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NOMENCLATURE
p density

o angular frequency
a source radius

¢ speed of sound
c(x)  position dependent constant
s(xlv)  free space Green’s function

wavenumber
1 duct length
n mode number
n, number of elements
n,  number of nodes
P pressure
- radial distance
time

v,(x)  normal surface velocity
X position of the field point
g location of CHIEF point
X position of the source

z, specific acoustic impedance

INTRODUCTION

The acoustic Boundary Element Method (BEM) has been
used to solve a wide range of practical problems in acoustics.
such as the modelling of sound generated by loudspeakers
(Pederson and Munch 2002, and Hodgson and Underwood
1997) or received by microphones (Juhl 1993), the sound
power radiated by a particular structure such as an engine
valve cover (Ciskowski and Brebbia 1991) or a fan (von
Estorff 2000), and the sound scattered by hard structures
(Morgans 2000).

Numerous commercial codes that implement acoustic
BEM cxist; however the licensing costs are prohibitively
expensive for casual users, limiting the uptake of this
technology by the wider acoustics community. There exist

numerous non-commercial acoustic BEM codes, such as
those associated with the book edited by Wu (2000). These
source codes exist as pedagogical examples for teaching the
basics of BEM at an advanced undergraduate or postgraduate
level. They are written in Fortran 77 and are available the CD
accompanying the book. They are fully featured and capable
of solving practical problems (Morgans ef al. 2004).

These non-commercial codes, whilst readily available
with the purchase of the book, have not gained widespread use
for a number of reasons: the interface is command file driven
and requires access to some form of pre and postprocessor,
and there is a limited availability of suitable tutorial material.

“Thus there is a need for:

« an casy o use, freely available interface (o an
acoustic BEM code, and

« awell written, step by step tutorial on the use of
BEM to solve simple relevant acoustic problems.

In this paper, brief outlines of direct BEM theory, the
Helm3D BEM code and the GiD pre and postprocessor are
presented. An outline of the Graphical User Interface (GUI),
developed with GiD to solve direct BEM problems using the
Helm3D code, is given. Finally, the tutorial material and how
it will be used to teach the user fundamental acoustic and
BEM concepts are described.

DIRECT BEM

The boundary clement method is a general numerical
method for solving the Helmholtz harmonic wave equation.
The traditional (direct) approach to BEM is to numerically
approximate the Kirchoff-Helmholtz (K-H) integral equation
(Juhl 1993, Morgans ef al. 2004, Koopmann and Fahnline
1997, and Pierce 1994).
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where c(x) is a position dependent constant (unity outside the

volume of interest, % on the surface of the volume and zero

inside the volume), p(x) is the complex pressure amplmlde
i

(with ¢ time dependence) at location x,
the fluid density, o is the angular frequency, v,/ ¢
normal surface velacity at location x, and g0 |¥) is the
free space Green's function relating locations x and x,. The
K-H equation can be derived from the Helmholtz equation
using cither physical arguments using monopoles and dipoles
(Fahy 2001) or using vector calculus and Green’s theorem
(Koopmann and Fahnline 1997, and Fahy 2001). Equation (1)
is the fundamental equation of direct BEM, and shows that the
pressure at any point can be represented by the surface integral
of a combination of monopoles (first term in the integral
of Equation (1)) and dipoles (second term in the integral of
Equation (1)) aligned with the surface normal. The monopole
source strength is weighted by the product of density and
surface acceleration and the dipole source strength is weighted
by the surface pressure. Given a distribution of surface normal
velocity (which is the boundary condition usually prescribed),
once the surface pressure is found, the pressure field anywhere
in the domain can be calculated.

Direct BEM can be used to solve the Helmholtz equation
in either a bounded interior domain (interior problem) or an
unbounded exterior domain (exterior problem). The surface
pressure is found by discretising Equation (1) with 7, nodes
and n, elements similar to those used in FEA. If the field
point is positioned at each surface node (or “collocated”)
then a series of ,, equations for the n, surface pressures can
be found for a given velocity distribution. The equations are
generated by numerical integration over each clement, and
the integration technique used must be capable of dealing
with the singularities found at the locations of the monopoles
and dipoles. The equations can be formed into a matrix and
inverted using standard linear algebra techniques. Once the
‘matrix is inverted, and the surface pressures known, the field
pressures can be calculated.

There are a number of disadvantages to the direct BEM
approach. If the K-H integral equation is used to represent the
sound field on the exterior of a finite volume, at the natural
frequencies of the interior of the finite volume, the exterior
problem breaks down and the matrix becomes ill-conditioned.
This is well documented (Copley 1968) and many solutions
have been attempted (Schenck 1968, and Burton and Miller
1971). The CHIEF method (Schenck 1968) is commonly used
to overcome the interior natural frequency problem because of
its simplicity. This technique solves an overdetermined system
of equations formed by placing extra points () inside the
volume of interest. Provided the CHIEF points are not placed
at a nodal line of the interior solution, this will improve the
matrix condition number and allow the matrix to be solved
using least-squares methods.

Another problem occurs when the lwu surfaces of interest
are brought resulting in
(Martinez 1991). This means that zlthough some geometries
are probably best represented with a thin surface, a direct BEM
simulation may either be not possible, or the geometry must be
enclosed in a larger volume.

Although the BEM is mathematically complex, once it has
been implemented in a computer code the user is somewhat
removed from this complexity. The BEM formulation can be
verified by comparison with analytical solutions, ensuring that
the cquations are being solved correctly, and validated against
experimental data, ensuring that the equations are correct.
The user can then concentrate on generating the geometry and
applying boundary conditions.

HELM 3D

“The direct BEM code used in this rescarch is Helm 3D, a Fortran
77 implementation using linear triangular or quadrilateral
elements. It is able to solve interior or exterior problems with
a wide variety of applied boundary conditions. The code is
available with the purchase of the accompanying book (Wu
2000). The code reads in the geometry, boundary conditions,
field points and CHIEF points from a text based input file,
forms the BEM matrix cquations and solves the matrix for the
boundary unknowns using least-squares routines. The sound
pressure at user-specified points and the sound power and
radiation efficiency for radiation problems are evaluated.

The code can currently only solve simple acoustic
problems. There is currently no mechanism to solve a coupled
vibroacoustics problem, where the acoustics can affect the
vibration and vice versa.

GU1

GiD (http://gid.cimne.upc.es) is a general-purpose, fully
featured finite element pre and post processor developed over
a number of years by the International Centre for Numerical
Methods in Engineering (CIMNE) in Barcelona, Spain. It has
extensive geometry creation features as well as CAD import
(IGES and others), supports the meshing of many different
element types and the application of boundary conditions, and
has a postprocessing capability for viewing results. Figure 1
shows a representative car interior meshed in GiD.

e academic version of this program is freely
downloadable, the only restriction being limited to 700 3D
elements. Fortunately for BEM, this is a reasonable size and
many useful acoustic problems can be solved.

Figure 1. Car interior meshed using GiD.
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GiD s designed to be casily customised and exchange
data with a variety of numerical analysis codes. There arc
mechanisms available to apply custom boundary conditions,
material propertics and solution controls to the model. Most
of these solvers, including Helm3d, require some form of text
file as input. GiD completely wraps the creation of the text
file, execution of the solver and interpretation of the post-
processing data, making the operation transparent to the uscr.

‘The Helm3d GUI (graphical user interface) developed for
this project is strai install (i i
are included in the tutorial). Figure 2 shows the problem data
dialogue box, which allows the user to specify most of the
required inputs that control the simulation. These include
the project title, the frequency range of interest, whether the
problem is an internal or external problem, material propertics
such as density and speed of sound, the position ofa field point
(a “microphone” that can be placed anywhere in the domain),
and the position of any required CHIEF point.

‘The boundary conditions that can be applied in Helm3d are
a surface pressure (rarely used), a surface normal velocity or
a surface normal impedance. These can be applied using the
boundary conditions dialogue box, either to model surfaces, or
directly to the surface mesh.

"A‘_‘“’&" 0o

Figure 2. Problem data dialogue box.

An important requirement for a BEM code is ¢
surface normals. Each surface element has a positive
and it is imperative that the side is facing outwards for internal
problems (cavities) and inwards for external problems. GiD
has a mechanism of visualisation of surface normals, and it is
casy to modify normal directions until all surfaces are pointing
in the required direction. Figure 3 shows the car surfaces with
dark grey positive and light grey negative. For this simulation

the 4 light grey surfaces must be flipped in order to solve the
internal BEM problem.

Figure 3. Surface normal visualisa

The postprocessing capabilities of GiD are extensive, and
the results of a Helm3d calculation can be read and displayed
casily. Figure 4 shows an example of a plot of pressure
magnitude at 100 Hz over the interior of the 3 m long, 1.2
m high and 1.8 m wide car. A velocity excitation represents
sound transmission through the engine firewall.

The GUI interface to Helm3d developed for this project
is somewhat rudimentary, although it is sufficient to learn the
BEM and acoustics. Future developments of the GUI might
allow: multiple CHIEF points; multiple field points or even
a field mesh that allows visualisation of the sound field away
from the surface; or the inclusion of acoustic scattering from
within the GUL.

S

Figure 4. Pressure magnitude in a car interior (pressure in
Pascals).

TUTORIALS
The tutorial guides the user through BEM modelling with
cight problems, each introducing different aspects of:

 fundamental concepts in acoustics,

«  BEM specific concepts, and

*  using the GiD-Helm3d interface.

The tutorial material comprises step-by-step instructions

which explain how to input each model, apply boundary
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Figure 5. Breakdown of the tutorial problems.

conditions and postprocess the results. Comparisons with
analytical solutions are given when possible.

By the end of the tutorial, the user should have had an
introduction to these fundamental concepts in acoustics:

* one-dimensional standing waves,
«  one-dimensional travelling waves,
* impedance (sound absorbing) boundary conditions,
* modes in a rectangular room,
« modes in more complex spaces,
* one-dimensional spherical waves,
* sound radiation from a sphere, and
* sound radiation from more complex shapes.
‘The user should understand these BEM specific concepts:
« advantages and disadvantages when compared to
other techniques,
*  interior versus exterior problems,
* clement types,
* mesh size (6 clements per wavelength),
* non-uniqueness difficulty (CHIEF points),
«  symmelry, and
«dircetion of normals.
‘The user should also have a working knowledge of these
GiD-Helm3d interface concepts:
* inputting the geometry into GiD directly,
« importing CAD data into GiD for meshing,
« flipping surface normals,
* meshing the geometry,
« applying boundary conditions,
+ solving the problem through the GiD interface to
Helm3d, and
* post-processing results through GiD,

Figure 5 shows the breakdown of the tutorials. Two
application arcas are addressed: interior acoustics and external
acoustic radiation. Simple problems with analytical solutions
are introduced. The power of BEM is then demonstrated
through application to more realistic problems.

NTERIOR PROBLEMS

A simple model of a 1D standing wave in a rigid walled
duct (Figure 5.a) introduces the user to BEM through the
very simple geometry of a long rectangle. Velocity boundary
conditions, the required dircction of normals and meshing
are introduced. How the accuracy of results can be affected
by mesh resolution is also demonstrated. Results obtained
from the numerical model are then compared to the analytical
solution. An example of sound with a wavelength identical to
the duct length, resonating in a hard walled duct, is shown in
Figure 6. A unit input velocity at the left end and zero velocity
conditions elsewhere are assumed.

Figure 6. Standing wave in a duct at the second theoretical
resonance frequency of the duct (pressure in Pascals).
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The resonance frequencies of the system are simply the
resonances of an open-closed duct and are given by:

@)
where v is the mode number, c is the speed of sound and /

is the length of the duct.
The analyti i

location is:
2, =0-ipccot(kl) [6))

where j=y1, p is the density of the medium and & is
the wavenumber. The theoretical specific acoustic impedance
and the BEM specific acoustic impedance (the ratio between
the acoustic pressure and particle velocity) at the point of
excitation are compared in Figure 7 as a function of frequency.
The BEM is shown to be in good agreement with the
theoretically determined values.

o,

specific acoustic impedance

“iroquency mx)

[—theory -~
Figure 7. Harmonic response of an np:n—clns{d acoustic duct
at the point of excitation.

‘The concept of impedance is introduced by the addition of
absorption to the downstream end of the duct (Figures 5.b and
8), yielding a travelling plane wave, which is shown to have a
very simple analytical solution.

“The analytical pressure at any point in the duct s given by
the equation:

px)=pee™ @

where & is the distance from the point of excitation along
the duct. As can be scen from Figure 9, the real and complex
pressures of the travelling wave cstimated using BEM agree
well with the analytical solution.

8
<
f—

Figure 8. Travelling wave in a duet (pressure in Pascals).

sound pressure (Pa)

etanco slong a

2
uet (m)
—Re(theory) * Re(BEM) —-Im(theory) ~ Im(BEM)|

Figure 9. Sound pressure along the centre of one side of the
duct.

A side branch resonator is then added (Figure 5.c), and
the analysis frequency is swept through resonance. The
results of the analysis are used to show how the resonator
adds impedance in parallel with that of the pipe, resulting in
a suppression of tones close o the resonance frequency. An
example of a meshed boundary element model of a duct with
aside branch Helmholtz resonator is shown in Figure 10.

Figure 10. Mesh view of duct with side branch resonator.

A model of a speaker in the comer of a rigid walled room
(Figure 5.d) introduces the user to the excitation of modes in
a 3D environment. Rectangular rooms with three different
axial dimensions are compared to those that have two or more
identical dimensions. Various source shapes (of identical
volume velocity) are also investigated, extending the user’s
understanding of room acoustics and BEM source modelling.
An example of the excitation of room modes in two directions
is shown in Figure 11. The room dimensions are 2.5 m x 5
m x 3 m. The source is 2 0.04 m? sound source, located near
the bottom left corner of the wall with the longest dimension,
and operates at a frequency of 68.5 Hz, corresponding fo a
wavelength of § m.

The final internal problem, the sound pressure in the
interior of a car (Figures 4 and 5.c), is an cxample of how
BEM can be applied to a practical 3D problem. Figure 4 shows
the response within the interior of the car. Rigid wall boundary
conditions are assumed. In practice the flexibility of the
enclosing structure would need to be accounted for; however,
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Figure 11. Pressure on wall of room containing sound source
near one comer.

coupled problems such as this would require BEM codes far

more complicated than the Helm3D code.

EXTERIOR PROBLEMS

The i i

radiation problem of a pulsating sphere (Figure 5.f). Key
concepts covered are modelling symmetry and how this affects
computational efficiency, appropriate direction of normals
for an external problem and the use of CHIEF points in the
interior to improve the condition number of the governing
matrix. A meshed model of the half sphere (a symmetry
boundary condition is used) is shown in Figure 12.

v

Figure 12. Mesh view of a pulsating sphere.

The analytical solution for the pressure produced by a
pulsating sphere, which can be derived from the spherical
wave equation, is:

a ] ip0_ - ik(e-a)

p(r)= [— T+ika )

B

where a is the sphere radius, 7 is the radius at which the
pressure is being calculated and  is the angular frequency.
The characteristic eigenfrequencies of the sphere, which are
the eigenfrequencies of the interior Dirichlet problem, arc
given by the equation:

sinka=0 ©

Figure 13 surface p

frequency for the pulsating sphere for an analytical solution,
and BEM calculations with no CHIEF point, a CHIEF point at
the centre of the sphere and a CHIEF point at half the radius.
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Figure 13. Surface pressure of a pulsating sphere

The BEM solution with no CHIEF point shows poor
agreement with the analytical solution at ka=r and ka=2m,
where & is the wavenumber and a is the radius of the source.
This is due to poor conditioning of the matrix. The placement
of a CHIEF point at r/a = 0.5, where  is the radial location
from the centre of the sphere, ameliorates the problem at ka=r;
however, poor agreement at ka=2x still oceurs due to the
CHIEF point being on the interior nodal surface corresponding
0 the characteristic eigenfrequency ka=2x, meaning that this
resonance cannot be cancelled. Placing the CHIEF point at the
sphere centre ensures that it does not lie on a nodal surface.
The resulting solution is therefore in good agreement with the
analytical solution. When using BEM to analyse more complex
geometries, the user generally has no prior knowledge of the
optimal CHIEF point location, and therefore multiple CHIEF
points randomly distributed within the volume are used. The
condition number of the matrix will also give an indication of
whether there are any interior resonance problems.

A spherical volume with an external velocity over a
proportion of its surface is presented as a simplificd model of a
loudspeaker in a rigid walled box (Figure 5.y). Comparison of
results at different frequencies is used to show that radation is
ineflicient at low frequencies. The example shows how a BEM
of a problem with simplified geometry can be used to model
a more complex problem, producing results which exhibit a
similar pattem of behaviour. Application of the external BEM to
amore realistic situation is presented as the analysis of radiation
from a speaker of more realistic geometry (Figure 5.h).

CONCLUSIONS

‘This paper describes: a freely available interface that has
been developed between GiD and Helm3d; and tutorial
material describing some fundamental acoustic problems
and how they would be solved with BEM using the newly
developed interface. It is hoped that the resulting practical
and freely available introduction to BEM will be the basis for
both student projects within universities around Australia, as
well as for a series of lectures in acoustics courses at some
universities. The proposed greater availability of the code
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and tutorial will accelerate the uptake of BEM by the wider
acoustics community, including members of the acoustical
society as well as practicing acoustic engincers.

For further information please visit

eng.adelaide.edu, htm!
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