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1 Introduction
Tuned idiophones (struck instruments) such as marimbas, chimes 
and bells have undergone centuries of development, resulting 
in complex profiles, bumps and grooves, the purpose of which 
is usually to optimise the sound of the strike. The maker seeks 
to produce an instrument that responds with sounds that are 
pleasing to the ear, and for the most part this means that normal 
modes of vibration are appropriately tuned.

Structural engineers also optimise physical structures, such as 
a building or a bridge, to improve the efficiency of the design. In 
this case, the optimal design is generally one that minimises cost 
or the amount of construction material used, and the technique 
employed is numerical optimisation. To the engineer, a musical 
instrument is a physical structure, and as such its design can 
be undertaken using numerical optimisation techniques. This 
paper illustrates the use of a particular numerical technique, 
constrained optimisation, for the design of tuned bars, plates and 
bells. In this paper, we limit ourselves to outlining the approach 
and discussing the results. A more detailed discussion of the 
technique has been given elsewhere [1, 2].

2 Constrained Optimisation
Numerical techniques such as finite element analysis have been 
used quite extensively to determine the mode shapes arising 
in musical structures. Less common, however, is the use of 
numerical techniques in the design of a musical instrument or 
part thereof. Where numerical optimisation strategies have been 
adopted, the temptation has been to emulate the maker in the 
choice of optimising function, namely to optimise the frequencies 
of the modes [3-5]. Such an approach can leave the designer with 
the dilemma of determining how close to the desired frequency 
each mode should be and which mode is more important to get 
right. In this paper, we outline a different approach. 

The design goal is to produce a structure that responds with 
specified frequencies for specified modes of vibration. Hence, the 
required frequencies are critical for this design problem and we 
require a solution strategy where the frequencies are constraints. 
A general technique that allows maximum freedom in defining 
the shape, whilst constraining the frequencies, is constrained 
optimisation. The constrained optimisation problem is uniquely 

specified by three things, namely, the geometry parameters, 
the optimisation function and the constraint functions, and 
different solutions may be obtained by varying any of these. 
This approach also allows us significant freedom in the choice 
of optimising function.

2.1 Mathematical Models
The analysis of the motion of any vibrating structure begins 
with the governing equations. These equations depend on the 
model adopted, and the first decision is therefore the choice of 
model to be used to describe the structure. 

For example, the dominant response of a struck xylophone 
bar is transverse to its longitudinal axis, and the motion is 
therefore beam-like in nature. Hence, a suitable model is a one-
dimensional model that can account for shear deformation [1]. 
However, when the profile of the bar entails sudden jumps in 
height, the one-dimensional model fails to accurately account 
for the complex stress system set up around the sharp corners. 
In this case, a two-dimensional model is more accurate [6]. 
Similar considerations apply to any musical structure. A plate 
can generally be satisfactorily modelled as a two-dimensional 
structure, so long as its thickness is small in comparison to 
a typical plan dimension [7]. A bell is a three-dimensional 
structure. However, provided that the thickness is not too 
large in comparison with the radius, it may be modelled as a 
two-dimensional surface with appropriate stiffness and mass 
characteristics [8]. 

Analytical solutions of the governing equations are generally 
not available, except in the case of very simple structures. The 
structures we shall be designing are not simple, particularly 
given that they involve varying cross-sectional properties. 
Numerical techniques are therefore required, and finite element 
analysis is chosen as the most appropriate technique. Finite 
element analysis converts the governing differential equations 
into a set of eigenvalue equations that can be solved to give the 
natural frequencies and mode shapes of the structure.

2.2 Structural Geometry
The goal is to design a structure that responds with specified 
frequencies, that is we seek to determine the geometry of the 
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structure that will respond in a pre-determined manner. Hence, 
we must describe the geometry by a number of parameters, hi. 
These parameters are the primary unknowns for the problem 
and will be varied to produce the required outcome. 

2.3 Optimisation Function
Optimisation implies one is seeking the best solution. Our 
goal is to design a structure that responds with specified 
frequencies. It is therefore tempting to optimise the frequency 
of each critical mode. However, we prefer to obtain a solution 
where the frequencies are accurate, and we choose some other 
function to optimise. This approach leaves us with a wide range 
of possible optimising functions, including the possibility of 
having no optimizing function.

2.4 Constraints
The constraint functions describe what must be obtained for an 
acceptable solution. Obvious constraints are those that retain 
the integrity of the structure. Idiophones for instance should 
not be so thin that they permanently distort or break when 
struck. In our approach, the required frequencies are critical to 
the design, and we therefore include them as constraints.

2.5 Constrained Optimisation
Constrained optimisation involves solving the governing 
equations for the problem and minimising the optimisation 
function f(hi) whilst satisfying the constraint functions gj(hi). 
The approach can be written as 

Minimise f(hi) subject to gj(hi) = 0; i = 1, 2 …N; j = 1, 2 ….Nc 
where N is the number of variables and Nc is the number 

of constraints. 
In our case, an optimisation procedure is used to determine 

the values of the parameters describing the geometry of the 
structure, such that the structure has the desired frequency 
characteristics and satisfies other specified criteria.

3 Examples
3.1 Marimbas and Xylophones
Marimbas are simple instruments consisting of an array of 
transverse beams or bars. Each bar sits on two supports placed 
at the nodes of its fundamental transverse mode. The bar is 
struck at its centre when played. Simple linear analysis shows 
that when a uniform beam is struck between its two supports 
the transverse modes generated are not harmonic. Hence, there 
is not a simple integer relationship between their frequencies. 
From a musical point of view, this non-harmonic response is 
not desirable. To tune the beam so that at least the three lowest 
modes are harmonically related, the instrument maker carves a 
parabolic arch cut on the underside. 

Reduction in thickness at the centre of the bar's length 
results in a significant reduction in the stiffness of the bar 
and hence the fundamental frequency, and a lesser effect on 
the higher modes. Thus, the profile of the bar determines the 
relationship between the modes.

The exact dimensions of the undercut are an empirical 
design. There has been significant interest in determining the 

effect of the profile on the frequencies of the natural modes [9-
12]. However, we turn the problem around and ask, what must 
the shape of the undercut be to produce a particular frequency 
regime?

3.1.1 Numerical solution
We begin by formulating the equations that governs the 
motion. A one-dimensional model that can account for shear 
deformation, such as Timoshenko's beam theory, is usually 
sufficient [1]. The problem is formulated in terms of the 
amplitudes of the displacement and rotation of the beam as 
it vibrates, and results in a fourth-order system of coupled 
ordinary differential equations.

In the case of a xylophone or marimba bar, it is the undercut 
that is used to tune the appropriate vibrational modes, so 
the primary unknowns are the heights of the bar at various 
locations. Hence, we define the height of the bar as a function 
of the position x along the length of the bar, h(x), restrict the cut 
section to be between the two supports and choose a geometry 
with which to work. There are a wide range of geometries that 
can be adopted, and we previously considered three examples, 
namely piecewise-continuous heights, piecewise-linear heights 
and sinusoidal functions [2]. 

We begin with a solid bar with defined physical and 
geometrical parameters and request an undercut that will 
produce a particular fundamental and overtones in the ratio 
1:4:10. Figure 1 illustrates three different solutions. The 
solution for case (a) was obtained by minimising the amount 
volume of material removed to produced the profile. However, 
this profile has sudden jumps in height, and the one-dimensional 
model is less accurate in this case [1]. The solutions for cases 
(b) and (c) were obtained by requesting smoother profiles. 
Case (b) was obtained by minimising the height differences 
between adjacent sections while case (c) used a smoother 
profile geometry, namely sine curves.

3.2 Plates
Musical plates are somewhat rarer than the xylophone or 
marimba. Nevertheless, they are occasionally used as substitutes 
for bells [13, 14]. Simple linear theory again shows that the 
transverse modes generated on a flat rectangular or round plate 
are not generally harmonic [13]. However, a similar approach 

Figure 1: Profiles of xylophones (vertical scale distorted for 
clarity).



Acoustics Australia                                                                                                      Vol. 35 August (2007) No. 2  - 49

to that applied to the marimba bar can be used to design the 
plate. 

If the plate is made to vary in thickness along its profile, 
then there should be some designs whereby the modes are 
harmonically related. Hence, we set ourselves the goal of 
designing a plate with a specified geometry, such as rectangular 
or circular, so that it responds with specified frequencies when 
struck in the transverse direction.

3.2.1 Numerical solution
While a plate is a three-dimensional structure, it may be 
accurately modelled as a two-dimensional structure if its 
thickness is small compared to a typical plan dimension. Several 
plate theories are available depending on the assumptions 
made [15]. We have adopted Mindlin's theory [16] as the 
underlying theoretical model. This theory is applicable to both 
thin and moderately thick plates. As an example, we consider 
an initially  flat circular plate with a central hole. The plate 
is divided into eight concentric rings and the task is to vary 
the thickness of each ring until the first three distinct natural 
modes are in the ratio 2:3:4. Figure 2 illustrates two possible 
profiles. The solution for case (a) was obtained by having no 
optimising function whereas the solution for case (b) was 
obtained by requesting a smooth profile.

Figure 2: Profiles of circular plates with central hole 
(vertical scale distorted for clarity).

3.3 Bells
The sound produced by a large church or carillon bell is the 
result of the vibrational modes of a particular profile, the decay 
rates of the natural modes and the sound perceived by the 
listener [5]. In this paper, we will look only at the design of the 
bell profile such that important modes are in tune.

Since the 1600s, western church bells have been 
manufactured to exhibit a clear, recognisable pitch through the 
design of a bell profile. The five important modes for a tuned 
bell are generally considered to be the first five extensional 
modes. These modes are labelled Hum, Prime, Tierce, Quint 
and Nominal, and are generally tuned so that their frequencies 
are in the ratio 1:2:2.4:3:4 [13]. Thus, we set ourselves the 
problem of determining a suitable profile for a bell such that 
the five lowest modes are tuned according to the ratios above. 
As with the bar and the plate, the constraints are simply the 
desired frequencies of these five lowest modes of vibration, 
together with the usual structural integrity issues. However, in 
this case an added constraint can arise from the construction 
technique for a large bell, namely that the bell should be readily 
removable from its mould after casting. 

3.3.1 Numerical Solution
There are various options for describing the profile of the bell. 

The simplest option is to describe the profile using piecewise-
linear variations for the radii, coupled with piecewise-constant 
variations of thickness. Smoother profiles can be obtained by 
using higher-order polynomial functions for the variables. For 
the purpose of this paper, we have limited ourselves to the first 
option. 

We began with a truncated cone with geometry crudely 
following a standard bell described by Lehr [17]. The structure 
is then divided into sixteen concentric truncated conical rings 
and capped with a nearly horizontal piece. The task is then 
to vary the radius and thickness of each ring until the desired 
frequencies regime is obtained. Figure 3 depicts two possible 
profiles. The first was obtained with a zero optimising function 
and the second included the construction constraint of no 
reversed radii, thus allowing easy removal from its mould after 
casting. In both cases, the thickness of each ring also varies, 
although this is not shown in the Figure.

4 Conclusions
The optimisation of any musical instrument is usually the task 
of the maker. The design generally follows empirical techniques 
that attempt to optimise the tuning of the natural modes of the 
instrument. In this paper, we have outlined a mathematical 
approach to design that constrains the design to the required 
frequency regime and allows other parameters to be optimised. 
The technique is limited only by the adequacy of the model 
used to describe the structure and the ability to describe the 
constraint and optimising functions mathematically.
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Figure 2: Profiles of circular plates with central hole (vertical 
scale distorted for clarity).

Figure 3: Profiles of bells.
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