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Abstract: First the classical derivation of the Sabine equation describing the decay of 2 diffuse sound field in a
reverberant enclosed space is reviewed. Next a modal deseription of sound field decay is proposed and three alter-
native methods of solution are considered: (2) With appropriate simplifications the Norris-Eyering equation is
derived. From the latter equation the Sabine equation is derived s a first approximation. (b) With alternative
assumptions the Millington-Sette equation is derived and the open window dilemma, often cited, is resolved. (c)
With further argument and one nssumpllon the modal nnalyns luds 10 the Sabine equation but not as a first
verification i king reference to data provided by a CSIRO

round robin which was conducted and rvponcd in 1980. Itis shown that all of the data obtained in the latter inves-
tigation in the seven rooms ranging in size from 106 cubic meters to 607 cubic meters which had sufficient aux.
iliary diffusion and for al patch sizes tested may be reduced to one lne in terms of the calculated statistical
absorption coefficient for an infinite patch. A simple empirical expression based upon assumed edge diffraction
effects is shown to fairly well describe the data in its mid range. Explanations for departures at low and at high

frequencies from the proposed expression describing the results are suggested.

1. INTRODUCTION

When the reflective surfaces of an enclosure are not too
distant one from another and none of the dimensions are so
large that air absorption becomes of controlling importance,
the sound energy density of a reverberant field will tend to
uniformity throughout the enclosure. Generally, reflective
surfaces will not be too distant, as intended here, if no
enclosure dimension exceeds any other dimension by more
than a factor of about three. As the distance from the sound
source increases in this type of enclosure, the relative
contribution of the reverberant field to the overall sound field
will increase until it dominates the direct field (Beranek, 1971
see Ch, 9; Smith, 1971 see Ch 3). This kind of enclosed space,
in which a generally uniform (energy density) reverberant
field, characterised by a mean sound pressure and standard
deviation, tends to be established, has been studied extensively
because it characterises rooms used for assembly and general
living and will be the subject of this paper. For convenience,
this type of enclosed space will be referred to as a Sabine
enclosure named after the man who initiated investigation of
the acoustical properties of such rooms.

All enclosures exhibit low and high frequency response
and generally all such response is of interest. However, only
the high frequency sound field in an enclosure exhibits those
properties which are amenable to the Sabine type analysis;
thus, the concepts of the Sabine room are strictly associated
only with the high frequency response. For more on this
matter reference may be made to Bies and Hansen (1995).

2. TRANSIENT RESPONSE

If sound is introduced into a room, the reverberant field level
will increase until the rate of sound energy introduction is just
equal to the rate of sound energy absorption. If the sound

source is abruptly shut off, the reverberant field will decay at
arate determined by the rate of sound energy absorption. The
time required for the reverberant field to decay by 60 dB,
called the reverberation time, is the single most important
parameter characterising a room for its acoustical properties.
For example, a long reverberation time may make the
understanding of speech difficult but may be desirable for
organ recitals.

As the reverberation time is directly related to the energy
dissipation in a room, its measurement provides a means for
the determination of the energy absorption propertics of a
room. Knowledge of the energy absorption properties of a
room in turn allows estimation of the resulting sound pressure
level in the reverberant field when sound of given power level
is introduced. The energy absorption properties of materials
placed in a reverberation chamber may be determined by
measurement of the associated reverberation times of the
chamber, with and without the material under test in the room.
The Sabine absorption coefficient, which is assumed to be a
property of the material under test, is determined in this way
and standards (ASTM C423 - 1984a; ISO R354 - 1963; AS
1045 - 1971) are available which provide guidance for
conducting these tests.

In the following sections two methods will be used to
characterise the transient response of a room. The classical
description, in which the sound field is described statistically,
will be presented first and a new method, in which the sound
field is described in terms of modal decay, will be presented
second. It will be shown that the new method leads to a
description in agreement with experiment.

2.1. Classical Description
At high frequencies the reverberant field may be described in
terms of a simple differential equation which represents a
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gross simplification of the physical process but none-the-less
gives generally useful results. The total mean absorption
coefficient @ , including air absorption, m (dB per 1,000 m),
may be written in terms of the volume, ¥, and total surface, S,
of the room as follows.

a = g, +921x10*mV/S (O]

Using the well known expression for the energy density,
= (p")/ (pc*)where p is the root mean square sound
pressure, p is the density and c the speed of sound in air the
following equation may be written for the power, ¥, or rate
of energy absorbed:

= ySc@/4 = (p")ST/ (4pg) (2a,b)

Using the above equation and observing that the rate of
change of the energy stored in a reverberant field equals the
rate of supply, ¥, less the rate of energy absorbed, 7, gives
the following result.

W= Voy/dt= Wy-ySca/4 (ab)
Introducing the dummy variable,
X = (4W,/Scal-y @

and using Equation 4 to rewrite Equation 3, the following
resultis obtained: [ dx __Se@

. FETT ©
Integration of the above equation gives:
X = xpeltEA ©®
where X, is the initial value.

Two cases will be considered. Suppose that initially, at
time zero, the sound field is nil and a source of sound power
W, is suddenly turned on. The initial conditions are time
02nd sound pressure (%) = 0. Substitution of Equation
4 into Equation 6 gives, for the resulting reverberant field at
any later time £,
¢

o _ 4Wape
) = Z-e) ™

Alternatively, consider that a steady state sound field has
been established when the source of sound is sudd:nly shut
off. In this case the initial conditions are time ¢ = 0,

power W, = 0, and sound pressure () = (p}). Aglm,
substitution of Equation 4 into Equation 6 gives, for the
decaying reverberant field at later time -

= (e ®

Taking logarithms to the base ten of both sides of Equation
8 gives the following result.
Ly~ L, = 1086Sc@ /¥ ©)

Equation 9 shows that the sound pressure level decays
linearly with time and at a rate proportional to the Sabine
absorption S& . It provides the basis for the measurement and
the definition of the Sabine absorption coefficient & .

Sabine introduced the reverberation time, Ty (seconds), as
the time required for the sound energy density level to decay
by 60 dB from its initial value. He showed that the
reverberation time, Ty, was related to the room volume, 7, the
total wall area including floor and ceiling, S, the speed of
sound, ¢, and an absorption coefficient, , which was
characteristic of the room and generally a property of the
bounding surfaces. Sabines reverberation time equation,
‘which follows from Equation 9 with Lyo- L, = 60, may
written as follows

w = 5525V/Sett (10)

22. Modal description

The discussion thus far suggests that the reverberant field
within a room may be thought of as composed of the excited
resonant modes of the room. This is still true even in the high
frequency range where the modes may be so numerous and
close together that they tend to interfere and cannot be
identified separately. In fact, if any enclosure is driven at a
frequency slightly off-resonance and the source is abruptly
shut off, the frequency of the decaying field will be observed
to shift to that of the driven resonant mode as it decays
(Morse, 1948).

In general, the reflection coefficient, B, (the fraction of
incident energy which is reflected) characterising any surface
is a function of the angle of incidence. It is related to the
corresponding absorption coefficient, @, (the fraction of
incident energy which is absorbed) asa+ f = 1. Let(p(t)?)
be the mean square band sound pressure level at time ¢ in a
decaying field and (p, (t)?) be the mean square sound
pressure level of mode k. The decaying field may be
expressed in terms of the sum of the time varying modal
square pressure amplitudes (7, ()?), mean reflection
coefficients B, and modal mean free paths A, as follows,

Gfy = ‘2 P() BN an

where

, = l:[[p.,]"”' (12)

In the above equations N is the number of modes within a
measurement band. The quantities B, are the reflection
coefficients and S, are the arcas of the corresponding
reflecting surfaces encountered by a wave travelling around a
modal circuit associated with mode k and reflection from
surface i (Morse and Bolt, 1944). The S, are the sums of the
areas of the S, reflecting surfaces encountered in one modal
circuit of mode k.

‘The modal mean free path A, is the mean distance between
reflections of a sound wave travelling around a closed modal
circuit and for a rectangular room is given by the following
equation (Larson, 1978).
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The quantities B, are the reflection coefficients
encountered during a modal circuit and the symbol
" represents the product of the n reflection coefficients
‘whire n is either a multiple of the number of reflections in one
modal circuit o a large number. The quantity f; is the
resonance frequency given by the following equation for mode
k of a rectangular enclosure, which has the modal indices n,,
.
a4

In the above equation the subscript k on the frequency variable
Jfindicates that the particular solutions or “eigen” frequencies
of the equation are functions of the particular mode numbers
Ny and
‘The assumption will be made that the energy in each mode
is on average the same, so that in Equation 11, p, may be
replaced with p, /[N where p, is the measured initial sound
pressure in the room when the source is shut off. Equation 11
may be rewritten as follows.
<pf> = <pi> _Zdnumnﬂnu as)

A mathematical simplification is now introduced. In the
above expression the modal mean free path length is replaced
with the mean of all of the modal mean free paths, 4V/5, and
the modal mean absorption coefficient a is replaced with the
area weighted mean statistical absorption coefficient &, for
the room. The quantity ¥ is the total volume and s the total
wall, ceiling and floor area of the room. In exactly the same
way as Equation 10 was derived from Equation 8, the well
known reverberation time equation of Norris - Eyring may be
derived from Equation 15 giving an expression as follows.

- - . 16)
Sclog,(1-a,,)

This equation is often preferred to the Sabine equation by
many who work in the field of architectural acoustics. Note
that air absorption must be included in &, in a similar way as
itis included in @ . It is worth careful note that Equation 16
is a predictive scheme based upon a number of assumptions
that cannot be proven, and consequently inversion of the
e mon to determine the statistical absorption coefficient
a,is n With a further

finous equanon of Sabine is obtained. When, < 0.4,an error
of less than 0.5 dB is made by setting @, ~ log, (- @,

in Equation 16, Then by replacing ,with 7, Equation 10 fs
obtained.

Alternatively, if in Equation 15 the (1= ;) are replaced
with the modal reflection coefficients , and these in turn are
replaced with a mean value, called the mean statistical
reflection coefficient B, the following equation of Millington
and Sette is obtained.

T = -5525/SclogB, an

The quantity B,, is given by Equation 12 but with changes in
the meaning of the symbols. B, is replaced with B which is

now to be interpreted as the area weighted geometric mean of
the random incidence energy reflection coefficients, Bi, for all
of the room surfaces; m is,

B. Hﬂ 5 8)

The quantityf, is related to the statistical absorption
coefficienta,,, for surface i of area S; by §, = 1-a,,. It
is of interest to note that although taken literally Equation 18
would suggest that an open window having no reflection
‘would absorb all of the incident energy and there would be no
reverberant field, the interpretation presented here suggests
that an open window must be considered as only a part of the
wall in which it is placed and the case of total absorption will
never occur. Alternatively, reference to Equation 11 shows
that if any term §, is zero it simply does not appear in the sum
and thus will not appear in Equation 17 which follows from it.

3. NEW ANALYSIS

When a sound field decays all of the excited modes decay at
their natural frequencies (Morse, 1948); the decay of the
sound field is modal decay (Lawson, 1978). In the frequency
range in which the field is diffuse it is reasonable to assume
that the energy of the decaying field is distributed among the
excited modes about evenly within a measurement band of
frequencies. In a reverberant field in which the decaying
sound field is also diffuse, as will be shown, it is also
necessary to assume that scattering of sound energy
continually takes place between modes so that even though the
various modes decay at different rates scattering ensures that
they all contain about the same amount of energy on average
during decay. Effectively, in a Sabine room all modes within
a measurement band will decay on average at the same rate,
because energy is continually scattered from the more slowly
decaying modes into the more rapidly decaying modes.

Let (p()?) be the mean square band level at time t in a
decaying field and (p(0)?) be the mean square level at time ¢
= 0. The decaying field may be expressed in terms of a time
varying mean square pressure amplitude p(7)?, modal mean
square pressure amplitude B,(f), mean reflection coefficient f;
and modal mean free paths A, Equation 11 may be rewritten
as follows.

0)) o,
(pp) = <”:Nf>2lﬂ,(')ﬁ. ' (19)

In the above equation the number of modes within a
measurement band bounded below by N, and above by N; is
AN The reflection coefficient f, is given by Equation 12. It
will be noted that Equation 19 is the same as Equation 15 with
the exception of the introduction of the modal amplitudes
B().

It may readily be shown (Bies, 1984) that when a
reverberant field is diffuse the mean of the modal mean free
paths, A, is the mean free path of the room given by the
following expression (Morse and Bolt, 1944).

As s (20)
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Sabine observed that in a room in which the sound field is
diffuse decay of the reverberant ficld is a linear function of
time whatever the initial level when the sound source is
abruptly shut off. Sabine introduced an absorption cocfficient,
a,, , which is generally a property of the walls of the room
refating the change in sound pressure level and the length of
time of reverberation, f. For convenience, a room in which the
sound field is diffuse and reverberant sound field decay is a
linear function of time will be referred to here as a Sabine
room (Fasold, Kraak, and Schirmer, 1984). The room
reverberation decay may be written in terms of the room mean
fiee path A and the Sabine absorption coefficient a,,, as
follows.

log PS) - et @n
(p(0)) A

It will be instructive to consider first the decay of a single
mode as given by Equation (19). In this case letting AN = 1,
i=jand B, = 1 Equation (19) may be rewritten as follows.

Py et 22

O v @

Alternatively, if in Equation (22) B, = I-a, where @, is
small then

a; = -log,B, @3)

Substitution of Equation (23) into Equation (22) gives an
equation formally the same as Equation (21). Evidently, in a
Sabine room reverberant sound field decay is formally the
same as that for any individual mode. Consequently, it will be
convenient to extend the meaning of Equation (23) to define a
Sabine reflection coefficient, f,,,, and to define the relation-
ship between the Sabine reflection coefficient and a Sabine
absorption coefficient. Reference to Equation (22) suggests
that the associated Sabine reflection coefficient is a mean
reflection coefficient of the excited and decaying modes of the
room.

Solving Equation (21) for the Sabine absorption
coefficient, a,,,, and introducing Equations (19) and (23)
gives the following expression.

-log,B,, = -%lag,[ﬁﬁ&(:)ﬁ.‘“‘l @4)
“

‘The following Equation is obtained from Equation (24).
v

1
Bu™ = ij BB~ (25)

Consideration of Equation (25) shows that in general

1 is a function of time, and the reverberant field decay will
not be linear with time. For example, consider the case that all
B,= 1 and no scattering of sound energy between modes takes
place during sound field decay. If at time zero the amplitudes
of all modes were approximately equal and subsequently the
modes have all decayed independently of each other, those
modes decaying most rapidly will determine the decaying
field response initially while those modes decaying least
rapidly will progressively dominate the remaining reverberant

field response as the field decays. The latter effect is observed
experimentally in a reverberant room unless sufficient
diffusing elements are introduced in the room. Consequently,
it is necessary to introduce the effect of scattering of sound
energy from those modes more highly excited to those modes
less excited.

In a Sabine room, however, experience shows that B, is a
constant independent of time. For example, Equation (25)
may be rewritten as,

! wn]™
B = [ﬁg’(w‘) ~] @6

Consideration of Equation (26) shows that in order that
there be a solution it is necessary that all terms in the sum on
the right hand side of the equation must be cqual and in turn
each must be cqual to the term on the left hand side of the
equation.

In the model which has been proposed it is assumed that
sound energy is removed from modes least damped through
scattering upon reflection at the boundaries and introduced
into modes more heavily damped. The amplitude coefficients,
B, of the latter quantities will be greater than 1 while the
amplitude coefficients of the former quantities will be less
than 1. Further consideration of Equation (26) shows that
there will be some modes which will be unaffected by the
assumed energy exchange and in their case the amplitude
coeficients are 1. For such modes the above considerations
lead to the following conclusion.

B = BN @n

If it is assumed that the unaffected modes are the modes
whose reflection coefficients are the mean of the modal
reflection coefficients then it is reasonable to assume that the
modal mean free paths are also mean values of the modal
mean free paths. In this case the Sabine reflection coefficient
is simply equal to the modal mean reflection coefficient.

B = Prsiiinen 28

The modal mean reflection coefficient has the form given
by Equation (12).

Consideration of Equation 23 suggests the following
relation be assumed to hold for all values of a,,, and B,,, .
That s, it will be assumed that Equation 23 constitutes a
definition of a,,, in terms of B _,.

@ = -10g.B, 29)

Substitution of Equation 29 in Equation 22 leads to the
famous equation of Sabine as follows.
_ 5w

© Scat en

The important difference in the equations derived earlier
relating the Sabine absorption coefficient and the
reverberation time and Equation 30 is to be noted.  Although
they are formally identical the earlier expressions are all based
upon a number of assumptions which can not be proven while
in the latter case the only assumption made is that Equation 23
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is true. As will be shown the Sabine equation given by
Equation 30 leads to agreement between measurement and
prediction when edge diffraction is taken into account in the
determination of the Sabine absorption coefficient.

4. CALCULATION OF THE SABINE

ABSORPTION COEFFICIENT
It is customary, following Sabine, to calculate absorption as
proportional to the area of an absorbing patch of material. On
the other hand, where there is a large difference in surface
i between the absorbing patch and the adjacent wall
or floor on which it is mounted, as in the case of the usual
reverberation room test, large diffraction effects will take
place which in the case of the reverberation room have the
effect of considerably adding to the effective area of the patch
(Morse & Bolt 1944). Where 4, is the physical area of the
h and A, is the effective additional area due to edge
diffraction the Sabine absorption may be written as follows.

Apiar = au(Ap+ A) @y

In the above equation a, is the measured Sabine absorption

coefficient and ay is the calculated statistical absorption
coefficient for an unbounded surface.

Various authors have considered the calculation of the
effective area Ae (Pellam 1940, Morse and Bolt 1944, Levitas
and Lax 1951, Northwood et al. 1959, Northwood 1963) with
various degrees of success but none are convenient to use and
only that of Northwood considers the rectangular patch as
considered in the CSIRO tests which will be considered here
(see below). The approach which will be taken will be
empirical but guided by the observations of Morse and Bolt
(1944) and will be limited to showing that a consistent
relationship exists between the measurements and theory
when diffraction is taken into account.

Following Morse and Bolt (1944) the effective area will be
assumed proportional to an effective perimeter of the patch
P'= P - a, where P is the physical perimeter and a is a con-
stant that is assumed to account for the comers of the paich,
multiplied by 2 wavelength written in terms of the speed of
sound c and frequency fas c/f. Equation 31 gives the follow-
ing postulated functional relationship which will be shown
empirically to exist

(ﬂ:_w_l] = < (32)
e A,f

5. COMPARISON OF MEASUREMENTS
AND THEORY

In 1980 CSIRO-Division of Building Research published a
report describing the results of a round robin conducted in
Australia and New Zealand in which the Sabine absorption
coefficients of samples of Sillan were determined using the
standard reverberation decay method (Davern & Dubout 1980).
In all, twenty one reverberant rooms were involved in the tests.
The test material, a rock wool batt material of density 100
kg/m? made by Grunzweig-Hartmann of Germany, was similar
to that used in an earlier round robin in Europe (Kosten 1960).

A principal conclusion of the latter report was that those
rooms with auxiliary diffusing surfaces equal to or greater
than 1.4 times the floor area of the reverberant room gave
results consistent among themselves whereas those rooms
‘with less or no auxiliary diffusing surfaces gave results which
where inconsistent with all other rooms. Seven rooms ranging
in volume from 106 to 607 cubic meters were identified as
meeting the diffusing surfaces criterion which gave consistent
results for samples ranging in size from 5.0 to 22.5 square
‘meters. Sample sizes were chosen consistent with the size of
the room and a sample of 10.5 square meters was tested in all
rooms. The data obtained in the latter seven rooms provides
the basis for a comparison with prediction.

report provides four fa5.0
m? sample, six measurements of a 7.5 m? sample, seven
‘measurements of a 10.5 m? sample, three measurements of a
16.0m? sample, and one measurement of a 22.5 m? sample in
all one third octave bands from 100 Hz to 5,000 Hz. For the
purposes of the proposed comparison average values have
‘been determined and recorded in Table 1. Also recorded in the
table for convenience of later comparison are calculated
values of the statistical absorption coefficient. The statistical
absorption coefficient is shown for an infinite locally reactive
surface. However, calculations for a bulk reacting surface are
only slightly greater at frequencies greater than about 2000 Hz
and thus the difference between the two types of surfaces is
considered negligible.

Table 1. Absorption Coefficients

s 50m 75m: 10.Sm 160m: 25m  a
(Hz) -
10 007 00T 001 010 016 0T
125 026 024 023 021 022 017

160 033 032 03 033 035 022
200 049 050 050 05l 052 031
250 067 068 068 068 067 041
315 086 090 088 088 082 052
400 104 100 097 096 092 0.64

500 114 109 104 101 098 074
630 L1s L4 110 106 105 081
800 L6 113 108 107 108 086
1000 L7 114 109 105 107 090
1250 115 108 107 103 107 091
1600 LI2 106 105 102 105 092
2000 107 1.06 104 099 103 093
2500 110 107 104 101 103 094
3150 107 108 105 099 106 094

000 108 108 105 101 108 094
5000 112 1.06 105 100 108 094

Use of the data in Table 1 has allowed construction of
Figure 1. In tumn the figure has allowed determination of an
empirical function F(P'c/A,f) which seems to fairly well
describe the data. The empirically determined relationship s,

) - 074
() - &% 60
‘where
Y7 35)
P339
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Plot of measured and normalized sabine absorption coefficients (Table 1) as a function of normalized frequency (equation 35.) See text for

discussion.

Consideration of the figure shows generally good
agreement over the decade range of the parameter X from
about 1.0 to_about 10, Above 10. one would expect the edge
correction to diminish to zero. It is suggested that the evident
departure from the latter expectation at high frequencies may
be due in part to the discontinuity in height at the edge between
the surface of the absorptive patch and the concrete floor
which increases as the ratio of sample thickness to wavelength
increases. This has not been considered in any analysis.

Departure at the low frequency end is probably due to
failure at long wavelengths of the reverberant rooms to meet
the conditions for a diffuse field implicit in the Sabine
formulation. At very low frequencies the wide scatter is due
to the difficulty of making the necessary reverberation
measurements with sufficient accuracy. However, even though
the data become quite scattered as the frequency decreases a
generally consistent trend can be identified suggesting the
possibility of an analytic solution.

6. CONCLUSION

An analysis has been presented which shows that the Sabine
equation is correct if it is accepted that the mean modal
reflection coefficient and the statistical absorption coefficient
are related as proposed. In support of this conclusion the
relationship between the calculated statistical absorption
coefficient of an unbounded porous material, Silan, and the
measured absorption coefficient has been demonstrated in the
case that adequate diffusion has been achieved in the test
chambers used for the measurements. The demonstration has
shown the importance of adequate diffusion and edge
diffraction for the determination of the sound absorptive
properties of a test material in a reverberation chamber.
Conversely, by implication the importance of diffusion and

edge diffraction for application of absorptive materials in a
Sabine type room have also been demonstrated.

For application to the practice of room acoustics a
quantitative measure of diffusion is required which besides
identifying adequate diffusion would also identify degree of
pax(lal d|ffus|on (Bodlund 1976, 1977l ,b). In turn, further

required to d the effect of
partial diffusion on sound absorption so that it may be taken
into account in practice. Additionally, simple procedures are
required which will allow estimation of the effect of edge
diffraction on sound absorption (Pellam 1940, Morse and Bolt
1944, Levitas and Lax 1951, Northwood et al. 1959,
Northwood 1963).
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