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INTRODUCTION
Excessive noise from compressors is a major concern in 

industries and refineries. The biggest impact of this noise is the 
discomfort to the personnel working at the facility as observed 
in practice. The primary concern is that the noise may drown/
hide the sound of the emergency alarms of the facility. The 
noise levels in compressors vary over a wide range from 70–
120 dB(A) [1-3]. As the compressor operates over its lifetime, 
the noise and vibration levels expectedly increase, since 
centrifugal compressors are continuous flow machines and 
are extensively used in Saudi Arabia at crude oil processing 
facilities such as Saudi Aramco. Maintenance is periodic and 
stopping the operation every time noise levels exceed the 
desired threshold can be very expensive. Currently Dresser 
Rand uses Duct Resonator arrays (DR arrays) as an add-on 
solution [1, 2]. This solution was applied successfully to a 
2528 PSIG (172 BARG) multistage centrifugal compressor on 
a platform in the North Sea and was shown to successfully give 
a reduction of up to 12 dB(A). Although the DR arrays give 
appreciable noise reduction since they are machined directly 
on the diffuser, the challenge lies in the manufacturing and 
application cost of this solution. The aim of this work is to 
formulate a design procedure for Helmholtz resonators that 
will be considered as an add-on device to existing pipelines to 
further reduce noise levels in a compressor line (Fig. 1).

Two levels of noise reduction are usually requested in a 
compressor line i.e. compressor and pipeline. The first one is 
at the compressor level as introduced previously and the other 
one is within the pipelines. In this paper, the focus will be on 
the design of a fit resonator for pipelines bearing in mind that 
characteristics of the compressor are known. The objective is 
then to identify a design method to fit the right resonator in 
terms of shape and size on the current pipeline connected to a 
known compressor.

Figure 1. Source of noise reduction in a compressor line

SOURCES OF NOISE IN CENTRIFUGAL 
COMPRESSORS

Noise originates from various sources within compressors 
in downstream oil sector. The most critical source of noise 
in centrifugal compressors is considered to be the blade 
passing noise which mostly characterizes the gas flowing to 
the pipelines. This noise arises from the interaction between 
the impeller blade and the stationary diffuser vanes [1-3]. It 
is widely known that blade passing frequency (BPF) noise 
components come from the circumferential flow distortions 
upstream and downstream of the impeller [4]. The interaction 
between the impeller blades as it passes by the stationary 
diffuser vane causes a pressure pulsation which leads to the 
development of positive and negative vortices. 

The interaction of these vortices as they move along the flow 
path creates the discrete frequency noises of the blade passing 
frequency. Conventionally the BPF falls between 1000 Hz to 
4500 Hz, usually depending on the speed of the compressor 
and the number of impeller blades [1]. This range falls within 
human hearing sensitivity which adds to the irritating nature 
of this noise. Although the BPF may be considered to be the 
most annoying aspect of compressor noise, at supersonic flow 
conditions another source of noise arises in the form of buzz 
saw noise. The BPF noise and the buzz saw noise coupled 
together can lead to structural failure due to fatigue especially 
at pipe nipples, stubs, and instrumentation connections. In any 
centrifugal compressor as the fluid flow exits the impeller, the 

A thorough design methodology of one and two degrees of freedom Helmholtz resonators leading to optimised transmission 
loss is described and validated in this paper. Numerical simulations of acoustic wave propagation in pipelines fitted 
with designed resonators have shown great agreement with analytical modelling and experimental tests. The Helmholtz 
resonator concept has been analysed in various configurations to evaluate the effect of the size and arrays on the overall 
noise attenuation performance. Using this method to directly dimension geometry aspects of the resonators followed by 
numerical computation of the sound pressure levels has shown that considerable sound attenuation could be achieved.
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flow distribution is distorted. Specifically, such distorted flow 
is characterised by a low angle (relative to a tangent to the 
impeller circumference) fluid flow exiting most prominently 
adjacent to the shroud side of the diffuser. In the past, this 
distorted flow has been shown to cause severe compressor 
performance problems [5]. Due to the design of the compressor, 
the inlet and discharge pipes are relatively more susceptible 
to noise transmission that the compressor casing itself. Noise 
propagates through the medium of least resistance and since 
the piping at the inlet has thinner walls when compared to the 
compressor casing, this provides a path of lower resistance 
for noise propagation. Between the inlet and the discharge, 
investigations have found that higher vibration and noise levels 
emanate from the discharge. At the inlet, the primary source 
of noise is the rotor-alone noise, while at the diffuser the BPF 
noise is dominant [2].

HELMHOLTZ PRINCIPLE
However in recent years, an add-on solution using 

the Helmholtz concept has been developed in the form of 
Helmholtz resonators. A Helmholtz resonator operates on 
the phenomenon of air resonance in a cavity, the pressure 
inside a cavity increases when air is forced into it. When the 
air source is removed, the air pressure inside the cavity flows 
outwards. This outward air pressure tends to overcompensate 
due to the inertia of the air in the neck this causes the pressure 
inside the cavity lower than the outside letting the air to come 
back into the cavity. This continues with a decrement in the 
pressure magnitude every time. There exist many variations of 
the Helmholtz resonators in the form of a quarter-wavelength 
resonator [6], branched type resonator [5] and duct resonators 
[1, 2]. Some of them are already studied and published with 
some of their characteristics [7]. The authors have focused on 
a lumped element model for this study because of the expected 
practical application in industrial plants.

LUMPED ELEMENT MODEL OF THE 
HELMHOLTZ RESONATOR

The Helmholtz resonator acts as an acoustic filter 
element. The dynamic behavior of the Helmholtz resonator 
can be modelled as a lumped system if the dimensions of the 
Helmholtz resonator are smaller than the acoustic wavelength. 
The air in the neck is considered as an oscillating mass and the 
large volume of air is taken as a spring element [4]. Damping 
appears in the form of radiation losses at the neck ends and 
viscous losses due to friction of the oscillating air in the neck. 
Figure 2 shows this analogy between the Helmholtz resonator 
and a vibration absorber with defined parameters [8]. In Fig. 2, 
Ma is the acoustic mass of the resonator and Mm is the mass 
of the mass-spring-damper system. F is the force applied at 
the resonator neck entrance and P is the pressure at the neck 
entrance. V and Ra are respectively the cavity volume and 
acoustic damping capacity of the Helmholtz resonator. K and 
Rm are respectively the stiffness and damping capacity of the 
mass-spring-damper system. ω is the excitation frequency.

Figure 2. Helmholtz resonator and vibration absorber

DESIGN PROCEDURE FOR ONE AND TWO 
DOF RESONATORS

It is aimed in this part of the paper to establish a parametric 
design procedure which will be used to dimension resonators 
of one and two degrees of freedom (DOF) capable of reducing 
noise and securing a great transmission loss of noise starting from 
a known compressor line where the blade passing frequency 
and the pipeline geometry are already known. The procedure 
proposed by the authors considers the resonating frequency and 
transmission loss equations from [9] and [10]. The procedures 
are explained hereafter. The one DOF resonator has only one 
resonant frequency hence one peak for transmission loss while 
two DOF resonators exhibit two resonant frequencies, thereby 
giving two peaks for transmission loss [11]. 

Design of a one degree of freedom resonator
The resonating frequency and transmission loss for a one 

DOF Helmholtz resonator are represented by Eqs. (1) and 
(2), respectively [8, 10]. There are four design parameters 
corresponding to Lc, Ln, ac and an that represent the cavity and 
corrected neck lengths, and the cross sections, respectively, 
as shown in Fig. 3. Damping appears in the form of radiation 
losses at the neck ends, and viscous losses due to friction of the 
oscillating air in the neck.

Figure 3. Single degree-of-freedom Helmholtz resonator

Pe jωt Fe jωt
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Relationships need to be defined to proceed with a suitable 
design. The design procedure to estimate the optimal size for 
the resonator needs to satisfy a couple of conditions derived 
from Eqs. (1) and (2).

		 f = - + +
c 3Ln + LcA 3Ln + LcA  2 3A

2Ln
3 2Ln

3 Ln
3 Lc2π 	

(1)

where A is the area ratio defined in Eq. (4) and c is the speed 
of sound in the medium. The only restriction in the theory is 
the cavity diameter that must be less than a wavelength at the 
resonance frequency. On applying the transfer matrix method 
[7], the transmission loss is obtained as

TL = 10log10  1 +
an   (1/ A) tan(kLc) + tan(kLn)      2

2ad   (1/ A) tan(kLn) + tan(kLc)-1 	
(2)

where k is the wave number.
Expressing the areas an and ac given by Eqs. (A2) and (A3) 

respectively, and using the condition of solution existence (see 
appendix A), this leads to a condition on the frequency given 
by

f < 0.2756 c
Lc	

(3)

This condition will be considered as an initial necessary 
condition for the design of the resonator when the BPF is 
known.

The second equation given by Eq. (4) is defined as the ratio 
between the cross sections. It is derived from the optimum 
transmission loss of Eq. (2) in which the denominator provides 
a relationship for the resonance frequency, as shown in Eq. (2). The 
frequency is a function of the cavity dimensions as expressed in 
Eq. (1) [12]. This second condition will be considered as the 
sufficient condition to complete the design of a single degree 
of freedom resonator.

A =      = tan(kLn). tan(kLc)
ac
an 	 (4)

Since the procedure is based on one-dimensional wave 
propagation, for a successful noise attenuator, the length to 
diameter ratio of the neck connected should not be less than 
1 as the discrepancy between the analytical results and the 
experiment is largest for length/diameter of this order [7, 13].

The design procedure is organised hereafter:
i.	 	Specify the frequency to be attenuated. 

ii.	 Assume values for A (sections ratio) within the range 0.1 to 1.

iii.	 	Determine the maximum value of Lc from Eq. (3).

iv.	 	Calculate the values of Ln from Eq. (4) using next step.

v.	 	Define a value of Δ to determine a set of lower values for 
Lc using Lc= Lc- Δ, and hence the corresponding  Ln  set of 
values. Δ is chosen to be small in the same unit as Lc  and 

Ln, if mm then Δ will be 1, 2 or 3 mm for example (this will 
show optimum values of both Lc and Ln for maximum TL). 

vi.	 The optimum dimensions i.e. Lc and Ln are selected when 
satisfying Eq. (2) and to provide the maximum transmission 
loss.

vii.		In order to combine the effects of end correction factors, 
Eq. (5) can be used [7, 14] 

ln = Ln - δ1 - δ2	 (5)

The end correction factor δ2 is given by [10]

δ2 = 0.48 an(1 - 1.25  A)	 (6)

The end correction δ1 between the circular neck and main duct 
is approximated by 

δ1 = 0.46
an

2 	
(7)

viii.	  After calculating the optimised dimensions, the resonator 
can be designed for lc= Lc and ln= Ln - δ1- δ2 for the A 
which gives maximum transmission loss. Figure 3 shows 
one of the examples based on this design methodology.

Design of a two degree of freedom resonator
Let the dual frequencies f1 and f2 to be attenuated, 

a.	 Following the procedure for two DOF resonators calculate 
the values of the radius, neck length and the volume of the 
first resonator i.e. Rn1, ln1, V1, respectively. Calculate the 
ratio (γa /γl) which satisfies the necessary condition derived 
from Eq. (B1) (procedure explained in Appendix B).

b.	

f12 f22

f22 f12+ ≥ 2  1 +
2γa
γl 	

(8)

where  
an2
an1

2γa = , 
ln2
ln1

γl = , and an1, an2 are the area of cross 

sections of the first and the second neck and ln1 and ln2 their 
respective lengths. 

c.	 Let 
anl
lnl

α =  and 
an2
ln2

β =

γa
γl

 can be determined from Eq. (8) as well as 
α
β  since it is equal 

to the same ratio. 

d.	 By using the following frequency equation, V1 and V2 can 
be calculated in terms of α and β.

		
f1,2 = + +± -4+ +

c α ααβ βββ β 2

2 2π V1 V1V1V1 V2V1V2 V2 	
(9)
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Equation (9) is the dual frequency expression rewritten in 
this form from Xu et al. [10].

e.	 Now the transmission loss can be calculated using Eq.(10) 
but rewritten and plotted with respect to α and β for 
getting the optimum 

α
β  or maximum transmission loss. 

The corrected lengths can be converted to original lengths 
used for design by following step (vi) of the one degree-of-
freedom design procedure.

β

TL = 20log10 1 +

2ad ik + α

α

V2
ikV1 V2V1k2

V2 + V1 -
1 -

	 (10)

where ad is the cross section area and k is the wave number.

Figure 4. Dual Helmholtz resonator [10]

 
This method has been applied to design a two DOF resonator 

for a pipeline. Referring to Fig. 4, the values can be correlated. 
The corresponding volume of the first and second cavities 
simulated have V1=3706 cm3 and V2=1853 cm3, respectively. 
Figure 5 shows the transmission loss distribution depending 
on the dimensional parameters ratios α and β. An indepth 
analysis of the level of transmission loss that could be achieved 
shows that optimisation can be done based on the acceptable 
manufactured necks in terms of diameters and lengths. Hence 
as shown in Fig. 5(a) the maximum transmission loss obtained 
from simulation could be achieved with α towards 1 while 
β within 0.2. Therefore, the first neck cross section an1 is 
proportional to its length Ln1 e.g. the neck length will be two 
orders higher than the neck’s diameter (d 2

n1=4Ln1/π), while β 
shows that the second neck cross section is less than 20% of 
the length Ln2. As α moves towards zero and  β towards 0.2, the 
first neck cross section becomes very small with respect to its 

length (d 2
n1= α4Ln1/π), while the second cross section remains 

similar as in previous case. This trend is fairly conserved for 
the second frequency in Fig. 5(b).

It is worth noticing from the numerical simulations using 
COMSOL Multiphysics that these frequencies are higher 
enough so that higher modes, in addition to planar wave, can 
propagate depending on the size of the main duct.

Figure 5. Transmission loss distribution versus ratios α and β for two 
degrees of freedom resonator applied to a pipeline for two different 
frequencies at 5000 Hz (a) and 3000 Hz (b)

NUMERICAL SIMULATIONS FOR ONE AND 
TWO DOF RESONATORS

3-Dimensional numerical simulation for one degree of 
freedom resonator

The following example is applied to an industrial plant. 
A cylindrical Helmholtz resonator was designed using the 
design procedure for one degree-of-freedom discussed earlier. 
Sound pressure levels showing transmission loss have been 
numerically computed using the COMSOL Multiphysics 
Acoustics module. The blade passing frequency that was 
attenuated was measured at the suction pipe of a compressor 
located in one of the plants of Saudi Aramco. Figure 6 shows 

(a)

(b)
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the corresponding sound pressure level versus frequencies. The 
simulation results are shown for a pipe with one resonator in 
Fig. 7, and with an array of resonators in Fig. 8. The maximum 
achieved noise attenuation was around 30 dB. The dimensions 
that were taken to model the resonators were found for A=0.1 
corresponding to rneck= 1 mm, lneck=3.74 mm, rcavity=3.16 mm, 
lcavity=6.21 mm. A sudden decrease in the sound pressure levels 
can be visualized in Fig. 9 when comparing a pipe fitted with 
a resonator whether it is single or in an array with a non-fitted 
pipe. When an array of identical resonators is added on the 
same location around the perimeter of the pipe (Fig. 8), it was 
observed from the numerical simulation that the sound pressure 
attenuation has improved by about 15% as shown in Fig. 9(b). 
This shows the advantage of using arrays rather than single 
resonator although the attenuation offered by the array has a 
very limited incremental range (Fig. 9). Also, the reduction 
of sound pressure level at the resonance frequencies is very 
narrow since damping and viscosity effect were not considered 
in the simulation. The little increase in noise level above the 
resonating frequency may indicate that the reference pressure 
used for the computations is higher than the measured pressure 
level. As known from Helmholtz resonators, the damping 
appears in the form of radiation losses at the neck ends, and 
viscous losses due to friction of the oscillating air in the neck. 
Neglecting the damping at this stage of numerical simulations 
by COMSOL will only have little effect on the results since 
the structure is stiff while the system with resonators is by 
definition damping-controlled.

Figure 6. Suction pipe narrow band sound pressure level of a measured 
compressor (from Dresser Rand)

3-Dimensional numerical simulation for two degrees of 
freedom resonator

The dual resonators used by Xu et al. [10] were used as 
a benchmark test to validate the analytical design method 
described previously. The same dual resonator was used in the 
COMSOL simulation to validate the level of transmission loss 
obtained analytically. 

Validation of results 
The dual resonator described in Fig. 4 was used in the 

numerical simulation. The main duct was considered with 
a square cross-section of 4.3cm x 4.3cm. The square main 

duct is then connected to a circular impedance tube with 
smooth transitions that retain a constant cross-sectional 
area development. The following figures show the results of 
simulation as generated by COMSOL Multiphysics in the 
Acoustics module, and showing relative noise attenuation in 
Figs. 7 and 8 and in Figs. 12 and 13. The input frequency was 
varied and the acoustic response of the system was recorded. 
As the figures show, there is a noticeable reduction in noise 
levels. There is nearly a 20 dB decrease in noise levels at the 
73 Hz resonant frequency and a 25 dB decrease in noise levels 
at the 166 Hz resonant frequency. The noise response of the 
dual Helmholtz resonator versus frequency is shown in Fig. 11. 
Using the stated equations for two DOF resonators, the results 
match the analytically calculated values with an error of 1%.

Figure 7. Sound pressure levels distribution at 3556 Hz on the surface 
of the pipe without and with one DOF single designed resonator with a 
closer view of the tuned resonator.

Figure 8. Sound pressure levels distribution at 3556 Hz on the surface 
of the pipe without and with one DOF of four designed resonators with 
a closer view of the tuned resonator.

Experimental tests
The experiment included a main square section duct 

(43x43mm) and one two degree of freedom resonator formed 
of two cylinders which dimensions are shown in Fig 4 [10]. 
The main duct has a square cross section and was connected 
to a circular impedance tube. The apparatus used in the 
experiments  to measure the transmission loss is based on two-
microphone technique applied on the impedance tube set-up 
[15]. Along with the random sound input, B&K Multichannel 
Analysis System Type 3550 has been used. Throughout the 
frequency range of interest, the reflection coefficient measured 
on the downstream side of the resonator was ensured, by an 
appropriate termination, to remain below 0.1 which translates 
to accurately measured transmission loss.
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Figure 9. Sound pressure levels comparison without and with resonators, (a) pipe with a single designed one DOF resonator, (b) pipe with four 
designed single DOF resonators. Sound pressure measured at the end of the main duct which length is 1.2m and hosting the resonators. The source 
is a random noise signal

Figure 10. Sound pressure levels at the resonating frequency (a) 73 Hz, (b) 166 Hz

Figure 11. A comparison of transmission loss with published experimental results [10] for a single 2 DOF resonator

(a)

(a) (b)

(b)
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Figure 12. Sound pressure levels distribution at 3556 Hz on the surface of the pipe without and with two DOF designed resonators. A closer view of 
sound pressure levels distribution at 3556 Hz on the surface of the pipe with and without two DOF designed resonators

Figure 13. Sound pressure levels distribution at 2712 Hz on the surface of the pipe without and with two DOF designed resonators. A closer view 
of sound pressure levels distribution

Simulation of array resonators
A 2 DOF cylindrical Helmholtz resonator was designed 

using the design procedure. This time two highest peaks from 
Fig. 6 were taken to be attenuated by designing resonators.  
The simulation shown in Figs. 12 and 13 gives an idea of the 
degree of attenuation received where the pipes with the array 
of resonators is able to attenuate the noise by around 30-40 dB 
for both frequencies. The values of α and β used are 1.2 and 
0.07142 so as to satisfy Eq. (9), i.e. the ratio, α/β≤ 0.07522 for 
frequencies 3556 and 2712 Hz. 

CONCLUSIONS
A new design procedure has been proposed and validated in 

this paper for noise attenuation using Helmholtz resonators in 
pipelines. Applied to one and two of Helmholtz resonators, the 
designed models of resonators have been verified numerically 
using COMSOL. All analytical and numerical results were 
validated using experimental results from published data. 
Attenuation of around 40 dB has been achieved which proves 
not only the efficiency of the proposed design procedure but 
also the straightforward method to dimension the resonators.
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Appendix A - One degree of freedom resonator
The equation for angular resonating frequency of one 

degree of freedom resonator is given by [7]

ω = c +- +
3Ln + LcA 3Ln + LcA  2 3A

2Ln
3 2Ln

3 Ln
3 Lc	

(A1)

where                        

A =
an
ac  

an is the cross section area of the neck, ac is the cross section 
area of the cavity, Ln is the corrected neck length, Lc is the 
length of the volume, and c is the speed of sound.

Solving  Eq. (A1) for the two areas of cross sections results 
in 

		 ac (-3c2 ω2 LnLc - ω4 Ln
3 Lc)an = c2 (-3c2 + ω2 Lc

2) 	
(A2)



Acoustics Australia                                                                                                      Vol. 40, No. 3, December 2012 201

anc2 (-3c2 ω2 Lc
2)

ac = (-3c2 ω2 LnLc - ω4 Ln
3 Lc) 	

(A3)

From  these  two equations it is obvious for the two 
cross section areas to be positive, the denominator should be 
negative for Eq. (A2) while the numerator should be negative 
for Eq. (A3), that is 

-3c2 + ω2 Lc
2 < 0	 (A4)

where

ω <
3c2

Lc
2

The resonating frequency then becomes

1
2π

f < = 0.2756
3c2 c
Lc

2 Lc

Appendix B - Two degree of freedom resonator
The equation for angular resonating frequency of two 

degree of freedom resonator is derived from Eq. (1) and is 
given by

		
f1,2 = ±+ ++ + - 4

c α α αβ β ββ β    2

2 2π V1 V1 V1V1 V1 V2V2 V2 	
(B1)

where

α = β =and
an1 an2

ln1 ln2

Therefore, Eq. (B1) can be expressed as

f1,2 = ±+ ++ + - 4
c an1 an1 an1an2 an2 an2an2 an2    2

2 2π ln1V1 ln1V1 ln1V1ln2V1 ln2V1 ln2V2ln2V2 ln2V2 	
(B2)

Equation (B2) can be solved for the volumes of the first and second cavities, which are given by
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The two volumes V1 and V2 are real if the expressions in square 
root are positive or zero. Hence, a new condition emerges and 
is given by

f12 2an2lnlf22

f22 an1ln2f12+ ≥ 2 1 +
	

(B5)

which can also be written as

f12 2γaf22

f22 γlf12+ ≥ 2 1 +

an2γa =
an1    ,    

ln2γl = ln1
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This paper shows how to compute vibrations of a double-leaf plate with random inhomogeneities in its components. The
components are two plates and reinforcement beams. The modelling method is based on the variational principle for elastic
plates and beams. In addition to the deformation of individual components, the model includes contributions from junctions
between components, e.g., rigidly of the connection between a beam and a plate. The model does not restrict the junctions to
be perfectly straight. The beams are allowed to have a small random twist. The junction rigidity is included as potential energy
in addition to the strain and the kinetic energies of the components. The random inhomogeneities are simulated as continuous
smooth random functions. A random function is realized using a predetermined probability density function and a power
spectral density function. The vibration is then computed from a set of random functions. The numerical simulations show
that the random stiffness affects the behaviour of the structure in a wide frequency range. Whereas the junctions affect the a
lower frequency vibrations. The root-mean-square velocity of surface vibration level shows changes at resonance frequencies
depending on the random functions.

INTRODUCTION
This paper presents a theoretical and computational model

of vibrations of a double-leaf plate when it is subjected
to some external forces. Double-leaf plates have a high
strength-to-weight ratio, and are used in many lightweight
constructions. Acoustic properties of double-leaf plates are
more difficult to predict than those of single plates, because of
a high number of components that make up typical double-leaf
plates. A simple design of a double-leaf plate would have
two plates sandwiching reinforcement parallel beams. There
are various methods of joining the two components such as
nails and glue. The large number of distinct components
and the complexity of the junctions make the mathematical
representation of the double-leaf plate difficult. The often
used finite element method (FEM) would represent the junction
between a plate and a beam as a ‘T’ shaped continuous
object. This is not true in most cases because the connection
at the junction is not perfect, while additionally the material
properties of the plate and the beam may be completely
different. In other cases, the FEM would require microscopic
descriptions of the junction, for example describing how the
nails react to various forces and affect the surrounding material.
This paper uses an alternative way of modelling the junctions.
A junction is modelled by the amount of energy required for
any particular way of deformation of the junction. The amount
of energy at the junction will be large or small if the bonding is
strong or weak.

The conventional deterministic models of double-leaf plates
that use the partial differential equations of Kirchhoff plates and
Euler beams can predict low frequency vibrations (see [1, 2, 7,
8, 9]). The parameters of the equations are constants such as
mass density and Young’s modulus. However the vibration of a
double-leaf plate becomes unpredictable above the 5th resonant

frequency, which in the case of a 3.2m-by-5.1m structure is
about 80 Hz. This particular dimension is chosen because of
author’s past experience with an experimental programme on
timber-framed floor/ceiling systems (see [2]). One can find
variations in the vibrations of apparently identical composite
structures. The discrepancy may come from the manufacturing
inconsistencies or random inhomogeneities in the components
themselves. The unpredictability of the vibrations of composite
structures have been known for many years, and modelled
using various methods such as perturbation, scattering, and
asymptotic methods. All of these methods assume the
irregularities in the structure to be small compared to the
wavelengths, and hence terms higher than first-order are
negligible. This is not true for most engineered products.

Another popular modelling method for double-leaf plates
is Statistical Energy Analysis (SEA). In order to use SEA, a
structure needs to be divided into sub-systems that interact with
their neighbouring systems. Two neighbouring sub-systems
are related by a loss factor that is determined either from
experiments or theoretical models. Measurements and
theoretical predictions of various types of double-leaf plates are
considered in [3, 4]. SEA has been used successfully to predict
the surface vibration level above 300 Hz. However SEA is not
suitable for computing the vibrations in the frequency range of
concern here.

In this paper the deformation of each component is computed
using the variational principle. The energy density functions
for individual components and junctions are derived using the
Kirchhoff plate, Euler beam models and Hooke’s law. Once
the integral form of the total energy in the double-leaf plate is
obtained from the functions of the deformation of individual
components of the double-leaf plate, the true solution will
give the minimum of the integral form. The solution will be
computed using the Fourier series expansion of the solution
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