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Taking the square root of this quantity to find the propagation
vector k then leads to the two possibilities indicated qualita-
tively by the points A and B. These might be represented by
the expression a exp(ikRx−kIx− iωt) where kR and kI are
respectively the real and imaginary parts of k. Point A has
kR positive, so that the wave is propagating in the +x direc-
tion and, since kI is also positive, the wave is attenuated as
it propagates. Similarly, the solution at point B represents a
wave propagating in the −x direction and again being atten-
uated as it propagates. In the domain x ≥ 0 this second wave
can be eliminated, since it must be an external influence that
has entered the string through the radiation termination at its
far end-point, and it has been assumed that there is no such
influence.
All of this is perfectly straightforward and leads to no

difficulties at all. It is only when more complex physical
situations are considered that problems arise.

WAVES ON A BEAM
Consider next an ideally thin elastic beam under no tension,
often referred to as an Euler-Bernoulli beam. The governing
differential equation is then[1]

m
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∂z
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= −K

∂4z

∂x4
, (4)

where K now measures the elastic stiffness of the beam. A
very simple form has been assumed for the damping term,
corresponding to damping by an external viscous fluid of
negligible mass; internal damping in the beam would lead
to a more complicated function. Assuming a solution of the
form (2) then leads to the result

k4 =
mω2

K
+ i

βω

K
= γω2 + iα , (5)

where now γ = m/K and α = β/K. The resemblance
between this equation and (3) should be noted. If damping is
neglected by setting β = 0, then from (5) the wave speed is

c =
ω

k
=

�
K

m

�1/4

ω1/2 , (6)

as is well known. The behavior of such beams has been
discussed many times before, most recently by Pavić[2], but
the anomalies to be discussed here have not been commented
upon.
For the simple case of a finite beam with end conditions

specifying both z(0, t) and ∂z(0, t)/∂x, (4) leads to an ex-
pression for z(x, t) in terms of trigonometric and hyperbolic
functions, and thence to specification of the vibrational mode
frequencies. The problem arises only when a semi-infinite
beam with x ≥ 0, or a long beam with a radiation bound-
ary condition at the remote end, is considered. The point O
in Fig. 1(b) is the value of k4 given by (5) plotted in the
complex plane, and with again a large value of the damping
parameter α for clarity. The points A, B, C, and D then rep-
resent the four values of k given by (5). Point A represents a
wave propagating in the+x direction and being progressively

damped as it propagates, just as before, and point B repre-
sents a similar wave propagating in the −x direction that can
be eliminated by the boundary condition at the far end of the
beam. The problem arises with the solutions at points C and
D.
Consider point C, for which kR > 0 and kI < 0. This

represents a wave propagating in the +x direction but being
amplified as it propagates. Similarly point D represents a
wave propagating in the −x direction and being amplified
as it propagates. This second case, D, can be ruled out for
the domain x ≥ 0 by the boundary conditions at infinity,
since it requires a non-zero amplitude of input wave in the
−x direction at the far end of the beam. But what about the
wave at point C? It can be matched to the boundary conditions
at x = 0, and does not violate the radiation condition at the
distant end of the beam. It does, however, appear to violate
the physical principle of conservation of energy, since a small
wave input at x = 0 leads to an arbitrarily large input of
energy to the radiation resistance at the remote termination of
the beam.

SYMMETRIC LLOYD-REDWOOD WAVES
An even more complex situation arises in the propagation
of mirror-symmetric waves on two thin plates separated by a
layer of dense fluid.[3] These waves have generally been stud-
ied in an ultrasonics context, but have also recently received
attention in relation to a possible “second-filter” mechanism
in human hearing [4, 5]. The propagation speed of these
waves can be extremely small if the plates are thin, because a
small displacement of the plates towards each other results in
a large “squirting” motion of the liquid enclosed between the
plates. As has been shown elsewhere [3, 4], the propagation
of these waves obeys a sixth-order differential equation so
that, if simple damping is assumed, the propagation vector k
is given in analogy with the previous results by an expression
of the form

k6 = γω2 + iα , (7)

with α > 0 and γ a positive constant depending upon the sys-
tem parameters. Once again the resemblance of this equation
to the string equation (3) and the beam equation (5) should
be noted. In the absence of damping (α = 0), the wave speed
c is proportional to ω2/3. Equation (7) indicates that there
are now six roots for the propagation vector k, and these are
illustrated in Fig. 1(c).
The solutions at points A and B represent normal damped

waves propagating in the +x and −x directions, as before.
Points C and D similarly represent the anomalous waves as-
sociated with points with the same identifiers in Fig. 1(b).
Points E and F represent a new phenomenon. Point F is a
wave propagating in the +x direction but with an extremely
high damping, and similarly point E is a wave propagating in
the −x direction, again with very high damping. Solution E
can once more be ruled out because it would require an input
wave at the remote termination x = ∞, while solution F can
be regarded as an “evanescent wave” which is confined to
the immediate vicinity of the wave source at x = 0 and so
presents no problems.
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PARADOX RESOLUTION
While second-order wave equations display no anomalous
features, wave equations of higher order give rise to at least
two solutions C and D for waves that appear to grow in am-
plitude as they propagate. These are in addition to evanescent
waves such as E and F that are localized near the wave source.
In the case of a semi-infinite domain with x ≥ 0, some of
these waves can be ruled out since they require a finite in-
cident wave from outside the system at x = ∞, but at least
one such as C always remains, and this appears to violate
the principle of conservation of energy despite the fact that
the original differential equation is in each case based upon
simple Newtonian principles.
The solution to this apparent paradox can be found by

examining the group velocity v = ∂ω/∂k in each case. Sup-
pose that the solution to the general wave equation has the
form

kn = γω2 + iα (8)

where n is an even integer and α is a positive function of ω.
Differentiating with respect to k gives the result
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�
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Suppose that k = kR + ikI, then

kn−1 = kn−1
R +i(n−1)kn−2

R kI−(n − 1)(n − 2)
2

kn−3
R k2

I +. . . .

(10)
In the case of the anomalous solution for an elastic beam,
n = 4 so that there are only three terms in the expansion.
As shown in Fig. 1(b) for the anomalous solution point C,
|kI| � |kR| so that the third term in (10) is much larger than
the first term and the real part of kn−1 is therefore negative.
When the expression (10) is substituted in (9) the result is
therefore that the group velocity for this wave is negative so
that it effectively vanishes into the source at x = 0.
This result means that the envelope of the anomalous wave

propagates in the −x direction, so that a disturbance origi-
nating at x = 0 is unable to propagate into the domain x ≥ 0
despite the fact that its phase velocity is positive. If there is
a pre-existing wave of this type at time t = 0, then it will
collapse towards the origin and deposit its energy there. This
resolves the apparent anomaly and there is no violation of
energy conservation.
The case of symmetric Lloyd-Redwood waves is mathe-

matically more complicated, since now n = 6 so that there
are three real terms to be considered in (10) and two anoma-
lous waves in the total solution for x ≥ 0. Resolution of
the paradox in this case requires more detailed mathematical
analysis, but it is almost certain that the answer is similar:
point F corresponds to an evanescent wave localised near the
wave source at x = 0 while point C describes a wave of
which the envelope collapses into the source.
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