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We introduce a web-based database that gives details of the acoustics of soprano and tenor saxophones for all standard 
fingerings and some others. It has impedance spectra measured at the mouthpiece and sound files for each standard fingering. 
We use these experimental impedance spectra to explain some features of saxophone acoustics, including the linear effects 
of the bell, mouthpiece, reed, register keys and tone holes. We also contrast measurements of flute, clarinet and saxophone, 
to give practical examples of the different behaviour of waveguides with open-open cylindrical, closed-open cylindrical and 
closed-open conical geometries respectively.  

INTRODUCTION
Saxophones are made in many sizes. All have bores that are 
largely conical, with a small, fl aring bell at the large end and 
a single reed mouthpiece, fi tted to the truncation, that replaces 
the apex of the cone. The soprano (length 710 mm, including 
the mouthpiece) and smaller saxophones are usually straight. 
Larger instruments (the tenor has a length of 1490 mm) are 
usually bent to bring the keys more comfortably in the reach 
of the hands (Fig 1). The half angles of the cones are 1.74° and 
1.52° for the soprano and tenor respectively. These are much 
larger than the angles of the orchestral woodwinds: the oboe and 
bassoon have half angles of 0.71° and 0.41° respectively, while 
the fl ute and clarinet are largely cylindrical. The relatively large 
angle of the cone gives saxophones a large output diameter: 
even the soprano saxophone has a considerably larger end 
diameter than oboe, bassoon and clarinet. Because of the 
geometry and other reasons [1], the saxophone is noticeably 
louder than these instruments, which was one objective of its 
inventor, Adolphe Sax.

Figure 1. The soprano (bottom) and tenor (top) saxophones used 
here, shown with a metre rule.

The playing of reed instruments produces coupled 
oscillations involving the reed and standing waves in the bore 
of the instrument [e.g. 2–5], and sometimes also in the vocal 
tract of the player [6]. 

Many of the important acoustical properties of the 
instrument’s bore can be described by its acoustic impedance 
spectrum, Z, measured at the embouchure or input of the 

instrument. For each note, there is at least one confi guration 
of closed and open tone holes, called a fi ngering, and the 
impedance spectrum for each fi ngering is unique. Impedance 
spectra for a small number of fi ngerings on the saxophone have 
been reported previously [7, 8], but measurement technology 
has improved considerably since then [9, 10]. This paper reports 
an online database comprising, for each standard fi ngering on 
both a soprano and a tenor saxophone, an impedance spectrum, 
a sound fi le of the note produced and the spectrum of that sound. 
It also includes such data for a number of other fi ngerings. It 
thus extends our earlier online databases for the fl ute [11] and 
clarinet [12]. Beyond its acoustical interest, this saxophone 
database will be of interest to players and teachers. Another 
application is intended for the future: The analogous database 
for the fl ute was used in the development of ‘The Virtual Flute’, 
an automated web service that provides fi ngering advice to 
fl utists for advanced techniques [13, 14]. A similar service for 
saxophone could use these data.

We use our experimental measurements to show separately 
the effects of the bell, mouthpiece, reed, tone holes and register 
keys. We also include a number of comparisons to illustrate the 
different behaviours of cylindrical and conical waveguides. 

MATERIALS AND METHODS
The saxophones were a Yamaha Custom EX Soprano 
Saxophone and Yamaha Custom EX Tenor Saxophone: both 
high-grade models from a leading manufacturer. 

The impedance spectra were measured using a technique 
described previously [10, 12]: see [10] for a review of 
measurement techniques. Briefl y, it uses two non-resonant 
calibrations and three microphones spaced at 10, 50 and 250 
mm from the reference plane (Fig 2). The smallest microphone 
separation is a half wavelength and therefore measurements 
are unresolved around 4.3 kHz, which is well above the 
cut-off frequency of both instruments. Measurements were 
made between 80 Hz and 4 kHz, which includes the range of 
fundamental frequencies of both instruments.

The impedance head has a diameter of 7.8 mm, whose 
cross sectional area is smaller than the internal bore of the 
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mouthpiece, but larger than the average opening between 
the reed and mouthpiece, through which air fl ows into the 
instrument. Using a rigid seal, it was fi tted to the tip of the 
mouthpiece, with the reed removed (Fig 2).

Figure 2. Schematic for measuring saxophone acoustic input 
impedance using three microphones. Not to scale.

Three different cones with the same half-angle as the 
soprano saxophone were made. The fi rst was cast in epoxy 
resin with a length chosen to produce an impedance peak at the 
nominal frequency of C5 (523 Hz). The second cone was made 
(from Lexan) to replace the mouthpiece with an appropriate 
conical section. To allow input impedance measurements, 
both of these cones were truncated at 7.8 mm (the diameter of 
the impedance head) and extended with a cylindrical volume 
equivalent to that of the missing truncated section of cone.  The 
third conical section was made (using a moulding compound) 
to fi t inside the bell and to extend the conical bore over the full 
length of the instrument.

Sound fi les and the sound spectra fi les are not shown here 
but may be found at www.phys.unsw.edu.au/music/saxophone. 
They were recorded in the laboratory using two microphones, 
one placed about 30 cm directly in front of the bell, and the 
other one metre away. The player is a distinguished soloist 
who performs principally in jazz and contemporary concert 
styles. Sound spectra vary with distance from the instrument 
and direction, so these cannot be considered representative of 
all possible recordings.

RESULTS AND DISCUSSION
Fig 3 shows the impedance spectra measured on a soprano and 
a tenor saxophone for their lowest notes, sounding G#2 (tenor) 
and G#3 (soprano), both of which are written A#3 for these 
transposing instruments. In both cases, the fi rst maximum 
determines the played pitch and the next several maxima 
closely match its harmonics. However, the fi rst maximum is 
weaker than subsequent maxima, which is not the case for the 
clarinet [12]. This has the effect of making the lowest notes 
diffi cult to play softly, particularly on the tenor. 

This weak fi rst maximum of a cone is predicted by explicit 
models, but can be explained qualitatively if we use the 

geometric mean of the impedance of two adjacent extrema 
as an estimate of an effective characteristic impedance Z0eff 
for a frequency between them. The characteristic impedance 
Z0 associated with the bore cross-section decreases with 
distance down the bore. At suffi ciently low frequencies, the 
air in the narrow section near the mouthpiece requires only 
small pressures to accelerate it, so Z0eff is closer to the Z0 
of the larger bore downstream. The effect is stronger for the 
tenor saxophone, because its lowest resonances fall at lower 
frequencies. (Later we show that, for a fi rst maximum at 
suffi ciently high frequency, as in Fig 6 and 7, the fi rst maximum 
is not much weakened.) The weak extrema at high frequencies 
are (in part) the results of increased viscothermal losses near 
the walls and increased radiation at the bell. 

Figure 3. The measured impedance spectra of a soprano and a 
tenor saxophone for their lowest notes (G#3 and G#2 respectively, 
both written A#3 on these transposing instruments).

For the lowest note of the soprano, the maxima in Z occur at 
frequencies 207, 411, 606, 824, 1063, 1305, 1561, 1801, 2038 
Hz, all ± 1 Hz. These are a good approximation to a (complete) 
harmonic series, f1, 2f1, 3f1 etc. This contrasts with the case for 
the clarinet with cylindrical bore, whose impedance maxima 
occur at the odd members of the harmonic series, with the 
lowest having a wavelength about 4L and a frequency c/4L, 
where c is the speed of sound and L the length of the bore 
(~660 mm for the clarinet). Consequently, in spite of being 
50 mm shorter than the soprano saxophone, the clarinet has a 
much lower lowest note (sounding D3 compared with G#3). 
The impedance spectra of the fl ute (also largely cylindrical, 
bore length of ~620 mm) are somewhat like that of the clarinet, 
but for the fl ute the minima rather than the maxima determine 
the playing regime, and so its lowest note is C4 – almost an 
octave higher than that of the clarinet [12]. We compare these 
three instruments below. 

A completely conical bore of length L' (where L' includes 
the end correction of about 0.6 times the exit radius) would 
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theoretically have maxima in Z at frequencies of about c/2L' 
and all integral multiples of this. The frequency of the fi rst 
maximum for the soprano saxophone, f1 = 207 Hz, agrees well 
with this prediction. The cone of the saxophone, of course, is 
incomplete: if it were continued to a point at the mouthpiece, 
there would be no cross-section for air movement or place for 
a reed. The cone is truncated at a diameter of 9.2 mm, and the 
missing cone of length ~150 mm is replaced by a mouthpiece 
with a volume of 2.25 cm3. When this is added to the effective 
volume due to the compliance of a reed (between 1.2 and 1.9 
cm3, discussed later), it is comparable with that of the missing 
cone (3.35 cm3). This replacement has the affect of achieving 
resonances that fall approximately in the harmonic series 
expected for the complete cone [15, 16]. (The impedance 
peaks of a simple truncated cone are more widely spaced and 
not harmonically related.)

Effect of the bell
The loss of structure in Z above about 2.6 kHz for the soprano 
and above about 1.8 kHz for the tenor is due, in part, to the 
bell (Fig 3), which enhances radiation at high frequencies; the 
greater radiation means less refl ection and therefore weaker 
standing waves. Fig 4 demonstrates this by plotting Z for 
the lowest note on the soprano with the bell replaced by a 
conical section of equal length and the same half-angle as the 
saxophone bore. The effective length with the cone is slightly 
greater, so the maxima appear at lower frequencies. 

Figure 4. Measured impedance spectrum for G#3 (written A#3) 
on the soprano saxophone, its lowest note. The solid curve is for 
the normal saxophone (including mouthpiece and the compliance 
of the reed). In the dotted curve, the saxophone bell is replaced 
with a conical section of equal length and the same half-angle as 
the saxophone bore.

 

Mouthpiece and reed
The mouthpiece of the soprano has a volume of 2.25 cm3 and an 
internal length, Lm, (see Fig 2) of 44 mm. At wavelengths very 
much longer than its length, it approximates a local compliance, 
in parallel with the rest of the bore. At low frequencies, the 
effective characteristic impedance of the bore is low, so the 
compliance will have only a modest effect, but will lower 
the frequencies of the maxima. At higher frequencies, it may 
lower the parallel impedance and, at still high frequencies, 
it is no longer appropriate to treat it as a simple compliance. 
The effect of the mouthpiece is shown in Fig 5. Neither the 

truncation nor the mouthpiece size scales exactly with the size 
of the instrument. Consequently this effect, which lowers the 
impedance in the range 1 – 2.5 kHz for soprano and 0.5 – 1.5 
kHz for tenor, is not exactly scaled with the octave difference 
between the instruments (Fig 3).

Figure 5. Effect of the saxophone mouthpiece and reed on the 
acoustic impedance of a soprano saxophone, shown for its lowest 
note. The dark curve is the measured impedance of a soprano 
saxophone with the mouthpiece attached, while the pale curve is 
measured with the mouthpiece replaced with a cone and cylinder. 
The dotted curve shows the effect of the reed on the acoustic 
impedance of a normal saxophone (with mouthpiece).

The reed has a mechanical compliance and may, to fi rst 
order, be replaced by an acoustic compliance in parallel with 
the input. Its effect is also shown in Fig 5. Reed makers and 
saxophonists grade the reed according to hardness (a harder 
reed has a smaller compliance). The reed compliance here 
is for a number 3 reed. All else being equal, softer (more 
compliant) reeds lower the frequencies of the peaks in Z, and 
so play fl atter. Of course, all else is not equal: the player may 
reduce the mouthpiece volume by sliding it further onto the 
instrument, or may increase the effective hardness of the reed 
by pushing it harder against the mouthpiece and reducing its 
effective length. S/he may also change the confi guration of the 
vocal tract.

Bore comparisons
Musicians are generally puzzled by the fact that the 
(approximately) conical winds behave so differently from the 
(approximately) cylindrical clarinet. All have a reed at one 
end, which is therefore a region of large pressure variation, 
while the bell is open and approximates a pressure node. Yet 
the clarinet plays about an octave lower than a cone of the 
same length, its fi rst two maxima in Z have a ratio of three 
instead of two, and its low notes have predominantly the odd 
harmonics, whereas the conical instruments have maxima in Z 
in the ratios 1:2:3 etc and all harmonics are present, even on 
low notes. Approximating the clarinet as a cylinder of length 
L with a pressure antinode in the mouthpiece (x = 0) and a 
pressure node at the bell (x = L), it is obvious that a pressure 
amplitude p(x) of cos{2(2n–1)π(x/4L)} satisfi es the boundary 
conditions for integers n, and that it gives a lowest note with a 
wavelength of approximately 4L. 

To acousticians, the explanation is simple: for the 
waveguide with constant cross section, solutions to the one 
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dimensional wave equation describe propagating modes, and 
these are readily written in terms of sine and cosine functions. 
For a waveguide whose cross section goes as r2, where r is 
the distance from the apex, the solution is a sum of spherical 
harmonics. These include a pressure term proportional to 
(1/r)sin{2nπ(r/2L)}, which has an antinode at the origin and 
a node at L for all integers n. Comparisons of the relevant 
functions are given elsewhere [17], but in this study we are able 
to give explicit experimental comparisons using the impedance 
curves. 

Fig 6 presents the measured impedance spectra of several 
bores, each of which has an effective length of about 325 mm. 
One is a cylinder of that length, one a truncated cone, with the 
truncation replaced by a cylinder of equal volume. The others 
are a clarinet with the fi ngering for the note C4 (written D4) 
and a fl ute and soprano saxophone with the fi ngering for C5 
(written D5 for saxophone), the latter using an alternative or 

trill fi ngering that puts that note in the fi rst register: i.e. the 
lowest frequency maximum in Z is used.

At low frequencies, the cylinder-cone combination has 
maxima at approximately n(c/2L), which correspond to the 
minima for the cylinder. (At high frequencies, the replacement 
of the truncation of the cone becomes important for both the 
cylinder-cone and the saxophone.)  So the saxophone and 
the fl ute can play C5 and C6 with these fi ngerings (although 
a saxophonist will usually use different fi ngerings for both 
notes). The maxima for the cylinder are at approximately 
(2n–1)(c/4L), so the clarinet can play C4 and G5 with this 
fi ngering (although the player will usually use a register 
key for the latter, as explained below). The behaviour of the 
instruments at high frequencies illustrates several interesting 
effects, which we discuss below.

 

Cut-off frequency
At suffi ciently high frequencies, the inertance of air in the 
tone holes also generates a non-negligible pressure difference 
between the bore and outside. An array of open tone holes and 
the short sections of bore that connect them thus resemble 
an acoustical transmission line comprising compliances and 
inertances. Above a cut-off frequency, tone holes can also 
effectively seal the bore from the air outside. Consequently, Z 
for many fi ngerings on a clarinet, fl ute and saxophone show, 
at suffi ciently high frequency, a series of peaks spaced at 
frequencies corresponding roughly to standing waves in the 
whole length of the bore, irrespective of what tone holes are 
open, as shown, for example, in Figs 6 and 7.

The tone hole cut-off frequency, fc, can be calculated 
for cylindrical waveguides using either the continuous 
transmission line approximation [2] or by assuming that the 
open tone holes approximate an infi nite array [18]. Both give fc 
~ 0.11 (b/a)c(tes)-1/2, where a and b are bore and hole radii, s is 
half the separation, te is the effective tone hole length including 
end effects. No comparable expression currently exists for 
conical bores. Using this expression naïvely for the saxophone 
gives values of 1340 ± 240 Hz and 760 ± 250 Hz for soprano 
and tenor saxophone respectively, values that are similar 
to the frequencies at which there is a sudden change in the 
slope of the envelope of the sound spectrum [15 and the online 
database]. These values approximate the frequencies above 
which the broadly and regularly spaced maxima are replaced 
by the irregular and more narrowly spaced maxima (Figs 6 and 
7, and others in the online database).

The periodic vibration of the air fl owing past the reed (and 
also that of the reed itself) and that of the air jet exciting a fl ute, 
are both nonlinear processes, which therefore give rise to a 
spectrum with many harmonics [4, 5]. Only for notes in the low 
range of the instrument do several of these harmonics coincide 
with resonances in the bore. In that range, the spectrum of the 
clarinet contains predominantly odd harmonics while that of 
saxophone and fl ute have all harmonics. In the higher range, 
there is little systematic difference between even and odd 
harmonics [12]. 

Figure 6. The acoustic impedance of (bottom to top) a simple 
cylinder, flute, clarinet, soprano saxophone and a truncated cone, 
all with an equivalent acoustic length. The circle indicates the 
maximum or minimum where each instrument operates. For the 
instruments, other notes are readily compared using the online 
databases reported here and in [11] and [12].
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Registers
For most standard fi ngerings in the fi rst register, all tone holes 
are closed upstream of a point, which determines an effective 
length of the instrument for that fi ngering, and most of the tone 
holes downstream from that point are open. At low frequencies, 
these open holes approximate a short circuit between the bore 
and the air outside, effectively ‘cutting-off’ the bore at the fi rst 
open tone hole, and producing the fi rst two or more resonances 
seen in Fig 6. 

A fl utist can thus play C5 or C6 using the fi ngering whose 
impedance spectrum shown in Fig 6 by varying (chiefl y) the 
speed of the jet of air. In clarinet and saxophone, the upper 
note corresponding to that fi ngering is selected using a register 
key.

To play in the second register of the saxophone, one of two 
register holes is opened. These are holes with small diameter 
(about 2 mm) and relatively long length (about 6 mm). At 
low frequencies, they allow air fl ow. At higher frequencies, 
the mass of the air in the hole can only oscillate substantially 
if there is a substantial pressure difference across it. Thus, at 
high frequencies, the air in a register key effectively seals it 
[2]. Consequently, when opened, a register hole weakens and 
changes the frequency of the fi rst impedance peak, making it 
easier for the second peak to determine the playing frequency. 
Fig 7 shows the difference. This is how notes in the second 
register are produced in most reed instruments.

Figure 7. Effect of the register key, shown here for the fingerings 
for written A4 and A5 (sounding G4 and G5) on the soprano 
saxophone. The first impedance peak in the spectrum for the 
A4 fingering is weakened and detuned when the register key 
is engaged in the A5 fingering, so the reed now operates at the 
second peak. The high frequency impedance structure is less 
affected.

On the clarinet, with its largely cylindrical bore, notes in 
the fi rst and second registers that use similar fi ngerings are 
separated by a frequency ratio of three (a musical twelfth) 
compared with a ratio of two (an octave) for the saxophone. 
The clarinet uses only one register hole to play the whole 
second register (which spans 13 semitones). Consequently, the 
position and dimensions of the register key appear to be less 
critical for the clarinet – so much so that it also uses this hole 
as a tone hole for the highest note in the fi rst register.

In contrast, because its two registers are separated by 
only an octave, the saxophone requires two register holes 
to cover a second register (which spans 16 semitones). The 
register hole must be small enough so that it does not affect the 

second resonance too much. Therefore, to have a suffi ciently 
large effect on the lower register, it must be located where the 
standing waves in that register have relatively high pressure. 
Consequently, the lowest seven notes are played using a 
register hole (2 mm diameter and 6 mm deep on the soprano), 
which is further from the mouthpiece than the register key 
used for higher notes. An automated octave key, operated by 
a system of mechanical logic, uses one key, for the left thumb, 
to open the appropriate register hole. Inspection of the Z plots 
for the highest notes using the lower register hole (G5 and 
G#5, sounding F5 and F#5: on the online database, not shown 
here) shows that it is rather less effective at reducing the fi rst 
impedance peak than it is for lower notes.

The high range of the saxophone
For the saxophone, the combination of the cut-off frequency 
and the bore geometry strongly attenuate the magnitude and 
sharpness of peaks in Z above about 1.3 kHz for the soprano 
saxophone. The weak maxima in this range have important 
musical consequences. Traditionally, the range of the instrument 
comprises only two registers, playing notes corresponding to 
the fi rst and second impedance peaks respectively. This range 
fi nishes (depending on the model) at written F6 or F#6 (for the 
soprano, this sounds D#6 or E6, about 1300 Hz; for the tenor, 
D#5 or E5, about 650 Hz). The higher resonances will not 
usually support notes on their own. However, with assistance 
of suffi ciently large peaks in the acoustical impedance of the 
player’s vocal tract, tuned to the appropriate frequency, expert 
players do achieve notes above the traditional range, in what is 
called the altissimo range [6].

Saxophone acoustics 
Saxophone acoustics provides a range of physically interesting 
phenomena and musically interesting details [19], including 
subharmonics and multiphonics, which involve superpositions 
of standing waves, cross fi ngerings, and the relations between 
sound spectra, sound recordings and impedance spectra. These 
are best explored on-line. The compendium is located at www.
phys.unsw.edu.au/music/saxophone.
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