
98 - Vol. 41, No. 1, April 2013                                                                                                        Acoustics Australia

PROPAGATION OF WIDEBAND SIGNALS IN 
SHALLOW WATER IN THE PRESENCE OF MESO-
SCALE HORIZONTAL STRATIFICATION
Boris Katsnelson1, Andrey Malykhin2 and Alexandr Tckhoidze1
1School of Marine Sciences, University of Haifa, 31905, Israel
2Physics Department of Voronezh University, Voronezh, 394006, Russia
katz@phys.vsu.ru 

INTRODUCTION
In most publications concerned with sound propagation 

in shallow water authors have concentrated on the vertical 
variability of the temperature field, and discussed a simple 
model of how that variability arises. This vertical structure 
is the most important feature of the shallow water column, as 
the water column and bottom are approximately horizontally 
stratified (comprised of vertically stacked layers) over the 
propagation scales of interest, which reach to about 50 km in 
shallow water. However, horizontal stratification is a broad-
brush first approximation only, and in many shallow water 
scenarios there is appreciable sound speed variability in the 
horizontal direction, as well as in the vertical. Perhaps the 
strongest horizontal variability in shallow water is due to 
shallow water fronts and bathymetry variations, mainly in 
areas of the coastal wedge and nonlinear internal waves. In 
this paper we consider just three types of horizontal variability.

TEMPERATURE FRONT
Figure 1 shows the configuration of the Polar front in the 

Barents Sea [1]. The temperature variation is non-uniform 
in depth: as a rule, it is concentrated in the vicinity of the 
thermocline. 

Aforementioned temperature variations are accompanied 
by a change in the sound speed profile, which is most 
pronounced across the front. In the vicinity of the thermocline, 
the sound speed drop across the front can reach 15–20 m/s 
within a distance of several hundreds of metres. Such a 
difference corresponds to a substantial horizontal sound speed 
gradient, which persists over a rather large area. More detailed 
information on the temperature front is presented in Figure 2: 
it shows a sequence of sound speed profiles when passing from 
one side of the temperature front to another in a region of the 

Barents Sea within a zone of about 500 m in length where the 
temperature variations are most pronounced [1,2].

Figure 1. Temperature front (Barents Sea Polar front)

Figure 2. Sequence of sound speed profiles in the vicinity of the 
temperature front. The nearest and farthest profiles correspond to the 
colder Arctic Current and the North-Atlantic Current, respectively

In the paper examples of an oceanic waveguide with parameters varying in the horizontal plane are considered:  an area of 
coastal wedge, (slopes and canyons), an area of varying water layer properties - in the presence of nonlinear internal waves 
and a temperature front.  In these cases there is significant horizontal refraction or redistribution of the sound field in the 
horizontal plane. Due to waveguide dispersion (dependence of modal propagation constants on frequency) the refraction 
index in the horizontal plane depends on frequency also, and it is possible to observe different spatial and temporal 
variations of the sound signal similar to those in a two dimensional medium with frequency and spatial dispersion. This can 
be manifested as a non-stationary interference pattern, arrival time variations, and/or variations of spectra. These effects can 
be used to solve different inverse problems especially by using horizontal and vertical line arrays.
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Under the influence of such a gradient, the oceanic 
medium becomes acoustically anisotropic, and a number of 
effects arise in the course of sound propagation through it. In 
particular, space–time fluctuations of the sound field due to the 
modes coupling in the region where the acoustic path crossed 
the Polar front of the Barents Sea were considered in [1,2]. 
Another effect that can considerably change the sound field 
is the horizontal refraction, which manifests itself when the 
acoustic path is approximately parallel to the TF. The approach 
of horizontal rays and vertical modes can be applied to such a 
phenomenon. Such a study can reveal a number of spatial and 
frequency–time effects that, in principle, can be experimentally 
observed by using a vertical hydrophone array. In this sense, the 
influence of the temperature front on the sound field is similar 
to that of soliton-like internal waves (or internal solitons (IS)) 
[3], although the horizontal gradients of the sound speed in the 
TF are 2–5 times lower than those in the IS, and the velocities 
of the TF are much smaller than those of the IS.

Let us consider the space–frequency features of the sound 
field propagating in a shallow-water sound channel with a 
temperature front. The oceanic medium is represented as a 
three-dimensional underwater waveguide in the Cartesian 
coordinate system where the (X,Y)  plane coincides with the 
sea surface and the Z axis is directed vertically downwards. 
The waveguide is formed by the water layer 0 ≤ z ≤ H with 
density ρ(x,y,z) = ρ0(z) + δρ(y,z) and a sound speed profile 
c(x,y,z) = c0(ρ) + δc(y,z), where ρ0(z) and c0(z) correspond to 
the profiles of density and sound speed on one side of the TF. 
In our case, δc and δρ characterise the variations of the acoustic 
parameters under the influence of the TF. The latter is considered 
to be plane and parallel to the X axis. The bottom is assumed to 
be homogeneous, liquid, and absorbing with density ρ1, sound 
speed c1 and absorption coefficient α. Here, the TF is modelled 
in such a way that, on average, the temperature (and the sound 
speed as well) at y > 0 is higher than that at y < 0 (see Figure 2). 
Correspondingly, the horizontal rays leaving the source at y < 0 
will be refracted in the same direction (Figure 3). In other words, 
our statement of the problem corresponds to the situation where, 
at the receiving array positioned in the zone of intersection of 
horizontal rays, a complicated structure will be observed as 
the result of interference of the direct horizontal ray with a set 
of horizontal rays deflected by the temperature gradient and 
corresponding to different horizontal angles at the source and 
different vertical modes. The particular characteristic of the 
horizontal refraction is that the horizontal rays corresponding 
to different frequencies and different vertical modes propagate 
along different trajectories, and, consequently, the intensity 
of the sound field at the reception point may depend on the 
frequency and the ordinal number of the detected mode

First of all, one can estimate the distance from the source 
and the temperature front, or, in other words, the position of 
the zone where one can expect the intersection of the direct and 
refracted horizontal rays and, hence, the manifestations of the 
aforementioned phenomena. Specifically, such a zone that is 
closest to the source is determined by the maximum admissible 
departure angle β of the horizontal ray that returns to the region 
y< 0 after its refraction in the zone of the temperature front. In 
the simplest case, the estimate is as follows [5]:

Figure 3. Schematic diagram of the horizontal refraction in the region 
near the temperature front. The shaded area is the zone of probable 
enhancement of the sound field due to horizontal refraction. The 
dashed strip approximately indicates the transition layer

β ≈      2
ht δc
H c 	

(1)

where ht is the thickness of the thermocline. For the Barents 
Sea [1], H ~ 230 m, ht ~ 70–90 m, δc ~ 15–20 m/s, and, hence, 
β ≈ 6–8 × 10-2 . This means that, if the source is at a distance 
of 600–800 m from the temperature front with a thickness 
of about 500 m, the effects of horizontal refraction manifest 
themselves at the receiver that is at a distance of about 20 km 
along the temperature front. 

INTERNAL WAVES
Intense internal waves (IWs) are known to cause 

substantial perturbation of the low-frequency sound field. The 
well-known study [4] reports on measuring the fluctuations 
of the sound field over a horizontal array in the presence of 
IWs with the propagation path passing at a small (about 10°) 
angle to the wave fronts of a train of intense IWs moving 
along the coastline. It was experimentally established that 
the amplitude fluctuations of the sound field correlated with 
the fluctuations of the water layer influenced by IWs. Data 
from numerical simulation allow one to assume the adiabatic 
mechanism of interaction between the IWs and the sound 
field: the intensity variations are caused by local changes in 
the waveguide parameters. A detailed study of fluctuations of 
the sound field under the influence of IWs was also performed 
in the SWARM'95 experiment [6] for different orientations of 
the acoustic path with vertical receiving arrays used for mode 
filtering. Publications [7-9] devoted to analysing the data of 
the SWARM'95 experiment show that, when the acoustic path 
is approximately parallel to the wave front of the IW train, 
intensity fluctuations can be rather substantial because of the 
influence of horizontal refraction. A theoretical analysis and 
estimation of intensity fluctuations were presented in [9] in 
the framework of a ray approximation in the horizontal plane. 
There, in terms of horizontal rays, the mechanism of intensity 
fluctuations was explained by changes in the ray density 
(the cross-section of the ray tube). In this case, the estimates 
of intensity variations can be obtained by assuming the 
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horizontal rays to be approximately straight with perturbations 
of the phase front being neglected. On the other hand, in the 
presence of appreciable horizontal refraction, the objective 
of the study is to consider the fluctuations of the directions of 
sound propagation in the horizontal plane (the fluctuations of 
the phase front in a more general formulation). For instance, 
an experiment measuring the fluctuations of the direction of 
sound propagation in the horizontal plane was carried out in 
the Barents Sea [10]. There, a horizontal hydrophone array 
was used to study the fluctuations in the phase distribution with 
characteristic periods starting from several tens of minutes, 
which, according to the authors, correspond to the typical 
periods of IWs.

In the present paper we estimate the variations of the sound-
field phase front under the effect of a train of intense internal 
waves crossing the acoustic path and consider the possibility of 
experimental observation of such variations.

An illustration of the influence of internal waves on 
sound propagation is shown in Figure 4 where there is a 3D 
shallow-water sound channel with IWs. The ocean medium is 
represented as an underwater waveguide in the XYZ coordinate 
system, where the XY plane coincides with the sea surface and 
the Z axis is oriented vertically downwards. The waveguide 
is formed by a water layer 0 ≤ z ≤ H with a density ρ(z) and a 
sound speed profile c(x,y,z) = c0(z) + δc(x,y,z,T), where c0(z) 
corresponds to the equilibrium stratification of the layer and 
δc(x,y,z,T) characterises the changes of the acoustic properties 
of the layer under the influence of IWs. The latter quantity 
depends on both coordinates and time T (we make a difference 
between the “slow” time T that characterises the variability in 
δc and “quick” time t, determining sound field variability)

Figure 4. The XY coordinate system is related to IWs, the X'Y' 
coordinate system is determined by the direction of the acoustic path, 
α is the angle between the path and the wave front of IWs, β is the 
angle between the path and the array, and γ is the angle of horizontal 
refraction. At the left, the position of the IW envelope is shown at the 
instant T = 0. The (1) dotted and (2) solid curves show the wave front 
without and with IWs, respectively

Let us consider an IW train with an approximately rectilinear 
wave front that is parallel to the X axis and with an envelope 
depending on the y coordinate and with an amplitude ζ0. This 
train propagates along the Y axis with a speed v. The sound 
source S is located at the origin of coordinates in the horizontal 
plane x = y = 0 at a depth z = z1. The transmitted signal is 
received at the observation point R(x,y,z) by a horizontal array 
(usually z = H). The initial position of the IW envelope at T = 0 

is such that the IW’s maximum is at the source at the zero shift of 
the train, vT = 0 (the envelope with amplitude ζ0 is shown in the 
left-hand part of Figure 4). Because of the slow propagation of 
the IW train, the characteristics of the sound field will depend on 
the position of the train, or on time T, in a parametric manner. 
For brevity, we do not write this dependence in an explicit form.

COASTAL WEDGE 
In the ocean, coastal slope regions are of primary 

importance for both practical purposes and research, including 
acoustic studies. A typical coastal slope region has the form 
of a wedge with the angle between the sea surface and the 
bottom reaching ~0.005–0.01rad; this region extends for 
several tens of kilometres (or more) from the coast to the shelf 
edge, where the sea depth is about 200–350 m. Beyond this 
line, the sea depth begins to increase steeply (the continental 
slope). In the theoretical studies of sound propagation, the 
coastal slope is usually described by a wedge shaped model 
region with a constant velocity of sound and with ideally or 
non ideally reflecting boundaries [11-14]. The solution to 
the problem of the field in an ideal wedge can be constructed 
by using, e.g. imaginary sources, in analogy with the well 
known Pekeris model; in this case, the imaginary sources are 
positioned in a circle [11, 14]. In some papers the field in the 
wedge is constructed in a cylindrical coordinate system (the 
z axis coincides with the edge of the wedge) based on modes 
depending on angle ϑ in the vertical plane. A somewhat 
different approach is possible in the case of a smooth 
dependence of the sea depth on the distance to the coast (a 
small slope), when the wedge-shaped region can be considered 
as a waveguide with varying depth and, in terms of the depth 
dependent field expansion in modes, the field can be described 
in the adiabatic approximation (ignoring the mode coupling). 
In the two-dimensional version of the problem, where the field 
only varies in the vertical plane, one of the main features of 
sound propagation up the slope is the appearance of the critical 
cross section for a mode of a fixed number at a fixed frequency 
with decreasing depth and the reflection of this mode; or, the 
transformation of the mode into a leaky one and, hence, its 
escape into the bottom at a certain distance from the edge, this 
distance being different for different modes and frequencies 
[15]. The three-dimensional problem was considered in studies 
of the horizontal refraction of the acoustic field in a coastal 
slope region in both experimental (laboratory experiments 
[16] and full-scale experiments in a coastal slope region [17]) 
and theoretical investigations. In the latter, the field behaviour 
was described in terms of vertical modes and horizontal rays 
or numerically [18] by a parabolic equation (see references 
in [18]). For the ideal wedge model, the ray equations in the 
horizontal plane have analytic solutions describing the position 
and shape of rays and caustics in the form of hyperbolas [19]. 
In the case of a wedge with ideally reflecting surfaces, two rays 
(the direct ray and the refracted) arrive at each of the points of 
the horizontal plane, and the corresponding interference pattern 
is formed. We note that, for a more realistic model (a non-ideal 
bottom and/or a coordinate dependent sound velocity), the 
field pattern is more complicated, especially with allowance 
for the dependence of the refractive index of horizontal rays 
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on frequency and vertical mode number. Sound propagation 
in the horizontal plane is similar to the propagation in an 
inhomogeneous dispersive medium with similar features for 
narrowband and broadband signals. A similar situation occurs 
to that in the vicinity of the temperature front [5]. 

Figure 5.  Bathymetry and sound velocity profiles for the waveguide 
model under study. The dashed line shows the perturbed sound 
velocity profile under mesoscale perturbation

THEORY OF THE SOUND FIELD IN A 
HORIZONTALLY STRATIFIED WAVEGUIDE 

The complex sound field amplitude of a point source 
characterised by spectrum S(ω) and positioned at a point with 
the coordinates  is sought in the form

P(r ,z,t) = 2∫ ΣPl(r ,ω)ψl(r ,z;ω)e-iωtdω
∞

0 l 	
(2)

Here, ψl(r ,z;ω) is the eigenfunction with the number l; it is 
determined by the Sturm–Liouville problem and includes the 
dependence on r (or (x, y)) as a parameter; and in addition, 
depends on frequency. The quantity Pl(r ,ω) which depends on 
the horizontal coordinates, the sound frequency, and the source 
coordinates, can be called the spectral mode amplitude.

We denote the corresponding eigenvalue (the longitudinal 
wavenumber) by ql(r ,ω). For the value Pl(r ,ω) neglecting 
mode coupling we can get the two dimensional Helmholtz 
equation:

∆2
┴Pl(r ,ω) + q2

l(r ,ω)Pl(r ,ω) = 0	 (3)

where 
∆2

┴ =       +∂2 ∂2

∂x2 ∂y2 is the Laplace operator in the horizontal 
plane.

Instead of the eigenvalue ql(r ,ω), which determines 
the space and time dependences of the wavenumber for 
sound propagation in the horizontal plane, we introduce the 
corresponding mode refractive index nl(r ,ω)=ql(r ,ω)/ql

0 
where ql

0 is the eigenvalue of the transverse Sturm–Liouville 

problem; this eigenvalue corresponds to the cross section at a 
certain fixed point, e.g., at the point of the source position. We 
note that, in the region lying between the source and the 
coast (y<ys), the wavenumber is ql < ql

0 and (nl(r ,ω) <1). 
For a real situation, the latter index differs little from unity 
nl(r ,ω) <1-δnl, | δnl |<<1.

Figures 6 and 7 show the value of the increment for our 
models of temperature front and wedge as a function of the 
distance to the front and to the edge of the wedge for different 
frequencies and mode numbers. One can see that, in the region 
y<ys, the increment increases with an increase in the mode 
number and with a decrease in frequency; i.e., the refractive 
index increases with increasing frequency.

The frequency dependence of the refractive index makes 
the two-dimensional propagation medium a dispersive one 
(Eq. (3)). For such a medium, the evolution of the sound 
signal in time is determined by Eq. (2). If the spectrum of 
the emitted signal is sufficiently narrow, we can ignore the 
frequency dependence (which is sufficiently smooth) of the 
eigen functions within this spectrum; then, we factor out the 
eigen functions from under the integral in Eq. (2) at the central 
frequency ω0 of the source spectrum. In this case, the signal 
amplitude takes the form

P(r,z,t) = 2Σψl(r,z;ω0)∫Pl(r,ω)e-iωtdω = Σψl(r,z;ω0)Pl(r,t)
∞

0l l 	
(4)                                      

 
where the quantity Pl(r ,t) can be interpreted as the pulse 
amplitude of the lth mode. As usual for space-time ray 
approximation we find

Pl(r ,t) = Al(r ,t)eiΘl( ,t)	 (5)

where phase (eikonal) depending on coordinates and time can 
be found by different ways [19, 20]. Examples of variations 
in refractive index in the horizontal plane for a wedge and 
temperature front are shown in Figures 6 and 7.

Figure 6. Dependence of the refractive index of the horizontal rays 
on the Y coordinate for some frequencies and mode numbers in the 
region of the temperature gradient. The dashed curve indicates the 
variation of temperature at some depth in the thermocline region 
across the temperature front
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Figure 7. Dependence of the refractive index increment on the 
distance to the edge of the wedge for different modes and frequencies 
(the values are indicated in the plot)

STRUCTURE OF HORIZONTAL RAY 
PATTERN

If we take all the values 0 < t < ∞, the corresponding curve 
will determine the spatial horizontal rays. Figure 8 shows 
examples of horizontal rays in the area of the temperature 
front. In Figure 9 we can see pattern of horizontal rays in the 
area of the coastal wedge for a frequency of 100 Hz, which 
corresponds to the first mode. In the plot, the multipath 
region can be distinguished. Its shape resembles a sector, 
so that, in what follows, we use the term “multipath sector” 
(MS). When the receiver is located in the MS, one should 
observe the interference of the direct and reflected fields of 
the corresponding modes if the overlapping of signals arriving 
over different ray paths takes place or if signal doubling occurs 
with a certain time interval in the case of pulse arrival time 
measurements. The interference pattern is rather complicated 
because of the presence of regions where only one mode (the 
first) propagates or only two modes propagate (e.g., the first 
and second modes), and so on. The lower boundary of the 
sector, i.e., the boundary closest to the coast, represents the 
caustics (envelope) for the horizontal rays corresponding to a 
given mode and a given frequency, and the upper (limiting) 
horizontal ray indicates the MS boundary farthest from the 
coast.

The positions of the boundaries can be estimated on the 
basis of a three-dimensional ray consideration with the use of 
the Brillouin (vertical) grazing angle βl for the lth mode. The 
upper limiting ray path in the horizontal plane, or the horizontal 
launch angle of the boundary ray, which is denoted by χl (see 
Figure 9(a)) and determines the aforementioned ray path, is 
governed by the parameters of the bottom or, more precisely, 
by the angle of total internal reflection from the bottom.

As the ray propagates from the source, both the horizontal 
angle and the Brillouin angle of the given mode (the vertical 
grazing angle with respect to the bottom) βl vary (Figure 9(b)). 
In other words, during propagation up the slope the channel 
narrows, and the angle decreases, whereas the vertical grazing 

angle βl, which depends on the local depth of the channel, 
increases and, at a certain instant, may become identical to 
the angle of total internal reflection from the bottom which 
depends on cl. In this case, the direct ray penetrates to the 
bottom and the reflected (or refracted) ray is absent. The 
corresponding horizontal ray launch angle (see Figure 9(a)) is 
determined as follows. The local eigenvalue corresponding to 
total internal reflection, or the related bottom grazing angle of 
the Brillouin ray belonging to the lth mode is determined by the 
expression cos βl = ql / k = c(H) / cl where H is the sea depth at 
the turning point. This yields the refractive index at the turning 
point for the horizontal boundary ray: nl = ql / ql

0 = k1 / ql
0 

where k1 = ω/cl and the horizontal angle χl at the turning point 
is zero. Then χl is determined by the relation cos χl = k1 / ql

0. 
The corresponding boundary ray path is shown in Figure 9(a). 
Now, we estimate the coordinates of the ray turning point 
(xl, yl), which approximately coincides with the vertex of 
the MS under the assumption that the sound velocity in the 
wedge is constant. In this case, the horizontal ray paths 
and ray caustics have the form of hyperbolas [5], whose 
equations are obtained in an analytic form. Using these 
results, for the coordinates of the vertex of the hyperbola 
corresponding to the boundary ray, we derive

xl = y0

sin χl cos χl cos2 βl
0

1 - cos2 χl cos2 βl
0 k2 - k1

2= y0

k1  (ql
0)2 - k1

2

yl = y0

sin βl
0

= y0

k2 - (ql
0)2

k2 - k1
21 - cos2 χl cos2 βl

0
	

(6)
 

For our bottom model (the parameters are given above), 
we can assume that, in the denominator of Eq. (10), ql

0 ~ k; 
then, we have k2 - k1

2 ~ 2y0 ~20 kmxl y0k1/ . We see that xl 
weakly depends on both mode number and frequency. The 
coordinate yl exhibits a more pronounced dependence on the 
mode number, as well as on frequency. For example, for the 
second mode at a frequency of 100 Hz, from Eq. (10) we obtain  
yl ~ 0.5, y0 ~ 5 km. In general, the straight line y = yl determines 
the boundary beyond which the lth mode does not propagate (at 
the given frequency). 

Figure 8. Ray pattern calculated by using the method of vertical modes 
and horizontal rays with the corresponding temperature distribution at 
some depth (at the right) in the vicinity of the temperature front for the 
first vertical mode at a frequency of 300 Hz
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Figure 9. (a) Horizontal ray pattern for the first vertical mode at a 
frequency of 100 Hz; the solid lines indicate the MS. (b) The vertical 
and horizontal angles for a three-dimensional ray

One can see that the numerically calculated position of 
the MS vertex approximately coincides with the coordinates 
determined above. If we assume that, for our wedge model, 
the caustic approximately coincides with the asymptote of 
the corresponding hyperbola (the caustic for the case of a 
constant velocity), the slope of this asymptote is tan βl

0 i.e. 
its angle with the x axis is βl

0. This angle noticeably increases 
with increasing mode number. The asymptote of the “upper” 
horizontal boundary ray has the slope k2 - k1

2 / k1dy / dx =  
which, in the framework of the simple model, is the same 
for different modes and frequencies and only depends on the 
sound velocities in water and in the bottom. In the case under 
consideration, the aforementioned estimate yields a slope of 
~0.53 or an angle χl ~ 30°, which approximately coincides with 
the numerical results represented in Figure  9(a). In Figure 
9(a), the direction of the lower boundary is determined by the 
angle χmin , which in our case approximately coincides with 
βl

0 ; for the first mode at a frequency of 100 Hz, this angle 
is   χmin ~5°–6°. The vertex angle of the sector is estimated 
as ∆χl ~ χl - χmin and decreases with the mode number. We 
note that, as the mode number increases and the frequency 
decreases, the increment of the horizontal refractive index δnl 
increases and the MS shifts toward greater depths. In this case, 
the characteristic spatial dimensions of the region vary (the 
transverse size of the MS at a distance of ~30 km makes about 
2–4 km). As the frequency increases, the angle χmin decreases 
(tends to zero) and the lower boundary of the MS shifts toward 
the coast for all of the modes. 

TIME-FREQUENCY DIAGRAM AND 
WIDEBAND PULSE PROPAGATION

The eikonal (the phase) taken at a certain point of the 
horizontal plane is determined by the phase velocity and the 
corresponding integral along the horizontal ray from the point 
of radiation to the point of reception (observation):

Θl (M,t) =  ∫ql(x,y)ds
R0M 	

(7)

The characteristic features of the pulse arrival time are 
illustrated in Figure 10, where, together with the horizontal ray 
pattern for the first and third modes at a frequency of 200 Hz, 
one can see lines lying in the horizontal plane, which correspond 
to a constant arrival time t = 45s for signals propagating along 
the respective ray paths. The regions are denoted as follows: 
(I) the shadow zone for all modes, (II) the multipath region for 
the first mode and the shadow zone for the third mode, (III) 
the multipath region for the first and the third modes, and (IV) 
the region of only the direct ray paths of these modes. One can 
see that, in the multipath regions, for each of the modes, there 
are two curves tl(x,y) = const corresponding to the direct and 
reflected signals. The signal propagating over the direct ray 
path goes farther within a fixed time interval as compared to 
the ray arriving over the reflected ray path. In other words, for 
a fixed point in the multipath region, the direct signal usually 
arrives earlier than the reflected signal; the difference decreases 
with decreasing distance to the caustics where the direct and 
reflected rays coincide. The time of signal propagation over 
the ray path (which is an important observation characteristic) 
is determined by the integral along the ray path

tl (ω) =  ∫ ds
vl

gr (x,y;ω)R0M 	
(8) 

             
where vl

gr (x,y;ω) is the group velocity of the lth mode, depending 
on coordinates along ray path. Comparing the arrival times 
at the reception point for different modes, we see that, in the 
absence of horizontal refraction (for the direct horizontal rays), 
a “conventional” order of mode arrivals is observed: the lower 
modes are usually characterized by a higher group velocity, 
and their travel time is shorter. For the reflected signals in 
region III, a different order of mode arrivals takes place. This 
change in arrival order is related to the fact that, despite the 
higher group velocity of mode 1, as compared to mode 3, the 
difference in the lengths of the respective ray paths is such 
that the order of arrival is changed. In particular (see Figure 
10), for the direct signal, the first mode arrives before the third 
mode (in regions III and IV), whereas, for the reflected signals 
(region III), the third mode arrives before the first one.

Let us consider in more detail the signal arrival time at 
the observation point, which may fall within the MS. First of 
all we remark that arrival times can be different for different 
horizontal rays coming to the receiver. Typical values of 
arrival times are shown in Figure 11 for a temperature front. 
Experimental observation of this effect was published in [21] 
for a moving front of internal waves. 

Next we consider arrival times, as a function of frequency 
for different vertical modes (Figure 12). The corresponding 
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Figure 10. Set of horizontal rays for the first (the solid lines) and fourth 
(the dashed lines) vertical modes. The frequency is 200 Hz. The lines 
lying in the horizontal plane and corresponding to a signal arrival time 
of 45s are indicated. The inset shows the interference pattern formed 
in the horizontal plane segment near the point indicated in the plot.

Figure 11. Arrival times for horizontal rays reflected from temperature 
front

Figure 12. Frequency–time curves for three modes. The numbers are 
indicated in the plot.

pattern is called the frequency–time diagram and is often 
plotted in theoretical considerations and on the basis of 
experimental data [22]. This pattern reveals the shapes of the 
dispersion curves for individual modes and is used for solving 
various problems [23]. The position of the observation point 
used in our calculations is shown in Figure 10 (its approximate 
coordinates are x = 50 km, y = 4.5 km). From Figure 12 one 
can see that, for frequencies ω < ω1 where ω1 = 100Hz, the 
receiver falls within the shadow zone for all of the modes. As 
the lower boundary of the MS shifts toward the x axis and the 
receiver falls within the caustic for the first mode; here ω = ω1, 
the direct and reflected rays coincide and the corresponding 
signals arrive simultaneously. With a further increase in 
frequency ω > ω1 the lower boundary of the MS shifts further 
and falls within the MS for the first mode (still remaining 
in the shadow zone for the second mode); in this case, two 
signals are observed with the interval between the first mode 
arrivals over the direct and reflected ray paths increasing with 
frequency (the characteristic time between the direct and 
reflected signal arrivals is ~0.5 s). This corresponds to zone 
II in Figure 10. As the frequency increases, the signal travel 
time decreases for the direct ray (the group velocity increases 
with frequency) and increases for the reflected ray (because 
of the predominant increase in the ray path length). When the 
frequency reaches the value ω = ω2 ≈ 250Hz, the second mode 
appears at the observation point and the situation is reproduced. 
For a fixed mode number, as the frequency increases further, 
the observation point may fall outside the multipath region 
(we denote the corresponding frequency value as  ω = ωl) 
and, in this case, only one signal arrives at the observation 
point. Note that the specific values of ωl and ωl depend (in 
addition to the dependence on the waveguide parameters and 
the mode number) on the position of the observation point 
in the horizontal plane. The situation where the observation 
point falls outside the MS is only possible when this point lies 
in a relatively narrow region near the upper boundary (see 
Figure 9). Such a frequency–time diagram can be plotted in 
an experiment with the use of broadband signals (a frequency 
band of about 50–500 Hz). It is also possible to consider the 
spectral features of the signal and, in particular, the spectrum 
of the received signal as a function of the receiver position. 
These features are determined by the frequency dependence of 
the horizontal ray paths.

Let’s consider propagation of the wideband pulse. In the 
presence of horizontal stratification due to the frequency 
dependence of the refractive index in the horizontal plane 
each Fourier component of the pulse will propagate along a 
different trajectory joining source and receiver. In the Figure 
13(a) two horizontal rays, corresponding to frequencies of 100 
and 300 Hz are shown in the vicinity of the temperature front 
(refractive index is shown in the Figure 13(b)). It means, first 
of all, that the frequency spectrum of the received signal will 
be different in comparison with what would be received in the 
absence of horizontal refraction, due to a different phase shift 
for each Fourier component. Next, for different trajectories 
(Fourier components) we have different directions of wave 
vectors (tangent to horizontal rays) in the horizontal plane both 
at the locations of the source and receivers. For example in the 
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situation corresponding to Figure 13 angles between mentioned 
vectors at the source are about 3°, and at the receiver ~ 2°. 
In other words we can say that for the sound field near the 
receiver there is a dependence ql = ql (ω), that is similar to 
a medium with spatial dispersion.  One of the consequences 
of this with broadband signals will be spatial modulation of 
the interference pattern across the direction of propagation and 
different directions of group and phase velocities. 

An example of the interference pattern formed by the beam 
containing two frequencies, 100 and 300 Hz, in the vicinity 
of the receiver (Figure 13) is shown in Figure 14(b). We see 
that in comparison with Figure 14(a) (absence of frequency 
dependence for horizontal rays) there is spatial modulation 
of the interference pattern in the y-direction. The scale of this 
modulation can be estimated as  ~ 2π/|∆q|, where ∆q is the 
difference between wave vectors, corresponding to frequencies 
in the beam. We see that in the Figure 14(b) the scale of 
variability in the y-direction is a few hundreds of metres, in 
accordance with the angle between vectors for 100 and 300 Hz.

Figure 13. (a) - Horizontal rays (vertical mode 1), frequencies 100 and 
300 Hz (direct and reflected from the front). (b) - refractive index n in 
the horizontal plane for mentioned frequencies

Figure 14. Interference pattern in the vicinity of the receiver neglecting 
frequency dependence of horizontal rays (left panel) and taking into 
account frequency dependence

CONCLUSION
We can conclude that the existence of anisotropic meso-

scale perturbations can lead to different acoustical effects, 
such as redistribution of the sound field in the horizontal 
plane, variation of the spectrum of the signal and a change of 
temporal shape of a received pulse. Next, due to the frequency 
dependence of the trajectory of horizontal rays it is possible 
to observe effects similar to spatial dispersion in sound 
propagation. All these effects occur in situations considered 

in the paper, however different spatial scales of coastal wedge 
(for example) and nonlinear internal waves produce different 
values of acoustical parameters: horizontal angles, arrival 
times, interference pattern in the horizontal plane. This implies 
that to observe these effects it is necessary to take different 
distances between source and receivers as well as distances 
from wave fronts and coast lines. It is also necessary to use 
vertical and horizontal line arrays, allowing different sorts of 
filtering to be carried out.
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