mean free path of the room given by the
following expression (Morse and Bolt, 1944).

A= ~
S
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Sabine observed that in a room in which the sound field is
diffuse decay of the reverberant field is a linear function of
time whatever the initial level when the sound source is
abruptly shutoff. Sabine introduced an absorption coefficient,
a,,", ,which is generally a property of the walls of the room
relating the change in sound pressure level and the length of
timeofreverberation,t. Forconvenience,aroominwhichthe
sound field is diffuse and reverberant sound field decay is a
linearfunctionoftimewillbereferredtohereasaSabine
room (Fasold, Kraak, and Schirmer, 1984). The room
reverberation decay may be written in terms of the room mean
free path A and the Sabine absorption coefficient a bas
follows. !£!!.iJ.... _ ct sa

10g,(p(O/) - -'Aa,ab (21)

It will be instructive to consider first the decayofa single
mode as given by Equation (19). In this case letting AN = I,
i =j and B, = I Equation (19) may be rewritten as follows.

10g,¥1f!f = -J!;log.f3; (22)

Alternatively, ifin Equation (22) (3) = l r a, where a) is
small then

Substitution of Equation (23) into Equation (22) gives an
equation formally the same as Equation (21). Evidently. in a
Sabine room reverberant sound field decay is formally the
same as that for any individual mode. Consequently, it will be
convenient to extend the meaning of Equation (23) to define a
Sabine reflection coefficient, {3,ab' and to define the relation­
ship between the Sabine reflection coefficient and a Sabine
absorption coefficient. Reference to Equation (22) suggests
that the associated Sabine reflection coefficient is a mean
reflection coefficient of the excited and decaying modes of the
room.

Solving Equation (21) for the Sabine absorption
coefficient, a,ab' and introducing Equations (19) and (23)

gives the_~:::;::g ~P~~ts:::: [-b~ BI(t){3,cIJAi] (24)
C UIYj-NI

The following Equation is o~~ained from Equation (24).

f3,abdA
= -!:-N~,B,(t)f3/IJ'" (25)

Consideration of Equation (25) shows that in general
f3"bisa function of time, and the reverberant field decay will
not be linear with time. For example, consider the case that all
Bi=1 and no scattering of sound energy between modes takes
place during sound field decay. Ifat time zero the amplitudes
of all modes were approximately equal and subsequently the
modes have all decayed independently of each other, those
modes decaying most rapidly will determine the decaying
field response initially while those modes decaying least
rapidly will progressively dominate the remaining reverberant
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field response as the field decays. The latter effect is observed
experimentally in a reverberant room unless sufficient
diffusing elements are introduced in the room. Consequently,
it is necessary to introduce the effect of scattering of sound
energy from those modes more highly excited to those modes
less excited.

Ina Sabine room, however, experience shows that {3,abisa
constant independent of time. For example, Equation (25)
may be rewritten as, Aiel

«: = [tv%/Bi(3) ctJA
i] (26)

Consideration of Equation (26) shows that in order that
there be a solution itisnecessarythatall terms in the sum on
the right hand side of the equation must be equal and in turn
each must be equal to the term on the left hand side of the
equation.

In the model which has been proposed it is assumed that
sound energy is removed from modes least damped through
scattering upon reflection at the boundaries and introduced
into modes more heavily damped. The amplitude coefficients,
Bi, of the latter quantities will be greater than I while the
amplitude coefficients of the former quantities will be less
than I. Further consideration of Equation (26) shows that
there will be some modes which will be unaffected by the
assumed energy exchange and in their case the amplitude
coefficients are I. For such modes the above considerations
lead to the following conclusion.

(3,,", = f3:J", (27)

Ifitis assumed that the unaffected modes are the modes
whose reflection coefficients are the mean of the modal
reflection coefficients then it is reasonable to assume that the
modal mean free paths are also mean values of the modal
mean free paths. In this case the Sabine reflection coefficient
is simply equal to the modal mean reflection coefficient.

f3,ab = f3modalm,an (28)

The modal mean reflection coefficient has the form given
by Equation (12).

Consideration of Equation 23 suggests the following
relation be assumed to hold for all values of a,ab and 13,ab
That is, it will be assumed that Equation 23 constitutes a

definition of a ''"' in terms of f3"b'

a"b = -log,13,ab (29)

Substitution of Equation 29 in Equation 22 leads to the
famous equation of Sabine as follows.

55.25V
T6tJ = Sea,,", (30)

The important difference in the equations derived earlier
relating the Sabine absorption coefficient and the
reverberation time and Equation 30 is to be noted. Although
they are formally identical the earlier expressions are all based
upon a number of assumptions which can not be proven while
in the latter case the only assumption made is that Equation 23



f
(Hz)
100 0.Q7 0.11 0.11 0.10 0.16 0.1
125 0.26 0.24 0.23 0.21 0.22 0.17
160 0,33 0.32 0.34 '0,33 0,35 0.22
200 0.49 0.50 0.50 0.51. 0.52 0.31
250 0.67 0.68 0.68 0.68 0.67 0.41
315 0.86 0.90 0.88 0.88 0.82 0.52
400 1.04 1.00 0.97 0.96 0.92 0.64
500 \.14 1.09 1.04 1.01 0.98 0.74
630 \.15 \.14 1.10 1.06 1.05 0.81
800 1.16 1.13 1.08 1.07 1.08 0.86
1000 \.17 \.14 1.09 1.05 1.07 0.90
1250 1.15 1.08 1.07 1.03 1.07 0.91
1600 1.12 1.06 1.05 1.02 1.05 0.92
2000 1.07 1.06 1.04 0.99 1.03 0.93
2500 1.10 1.07 1.04 1.01 1.03 0.94
3150 1.07 1.08 1.05 0.99 1.06 0.94
4000 1.08 1.08 1.05 1.01 1.08 0.94
5000 1.12 1.06 1.05 1.00 1.08 0.94

Use of the data in Table I has allowed construction of
Figure 1. In tum the figure has allowed determination of an
empirical function F(P'c/Aj) which seems to fairly well
describe the data. The empirically determined relationship is,

(~-1)= ~ (34)
X

where

A principal conclusion of the latter report was that those
rooms with auxiliary diffusing surfaces equal to or greater
than 1.4 times the floor area of the reverberant room gave
results consistent among themselves whereas those rooms
with less or no auxiliary diffusing surfaces gave results which
where inconsistent with all other rooms. Seven rooms ranging
in volume from 106 to 607 cubic meters were identified as
meeting the diffusing surfaces criterion which gave consistent
results for samples ranging in size from 5.0 to 22.5 square
meters. Sample sizes were chosen consistent with the size of
the room and a sample ofl0.5 square meters was tested in all
rooms. The data obtained in the latter seven rooms provides
the basis for a comparison with prediction.

The referenced report provides four measurements ofa 5.0
m2 sample, six measurements of a 7.5 m2 sample, seven
measurements of a 10.5 m2 sample, three measurements of a
16.0 m2 sample, and one measurement of a 22.5 m2 sample in
all one third octave bands from 100 Hz to 5,000 Hz. For the
purposes of the proposed comparison average values have
been determined and recorded in Table I. Also recorded in the
table for convenience of later comparison are calculated
values of the statistical absorption coefficient. The statistical
absorption coefficient is shown for an infinite locally reactive
surface. However, calculations for a bulk reacting surface are
only slightly greater at frequencies greater than about 2000 Hz
and thus the difference between the two types of surfaces is
considered negligible.

Table I. Absorption Coefficients

is true. As will be shown the Sabine equation given by
Equation 30 leads to agreement between measurement and
prediction when edge diffraction is taken into account in the
determination of the Sabine absorption coefficient.

4. CALCULATION OF THE SABINE
ABSORPTION COEFFICIENT

It is customary, following Sabine, to calculate absorption as
proportional to the area of an absorbing patch of material. On
the other hand, where there is a large difference in surface
impedances between the absorbing patch and the adjacent wall
or floor on which it is mounted, as in the case of the usual
reverberation room test, large diffraction effects will take
place which in the case of the reverberation room have the
effect of considerably adding to the effective area of the patch
(Morse & Bolt 1944). Where Ap is the physical area of the
patch and A e is the effective additional area due to edge
diffraction the Sabine absorption may be written as follows.

Apa"b = aro(A p+ Ae) (31)

In the above equation ambis the measured Sabine absorption
coefficient and a¥is the calculated statistical absorption
coefficient for an unbounded surface.

Various authors have considered the calculation of the
effective area Ae (Pellam 1940, Morse and Bolt 1944, Levitas
and Lax 1951, Northwood et al. 1959, Northwood 1963) with
various degrees of success but none are convenient to use and
only that of Northwood considers the rectangular patch as
considered in the CSIRO tests which will be considered here
(see below). The approach which will be taken will be
empirical but guided by the observations of Morse and Bolt
(1944) and will be limited to showing that a consistent
relationship exists between the measurements and theory
when diffraction is taken into account.

Following Morse and Bolt (l944) the effective area will be
assumed proportional to an effective perimeter of the patch
P'= P - a, where P is the physical perimeter and a is a con­
stant that is assumed to account for the comers of the patch,
multiplied by a wavelength written in terms of the speed of
soundcandfrequencyfasc/f. Equation 31 gives the follow­
ing postulated functional relationship which will be shown

emPiriCallytoexist('~_I) =F(.5!:....) (32)

a~ Apf

5. COMPARISON OF MEASUREMENTS
AND THEORY
In 1980 CSIRO-Division of Building Research published a
report describing the results of around robin conducted in
Australia and New Zealand in which the Sabine absorption
coefficients of samples of Sill an were determined using the
standard reverberation decay method (Davern & Dubout 1980).
Inall,twentyonereverberantroomswereinvolvedinthetests.
The test material, a rock wool batt material of density 100
kg/m- made by Grunzweig-Hartmann of Germany, was similar
to that used in an earlier round robin in Europe (Kosten 1960).

X=~
c(P-3.55)

(35)
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Plotof measuredand normalizedsabineabsorptioncoefficients(Table1) as a functionof normalizedfrequency(equation35.) See text for
discussion.

Consideration of the figure shows generally good
agreement over the decade range of the parameter X from
about 1.0 to,about 10. Above 10. one would expect the edge
correction to diminish to zero. It is suggested that the evident
departure from the latter expectation at high frequencies may
be due in part to the discontinuity in height at the edge between
the surface of the absorptive patch and the concrete floor
which increases as the ratio of sample thickness to wavelength
increases. This has not been considered in any analysis.

Departure at the low frequency end is probably due to
failure at long wavelengths of the reverberant rooms to meet
the conditions for a diffuse field implicit in the Sabine
formulation. At very low frequencies the wide scatter is due
to the difficulty of making the necessary reverberation
measurements with sufficient accuracy. However, even though
the data become quite scattered as the frequency decreases a
generally consistent trend can be identified suggesting the
possibility of an analytic solution.

6. CONCLUSION
An analysis has been presented which shows that the Sabine
equation is correct if it is accepted that the mean modal
reflection coefficient and the statistical absorptioncoefficient
are related as proposed. In support of this conclusion the
relationship between the calculated statistical absorption
coefficientofanunboundedporousmaterial,Silan,andthe
measured absorption coefficient has been demonstrated in the
case that adequate diffusion has been achieved in the test
chambers used for the measurements. The demonstration has
shown the importance of adequate diffusion and edge
diffraction for the determination of the sound absorptive
properties of a test material in a reverberation chamber.
Conversely, by implication the importance of diffusion and
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edge diffraction for application of absorptive materials ina
Sabine type room have also been demonstrated.

For application to the practice of room acoustics a
quantitative measure of diffusion is required which besides
identifying adequate diffusion would also identify degree of
partial diffusion (Bodlund 1976, 1977a,b). In tum, further
investigation is required to determine the quantitative effect of
partial diffusion on sound absorption so that it may be taken
into account in practice. Additionally,simpleproceduresare
required which will allow estimation of the effect of edge
diffraction on sound absorption (Pellam 1940,MorseandBolt
1944, Levitas and Lax 1951, Northwood et al. 1959,
Northwood 1963).

REFERENCES

3. Bies, D.A.andHansen, C.H. (1995)Engineering Noise Control second
editionChapman andHall(inpress)

5. Bodlund,w'(1977a)AStudyofDiffusioninReverberationChambers
Provided withSpecialDevices. Journal of Sound and Vibration 50(2),
253-283.

6. Bodlund, W, (1977b)A NormalModeAnalysis of the SoundPower
Injection in Reverberation Chambers at Low Frequencies and the Effect
ofSomeResponseAveragingMethods.]ourna[ojSoundandVibration
50(4),563-590.



. Faoold,W. KtMk. W.llndS"',;....... W. (l9 ..)T~Jlb,oliol.

VEB....... I. Bnt .... pIOJ
9, ¥.ooIaI, C.W, (1960) l"' .......~ C__ Io!__. ...

R.-hcntioIlR-... JlnlSIkoI l l . 400.

10. Kuuull",H.(l99<l) SoUIIddeay in e"" luo.nowilhllOlHlil'l'iloelOlltld
field.ln ~i",. "" II< Iti>Is...-. CI•..,.t S4b; ... ~"...

c.mm•• MA. mlA. IS-II

II.=-~':"71~~_ II ...... r--o.hoo' 01 .-.-
12.~A.,l:Lu.N.( I95 IIx......,.."""A~tIl'._

SIrip , ..........__ """""._na~JI...l2Z

Il .~~H~i (1941) I'iM_ 211d.. ""'" V.....

14. Nont. PM " 8011. Il R (I'loM)SouM oa-. 1._.
u-..1'1".,a 1"6S-1~

U.-........T.D..GriYno,NT. .. Mcodcol"."'.A.- (lm)A~.

s.-d "" . sw,..A-,..o \4.-..1 ;"' . Dill\toc s-..I F..iIl.Nw-I."__~"JI_Jl (1), m-S99.

IlL --... T.D. (I96JJ~.Di",*,s-.:ItIl'.Sonp..
....,..,....,......~M.enoI,.J--l•• _
s..e;"y"'JI_ lJ (I ),Il1)_II n.

11.~ l L ( IMO) s.-d DilJrlellool... A-"- by I Srop •
:=IM-...t"""''''IA# ~s..e;"y -lJl_ l l .

l · s.ido, lUtlt1 I)~~ ......,...

ENVI R ONMENTAL
NOISE CONTROL~

YOUR SOLUTION TO
INDUSTRIAL NOISE PROBLEMS

MANUFACTURERS OF ACOUSTIC
• Louvres · Doors · Enclosures

• Silencers & Steel Fabrications

SUPPUER$OFEOUIPMENT FOR:

PROJECT: SLIDING ACOUSTICDOORS

CONSULTANTS: ACOUSTICLOGIC

ClIENT: TECHPACIFICP/L

Phone: (02) 755 1077
50 RIVE RSIDE ROAD

CIII PPING NORTON, N.S.W. 2170
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