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Predicting the vibro-acoustic responses of structures with uncertainty can be diffi cult. For example, the dynamic response 
of body panels in a vehicle can differ greatly across an ensemble of vehicles due to small variations in spot welds from the 
assembly process. In this paper, several statistical measures including the statistical overlap factor, distribution of modal 
spacings and an ergodic hypothesis are used to examine the natural frequencies and responses for a range of dynamic sys-
tems. Uncertainty across an ensemble of nominally identical structures has been generated by adding small masses and/or 
springs at random locations. A measure of the uncertainty is obtained by observing the variation in the natural frequencies 
of an ensemble member from their mean value across the ensemble. Using an ergodic hypothesis, a comparison between the 
mean vibrational response of an ensemble of nominally identical structures at each frequency is made with the frequency 
averaged response of a single ensemble member.

1. INTRODUCTION
For most practical engineering systems, there are degrees 
of uncertainty arising from variation in material properties, 
geometry and manufacturing tolerances [1]. Uncertainties are 
also observed in the variation in the natural frequencies and 
dynamic responses across an ensemble of nominally identical 
structures. For example, the interior noise levels have been 
measured for successive vehicles from a production line 
for which the frequency responses were found to differ by 
at least 10 dB [2,3]. The variation is in part attributed to the 
manufacturing and assembly process resulting in local material 
property changes. Furthermore, as the frequency increases, so 
does the sensitivity of dynamic responses to uncertainties. 

A number of techniques have been developed to account 
for uncertainty in the dynamic models of structures; some 
are briefl y mentioned in what follows. The stochastic fi nite 
element method using Monte-Carlo simulations can account 
for structural uncertainty [4,5], but this method is restricted by 
the amount of information required to model joints between 
subsystems [6] and the signifi cant computational expense 
required. An improved fi nite element method which only uses 
the mean, variance and covariance of the properties of the 
uncertainty has been developed to reduce the computation time 
and increase accuracy of the results [7]. Perturbation methods 
based on the fi nite element method have also been used to 
investigate the dynamic response of structures with uncertain 
parameters [8]. Including the second and higher order terms 
in the perturbation analysis is sometimes necessary, however 
this increases the time required to obtain a solution. Interval 
analysis has been utilised to examine the effect of uncertainty 
in the material parameters and dimensions on the eigenvalues 
and dynamic responses of structures [9,10]. In this method, 

the lower bound, upper bound and mean values of parameters 
with uncertainty were allowed to vary within a predefi ned 
band. A disadvantage of this method is that it produces very 
conservative results. A review of non-probabilistic approaches 
for uncertainty treatment in fi nite element analysis including 
both interval and fuzzy theory is given by Moens and 
Vandepitte [11]. 

In a pioneering paper, Weaver [12] transferred the study of 
the eigenvalues of random matrices in quantum mechanics to 
examine modal statistics in linear acoustics and vibrations. He 
showed that breaking physical symmetry by cutting slits into 
aluminium blocks results in the probability density function of 
the modal spacings being described by a Rayleigh distribution. 
These fi ndings have been numerically and experimentally 
validated by examining the modal spacing distributions for 
vibrating plates with deformed boundaries [13] and for mass-
loaded plates [14]. A motivation for this work is to investigate 
the modal spacing statistics of more complex structures which 
are a combination of both rigid body and fl exural components, as 
well as structures coupled by joints with uncertain parameters.

In this paper, several statistical methodologies are used 
to investigate the natural frequencies and dynamic responses 
of structures with uncertainty across a wide frequency range. 
Attempting to predict and model all the various causes of 
uncertainty would be a very time consuming and diffi cult 
task. However, if the uncertainty becomes large enough, the 
response of a system becomes independent of the details of the 
uncertainty [1,15]. This paper attempts to address this statement 
by examining a range of dynamic systems corresponding to a 
mass-and-spring-loaded plate, two plates coupled by springs 
and a frame-plate structure. In each case, uncertainty is 
generated by adding point masses and/or springs at random 
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locations on the structures. A measure of the uncertainty across 
an ensemble of nominally identical structures is obtained using 
a non-dimensional parameter called the statistical overlap 
factor [16]. Statistical overlap occurs when there is suffi cient 
random variation in an individual natural frequency of a 
system from its mean value across the ensemble. A measure 
of the uncertainty occurring in a single ensemble member is 
obtained by observing the distribution of the spacings between 
successive natural frequencies. A statistical measure of the 
dynamic response is examined using an ergodic hypothesis, in 
which the frequency averaged response of a single system in 
the ensemble is compared with the mean response averaged 
across the ensemble at each frequency. 

2. STATISTICAL METHODOLOGIES
Modal spacing distributions

The earliest work on examining the distribution of the spacings 
between successive natural frequencies was conducted by Bolt 
[17] and Lyon [18]. They showed that for a perfectly rectangular 
room, the probability density function of the modal spacings 
followed an exponential distribution, which is given by 

asaesp =)( , μ/1=a , 0s

where μ is the mean spacing between neighbouring natural 
frequencies. However, later work has shown that an exponential 
distribution of the modal spacings only applies for simple and 
physically symmetrical structures and acoustic volumes such as 
a perfectly rectangular plate or box-shaped room. A Rayleigh 
distribution, which is given by [19]
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of the modal spacings of a structure indicates that there is 
suffi cient uncertainty in a structure such that its dynamic 
response is independent of the details of its uncertainty. 

Statistical overlap factor
The statistical overlap factor is a useful parameter to obtain 
a measure of the amount of variation in the position of the 
modes across an ensemble of nominally identical systems with 
uncertainties and is defi ned by [16,20]
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where  is the standard deviation of any particular natural 
frequency n  from its mean value due to uncertainties in 
the system and is measured across an ensemble of random 
structures. Statistical overlap occurs when the random variation 
in an individual natural frequency of a system exceeds the 
mean frequency spacing. 

Ergodic hypothesis
The natural frequencies of structures with uncertainty can 
be considered to be ergodic in the sense that the statistical 
response of an ensemble are contained within one member of 
that ensemble [21]. Application of the ergodic hypothesis to 

dynamic systems states that the mean response is ergodic such 
that the frequency averaged response is equal to the ensemble 
average and can be expressed by [20]
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where ei is the kinetic energy density for subsystem i as a 
function of location x and frequency . p corresponds to a 
set of random parameters that describe the uncertainty in 
the system properties,  

p
 represents the ensemble average 

and ∆  is the frequency averaging bandwidth. The ergodic 
hypothesis requires the averaging bandwidth ∆  to be 
suffi ciently wide such that frequency averaging the response 
of one member of the ensemble will be the same as averaging 
at a single frequency across the ensemble. A suffi ciently wide 
averaging band would include at least 3 modes [20]. 

To implement the various aforementioned statistical 
methodologies, a range of dynamic systems are examined 
corresponding to a mass-and-spring-loaded plate, two plates 
coupled by springs and a frame-plate structure. In each case, 
uncertainty is generated by varying the location of the added 
masses and/or springs.

3. DYNAMIC MODELS OF STRUCTURES 
WITH UNCERTAINTY
Lagrange-Rayleigh-Ritz method
The equations of motion of a dynamic system in modal space 
can be derived using the Lagrange-Rayleigh-Ritz technique in 
what follows. The fl exural displacement of a bare rectangular 
plate in modal space is given by [22]

=
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qmn is the modal coordinate, and m, n are the mode numbers 
of the shape functions in the x and y directions respectively. 

mn) (x)= m(x) mn(y) are the mass-normalised eigenfunctions 
which satisfy the following orthogonality condition [23]
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where Lx , Ly are respectively the lengths of the plate in the x and 
y directions, h is the plate thickness and  is the density. For a 
plate simply supported on all four sides, the mass-normalised 
eigenfunctions are given by
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where Mn= hLx Ly /4 is the modal mass. Using the orthogonality 
condition, an expression for the kinetic energy of a bare plate 
becomes
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where w&  denotes the derivative of w with respect to time. 
Similarly, an expression for the potential energy of the plate 
can be obtained as

=
mn

mnmnqV 22

2
1

            (9)

where  +=

22

yx
mn L

n
L

m
h

D
 corresponds to

 

the natural frequencies of the bare plate,  

)1(12 2

3

v
Eh

D =  is the plate fl exural rigidity, and E, v are

respectively Young’s modulus and Poisson’s ratio. 
Lagrange’s equation for a particular modal coordinate j is 
given by [22]
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Differentiating the kinetic and potential energies given by 
Eqs. (8) and (9) with respect to the modal coordinate pq and 
substituting into Lagrange’s equation results in the equation of 
motion of the bare plate.
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The natural frequencies can then be obtained by eigenvalue 
analysis ( ) .02 =MK This was performed in Matlab 
using the command eig, which returns a diagonal matrix of 
eigenvalues and a matrix of corresponding eigenvectors.

Mass-and-spring-loaded plate
Now consider a mass-and-spring-loaded plate as shown in 
Fig. 1. For the simply supported plate in free vibration with Nm 
number of point masses (of size m) and Nk springs to ground 
(of stiffness k), the equation of motion for a particular modal 
coordinate pq of the bare plate has been previously developed 
and is given by [24]
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xm and xk correspond to the random locations of the added 
masses and springs, respectively. In the absence of the added 
masses and springs, Eq. (12) simply reduces to that of the bare 
plate given by Eq. (11). The natural frequencies of the mass-
spring loaded plate were obtained by eigenvalue analysis using 
Matlab.

m

k

Figure 1. A simply supported plate with randomly located point 
masses and springs to ground.

Plates coupled by springs
Consider two simply supported plates coupled by a linear 
spring of stiffness k at a random location xi on each plate (i=1,2 
is the plate number). The total kinetic energy of the system is
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Making use of the eigenfunction orthogonality conditions, the 
potential energy of the coupled plate system is given by

( )22211
2
,2

2
,2

2
,1

2
,1 )()(

22
1

2
1

xx ww
k

qqV
mn

mnmn
mn

mnmn ++=   
          
            (14)
where 1,mn and 2,mn are the natural frequencies of each 
uncoupled plate. The last term on the right hand side of Eq. (14) 
describes the coupling dynamics due to the randomly located 
spring. Differentiating the kinetic and potential energies with 
respect to the modal coordinate pq of the uncoupled plates and 
substituting into Lagrange’s equation, the equations of motion 
for the spring-coupled plates are given by 
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Equations (15) and (16) can easily be expanded to account for 
N number of randomly located springs, as shown in Fig. 2. The 
natural frequencies of the spring-coupled plates were obtained 
by eigenvalue analysis using Matlab.

m
Plate 1

Plate 2

Figure 2. Simply supported plates coupled by randomly located 
springs.

Frame-plate structure
Finally, it is of interest to examine the dynamic characteristics 
of a structure with both stiff and fl exible components, where the 
dynamic responses of the stiff components (of low modal density) 
are not sensitive to uncertainties but the fl exible components (of 
high modal density) are sensitive to uncertainties. The dynamic 
characteristics of a frame-plate structure were obtained both 
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computationally and experimentally. The frame-plate structure 
was modelled using fi nite element analysis, where the fl exible 
plates were represented by quad 4 elements and the frame was 
modelled using bar elements. Damping was included in the 
model using a structural loss factor of 0.1%. The frame was 
constructed from 19 mm square hollow section aluminium tubes 
with a wall thickness of 1.2 mm. The fl exible plates were made 
from 1.6 mm thick aluminium plate. The overall dimensions of 
the structure were 1000 mm long, 600 mm high and 600 mm 
wide. Twenty 3 gram masses were attached to the structure (7 
masses on the two side plates and 6 masses on the base plate). 
Using Monte-Carlo simulations, 50 different confi gurations of 
the randomly located masses have been solved. Figure 3 shows 
a computational model of an ensemble member of the frame-
plate structure.

Figure 3. FEA model of the frame-plate structure with randomly 
located masses attached to the plates.

The same dimensions and material parameters were used in 
the construction of the experimental rig of the frame-plate 
structure. The tubes for the frame were welded together and the 
plates were attached using an epoxy adhesive. The frame was 
hung on soft springs to simulate free-free boundary conditions. 
Twenty 3 gram masses were attached at random locations 
across three of the plates. The structure was excited by a shaker 
mounted horizontally to the front, lower left hand corner of 
the frame, as shown in Fig. 4. The responses were measured 
in the horizontal plane at the rear, top, right hand corner. The 
measured signals from both the excitation and the response 
were passed though charge conditioning amplifi ers before 
being sampled by an FFT analyser. 50 different confi gurations 
have been measured by randomising the locations of the added 
masses.

 

Figure 4. Schematic diagram of the experimental set-up for the 
frame-plate structure.

4. RESULTS
Natural frequency statistics
The natural frequencies for the bare plate, mass-and-spring-
loaded plate and plates coupled by linear springs were obtained 
using Matlab. In each case, the plates were of dimensions 
Lx=899 mm, Ly=600 mm and thickness h=2 mm, with material 
properties of aluminium (  =2800 kg/m3, E=70 GPa, v = 0.3). 
Damping was included in the analysis by using a complex 
Young’s modulus E(1+j ) where =0.1% is the structural 
loss factor. A probability density function (PDF) of the modal 
spacings was achieved by conducting the following steps: the 
natural frequencies for each dynamic system were arranged in 
ascending order, the spacings between successive frequencies 
were obtained, a histogram of the frequency spacings was 
generated and then converted to a PDF by scaling to unit area. 
The mean frequency spacing for each ensemble member was 
also calculated for comparison of the PDFs with the Rayleigh 
and exponential distributions. It is worth noting that the mean 
frequency spacing for a given dynamic system does not 
signifi cantly vary between each ensemble member.

Figure 5 presents the frequency spacing distribution of 
the bare plate. The frequency spacings were obtained for a 
frequency range up to 4 kHz and the mean frequency spacing 
is approximately 12 Hz. Figure 5 shows that the modal spacing 
distribution of a structure with physical symmetries clearly 
follows an exponential distribution, which is given by Eq. (1) 
and is a function of the mean frequency spacing of the bare 
plate. 

The PDF of the modal spacings and statistical overlap 
factor results for the mass-and-spring-loaded plate are given by 
Figs. 6 and 7. Fifty masses and springs were added at random 
locations, where each mass represents 0.2% of the mass of the 
bare plate and the springs each have stiffness 2 x 105 N/m. 
The added masses and springs were considered to be both non-
collocated (Fig. 6) and collocated (Fig. 7). Using Eq. (3), the 
statistical overlap factor (SOF) was calculated by examining 
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the variation of each natural frequency across an ensemble of 
50 spring-mass plates. The trend line for the SOF curves is 
also shown. The curves of the statistical overlap factor tend 
to level off with increasing frequency. This indicates that 
the results for the SOF have ‘saturated’ such that no further 
increase in statistical overlap will be observed with increasing 
frequency. The saturation in the SOF is attributed to the fact 
that the dynamic characteristics of the system have become 
independent of the details of the uncertainty, thereby indicating 
the frequency range beyond which a Rayleigh distribution of the 
modal spacings is expected to apply. An interesting observation 
in Fig. 7 for the plate ensemble with collocated masses and 
springs is the distinct dip in the statistical overlap factor, at 
which the value for S is zero. The frequency at which this dip 
occurs corresponds to the natural frequency for an equivalent 
single degree of freedom spring-mass system in terms of the 
added masses and springs, that is, 

mkn mNkN /=   

(which in this case occurs at approximately 916 Hz). At this 
frequency, the impedance of the added masses and springs 
is zero and hence are not generating any uncertainty on the 
plate. The low frequency range corresponds to the stiffness 
controlled region in which the springs dominate the structural 
response. As the frequency increases, the dynamic response of 
the structure becomes more sensitive to the inertial effects of 
the added point masses. The PDFs were obtained for the modal 
ranges beyond which the SOF begins to level off (4 kHz to 
12 kHz). For both the collocated and non-collocated masses 
and springs, the PDF of the modal spacings clearly follows a 
Rayleigh distribution, which was calculated using Eq. (2) and 
the mean frequency spacing of an ensemble member for the 
same frequency range.

A PDF of the frequency spacings (for a single ensemble 
member) and statistical overlap factor (for the ensemble) are 
given in Figs. 8 and 9 for the spring-coupled plates and frame-
plate structure respectively. For the spring-coupled plates, 10 
springs of linear stiffness 5e6 N/m were randomly located on 
each plate. Similar results are observed for each system where 
the SOF initially increases with increasing frequency and then 
tends to level off as the statistical overlap saturates. The PDFs 
of the modal spacings are given for the frequency ranges 2 kHz 
to 10 kHz (spring-coupled plates) and 1 kHz to 4 kHz (frame-
plate structure).
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Figure 5. Probability density function of the natural frequency 
spacings for the bare plate: simulation results (grey line); 
exponential distribution (black line). 
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Figure 6. Results for the mass-and-spring-loaded plate (non-
collocated masses and springs). (a) Probability density function 
of the modal spacings: simulation results (grey line); Rayleigh 
distribution (black line). (b) Statistical overlap factor (grey line) 
and trend curve (black line). 
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Figure 7. Results for the mass-and-spring-loaded plate 
(collocated masses and springs). (a) Probability density function 
of the modal spacings: simulation results (grey line); Rayleigh 
distribution (black line). (b) Statistical overlap factor (grey line) 
and trend curve (black line). 
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Figure 8. Results for the spring-coupled plates. (a) Probability density function of the modal spacings: simulation results (grey line); 
Rayleigh distribution (black line). (b) Statistical overlap factor (grey line) and trend curve (black line).

     (a)       (b)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 2000 4000 6000 8000 10000

Frequency (Hz)

St
at

is
tic

al
O

ve
rl

ap
Fa

ct
or

0

0.02

0.04

0.06

0.08

0.1

0.12

0 10 20 30 40 50

Frequency Spacing (Hz)

Pr
ob

ab
ili

ty
D

en
si

ty
Fu

nc
tio

n

(a) (b)

0

0.5

1

1.5

2

2.5

0 500 1000 1500 2000 2500 3000 3500 4000

Frequency (Hz)

St
at

is
tic

al
O

ve
rl

ap
Fa

ct
or

0

0.05

0.1

0.15

0.2

0.25

0.3

0 2 4 6 8 10 12 14 16
Frequency Spacing (Hz)

Pr
ob

ab
ili

ty
D

en
si

ty
Fu

nc
tio

n

Figure 9. Results for the frame-plate structure. (a) Probability density function of the modal spacings: simulation results (grey line); 
Rayleigh distribution (black line). (b) Statistical overlap factor (grey line) and trend curve (black line).

Frequency and ensemble averaged responses
In this section, the ergodic hypothesis has been utilised to 
compare the frequency averaged and ensemble averaged 
responses for the spring-coupled plates and the frame-plate 
structure. The frequency averaged response of a single ensemble 
member was obtained by averaging the response using a 
proportional bandwidth of 5% of the frequency range for the 
spring-coupled plates, and 2% of the frequency range for the 
frame-plate structure. The ensemble averaging was achieved 
by averaging the responses across the ensemble at each discrete 
frequency. A measure of the quality of the match between the 
ensemble and frequency averaged results is observed using the 
z-score, which tests whether the residuals (corresponding to the 
error between the frequency and ensemble averaged results) 
has a mean of zero. The z-score is given by z=x/ r , where x 
is the mean of the residuals and r is the standard deviation of 
the residuals. 

The frequency and ensemble averaged energy levels of the 
spring-coupled plates are shown in Fig. 10. Very good agreement 

between the ensemble averaged and frequency averaged 
results is observed. The corresponding z-score is calculated 
to be |z|=0.0091 with a standard deviation of the residuals,

r = 4 dB. Similarly, Figs. 11 and 12 present the frequency 
averaged and ensemble averaged responses for the frame-
plate structure obtained computationally (Fig. 11) and 
experimentally (Fig. 12). The z-scores are |z|=0.0668 and 

r =3.2 dB (computational result) and |z|=0.0343, r =5.2 
dB (experimental result). In order to observe the effect of the 
frequency averaging bandwidth on the ergodic hypothesis 
results, the z-score and standard deviation for a range of 
averaging bandwidths are presented in Table 1, for the spring-
coupled plates and frame-plate structure. It can be seen that 
increasing the averaging bandwidth results in a decrease in 
the z-score and standard deviation and hence an increase in 
the similarity between the ensemble and frequency averaged 
results. This decrease in the z-score and standard deviation 
will occur until an optimum frequency averaging bandwidth 
is reached. Beyond this bandwidth, the z-score and standard 
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deviation will increase again due to loss of detail in the 
responses. The ergodic hypothesis shows the potential of 
obtaining the statistical responses of an ensemble of nominally 
identical structures from just one member of the ensemble.

Table 1.  The z-score and standard deviations for a range of 
frequency averaging bandwidths for the spring-coupled plates 
and frame-plate structure.

Spring-coupled plates
Bandwidth (%) 1 2 3 4 5 10
z-score 0.2730 0.1799 0.1071 0.0515 0.0091 0.1215
Std deviation 6.6070 5.3469 4.5975 4.1723 3.9827 3.9211

Frame-plate structure (computational results)
Bandwidth (%) 0.1 0.25 0.5 1 2 5
z-score 0.2129 0.1769 0.0934 0.0668 0.2142 0.3361
Std deviation 4.4364 3.9901 3.4342 3.1548 3.7253 4.7828

Frame-plate structure (experimental results)
Bandwidth (%) 0.1 0.25 0.5 1 2 5
z-score 0.1763 0.1544 0.1112 0.0343 0.0631 0.1807
Std deviation 6.1878 5.9180 5.5609 5.2406 5.3509 6.0253

5. CONCLUSIONS
The statistical responses of a mass-and-spring-loaded plate, 
two plates coupled by springs and a frame-plate structure have 
been investigated. For complex structures, it was found that the 
spacings between successive natural frequencies of a structure 
follow a Rayleigh distribution, indicating that the response of 
the structure is independent of the properties of the uncertainty. 
An ergodic hypothesis was employed which showed that 
the statistical responses of an ensemble can be predicted by 
frequency averaging the response of one member of the 
ensemble, as long as the averaging bandwidth is suffi ciently 
wide. The results presented in this paper demonstrate that there 
are universal statistical descriptors for the modal spacings and 
dynamic responses of structures with suffi cient uncertainty. 
This can serve to reduce the computational diffi culties involved 
in the study of complex systems.

Figure 10. The frequency averaged response (black line) and ensemble 
averaged response (grey line) for the spring-coupled plates.

Figure 11. The frequency averaged response (black line) and 
ensemble averaged response (grey line) for the frame-plate 
structure (computational result).

Figure 12. The frequency averaged response (black line) and 
ensemble averaged response (grey line) for the frame-plate 
structure (experimental result).
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