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‘The auditory system comprises both ascending (afferent) and descending (eflerent) pathways. The cflerent pathways, which originate in a
variety of higher brain centres, are capable of altering the activity in the afferent pathways. By modulating cochlear neural output and central
auditory neural circuits, these efferent pathways could play an important role in key auditory processing such as optimising the detection
of acoustic signals of interest in the presence of competing background noises. The present paper focuses on the final limb of the efferent
pathways, the olivocochlear system, which projects directly to the cochlea. It will describe its proposed role in normal hearing and show how
dysfunction of this efferent system could contribute to gencration of tinnitus and to deterioration in the detection and processing of signals

such as speech, especially in non-optimun listening environments.

INTRODUCTION

The ditory afferent
(ascending) and efferent (descending) neural pathways
(see Figure 1). The afferent pathways start at the cochlea,
in the organ of Corti where sound waves are transduced
into neural information. From the cochlea the information
travels through different brain centres undergoing further
auditory processing to the auditory cortex, where sound is
perceived by the listener. Efferent pathways can be found
at every level of the afferent pathway and thus enable the
brain to modify the processing of the ascending auditory
information at various levels, regulating peripheral cochlear
function and modulating signal processing at higher stages
of the auditory pathway.

THE OLIVOCOCHLEAR SYSTEM

“The final limb of the efferent pathways is formed by the
olivocochlear (OC) system, which projects directly 1o the
organ of Corti within the cochlea (Figure 1). The neurons
of the olivocochlear system originate in the superior olivary
complex in the brainstem and can be subdivided into two
major subsystems, the medial and lateral OC system, on
the basis of the location of their cell bodies in the brainstem
and their targets in the cochlea. The medial OC system
originates bilaterally in the periolivary regions and projects via
myelinated axons to the outer hair cells. The lateral OC system
originates ipsilaterally in and around the lateral superior olive
and projects via unmyelinated axons to the afferent dendrites
contacting the inner hair cells [36.61,62,74.75,80,82].

The lateral OC system, because it synapses directly onto
primary afferent dendrites, seems o be in a prime position
o affect both spontaneous and sound-driven neural firing as
well as excitability of the auditory nerve fibres. Because of
the location of the lateral OC neurons deep in the brainstem,
and their unmyelinated axons, it has proven difficult to
experimentally stimulate this system and information on the
role of the lateral OC system is thercfore limited. Nonetheless
there are several studies reporting effects of the lateral OC

system on cochlear output using a variety of methods. Studies
investigating the effects of de-efferentation show a decrease
of spontaneous rate of the auditory nerve fibres, suggesting
an excitatory role for the lateral efferents [33,35,37,77,90).
However, evidence is mounting that the lateral system actually
consists of multiple subsystems whose effects on the cochlea
may depend on the neurotransmitter released. A variety of
different neurotransmitters has been demonstrated to exist in
the lateral efferents, such as acetylcholine, y-aminobutyric acid
(GABA), dopamine, enkephalin and calcitonin gene-related
peptide (CGRP) [15,55). Acetylcholine applied close to the
inner hair cell synapse and thus close to the lateral OC synapse
with the afferent fibres, results in increased spontancous firing
of the afferent fibres, supportive of an excitatory role for the
lateral efferents [17). However, intracochlear application of
GABA or dopamine has been shown to result in a reduction
of the driven firing rate of primary afferent fibres [17.49,64],
revealing a capability of the lateral OC system to inhibit the
firing rate of auditory afferent fibres. Interestingly, recent
indireet stimulation of the OC system showed effects on
cochlear output consistent with the notion that the lateral OC
system excrts both cxcitatory and inhibitory effects in the
cochlea [20,48], which is in line with anatomical evidence that
there may be two different types of lateral OC fibres [79).

The actual biological role of the lateral OC system
remains as yet to be elucidated, but several hypotheses have
been put forward. Increases of spontaneous firing of the
afferents, as can be evoked by the lateral efferents may also
contribute to amplitude-modulated sound detection [12]
Ruel et al. [63] suggested that the tonic release of dopamine
by the lateral efferents prevents sound-induced excitotoxicity
of the afferent dendrites.

In contrast to the lateral OC system, the effects of activation
of the medial OC system on cochlear output have been well
described. Experimental activation of the medial OC system
can be relatively easily achieved by clectrical stimulation of
their myelinated axons since these run close to the surface
of the brainstem. Activation of the medial OC system is well
known to suppress cochlear neural responses to low level
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Figure 1: A: Schematic drawing of the ascending and
descending pathways in the auditory system, cxcluding
binaural pathways. Black lines are descending, dotied lines
ascending projections. The olivocochlear system is indicated
with a double line and illustrated in more detail in B. B:
Schematic drawing of the olivocochlear system, showing the
lateral OC system originating in the lateral superior olive and
projecting ipsilaterally to the afferent dendrites contacting the
inner hair cells and the medial OC system originating in the
periolivary regions and projecting bilaterally to the outer hair
cells. Abbreviations: CN: cochlear nucleus; THC: inner hair
cells; IV: IVth ventricle; LOC: lateral olivocochlear system;
MOC medial olivocochlear system; OHC: outer hair cells

acoustic stimuli [13,58,83]. Electrical stimulation of the
medial OC axons results in a reduction of the compound action
potential of the auditory nerve through the effects exerted
on the outer hair cells [8,13,27,58,65,81,83]. The outer hair
cells, which have elcctro-motile propertics, are responsible
for the cochlear gain by enhancing the vibration of the basilar
membrane in response to sound. Release of acetylcholine from
the medial OC synapse results in an increased conductance
of the basolateral wall and subsequent hyperpolarization of
the outer hair cells, thereby reducing the gain of the cochlear
amplifier. Reduction of the cochlear gain leads to a decreased
depolarisation and decreased neurotransmitter release from
the inner hair cells, reducing auditory afferent firing, thus
reducing the size of the compound action potential amplitude
of the auditory nerve fibres [21].

Though the inhibitory effects of the medial OC system
on cochlear output are well established, the biological role
of this efferent system in hearing is still under debate. A
first question to ask may be: “what activates the medial
OC system in the awake, behaving organism?” Well, there
is ample evidence that the medial OC neurons are excited
by sound [6). Anatomical studies have shown that the
olivocochlear neurons in the brainstem receive ascending
synaptic input from the cochlear nucleus [7,63.71]. Consistent
with these anatomical observations, contralateral sound has
been reported to result in inhibitory effects on the activity
of auditory primary afferent fibres as well as the compound
action potential of the auditory nerve in different mammalian
species [9,34,57,81). In addition, altered otoacoustic
emissions following the application of contralateral sound
have been reported in humans [41], cats [56] and guinea pigs
[31,32,56]. All of the studies above indicate an excitatory
action of the contralateral cochlea on medial olivocochlear
neurons and suggest the olivocochlear system forms a
feedback circuit at the level of the lower brainstem

One of the proposed roles for the medial OC system is
consistent with it being part of a feedback loop at the level of
the brainstem. It has been suggested that it serves to protect
the cochlea from extensive receptor damage during intense
noise exposure reducing hearing loss [52,58-60]. However,
all experiments in which this protective mechanism was
demonstrated used very loud sound intensities to damage
the cochlea, much louder than naturally occurring sound
levels. This makes it unlikely that the medial OC system
evolved to serve this protective role as argued convincingly
by Kirk and Smith [28], but rather that this protection that
can be observed in the noisy environment of modem man
is a fortuitous but convenient side-cflect of the system that
evolved for other reasons.

Another role put forward for the medial OC system is to
provide 1 of potential (EP).
Very small fluctuations of the EP of only a few millivolt have
been shown to be able o alter neurotransmitter release from
the inner hair cells [51] and can alter neural firing. Increases
of the EP, therefore, could lead to an increase of spontancous
activity, causing more excessive neural firing in the absence
of sound, and could contribute to the generation of cochlear
tinnitus. Since tinnitus, fortunately, s not a constant feature
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OC neurons has also been investigated in anaesthetized
guinca pigs. These experiments revealed inhibitory effects

pathways have also been demonstrated in auditory neuropathy
patients, which showed an absence of the suppression of

on compound action potentials when was
injected close to the medial OC neurons and excitatory effects
when noradrenaline was injected close to the lateral OC
neurons. These results are thus consistent with the notion that
noradrenaline has an excitatory effects on both the medial and
lateral OC neurons.

The question remains as to what function this projection
from the locus coeruleus 1o the OC system has. The locus
coeruleus is well known to play a role in attentive processcs,
showing high tonic activity during arousal, moderate, phasic
activity during selective attention and low tonic activity during
drowsiness and sleep [1.2]. Since the olivocochlear system has
been hypothesized to play a role in slective auditory attention,
atienuating unattended signals and in improving speech
detection in noisy environments (see above), noradrenaline
may be modulating this process.

CLINICAL IMPLICATIONS AND FUTURE
STUDIES

Dysfunction of both the lateral and medial OC system has
been associated with hearing associated pathologies. This
is not surprising if onc considers effects of both systems on
cochlear neural output and their proposed roles in normal
‘hearing. When the lateral OC neurons can affect spontaneous
neural firing, abnormal amvuy can well lead to tinnitus, the
phenomenon where noise is perceived in the absence of an
external physical sound [3,66] An interesting observation
in this respect is that stres known to exacerbate tinnitus
[23,25]. This may well be an example of top-down control,
since stress activates the locus coeruleus. This in its turn
may increase the noradrenaline release to the lateral OC
system, causing activation, enhancing the spontancous neural
firing of primary auditory afferent fibres. This may provide
the perception of tinnitus, cither directly, or by secondary
alterations of activity in central pathways.

If the medial OC system serves a homeostatic role, keeping
the endocochlear potential constant, then disruption of this
control could also lead to increased spontancous firing from
auditory afferent fibres as explained above. In patients that
suffer from tinnitus the medial OC system has been shown
to be less effective, showing less suppression in otoacoustic
emissions with contralateral noise [10]. However, it must be
mentioned that studies of patients with ablated OC axons, i.c.
patients that received a vestibular nerve section to alleviate
Meniére’s disease, did not reveal a clear link between disruption
of the OC systems and tinnitus. Baguley and co-workers using
an extensive literature scarch found that in the majority of
patients undergoing the procedure tinnitus symptoms were not
worsened [4], but the effects were highly variable.

With regard to a proposed role for the OC systems in
signal detection in noisy environments, a common complaint
in patients with auditory processing disorders and sensory
deafness is the difficulty in understanding speech in noisy
cnvironments. Interestingly, in some of these patients a
low activity of the MOC system was demonstrated [42] by
measuring oto-acoustic emissions. Malfunctioning medial OC

emissions with noise [69). In these
patients of course it is unclear whether the OC system itself
is dysfunctional or whether it is driven less by the reduced
cochlear afferent input. All of these patients, with the exception
of a very young child, reported speech comprehension as a
major problem, which may be connected to the malfunction of
the efferent pathway.

ore research will be necessary to elucidate the biological
role of the efferent pathways and to reveal whether and
how malfunctioning of these pathways is involved in the
gencration of hearing associated pathologies. Morcover, when
more information is gathered on how the system is activated
biologically, it may well have future therapeutic benefits. It
may then be possible by pharmacological or other intervention
to alleviate symptoms associated with dysfunction or to
modulate abnormal afferent activity associated with tinnitus.
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