



#### Sylomer

Consists of a cellular polyurethane elastomer, it is used mainly for vibration isolation, shock absorption, and noise abatement. By choice of bearing surface area, material type and material thickness, the static and dynamic characteristics of the leastic bearing can be adapted to the respective application.

#### Material Characteristics of Standard Types of Sylomer

- Static load up to 80 Mp/m<sup>2</sup> (0,80 N/mm<sup>2</sup>).
- Elastic deformability up to 40% of the mat thickness.
- Elongation at break 250% to 500%, depending on type.
- Ratio of vertical to horizontal stiffness approximately 2,5.
- Density range 200 kg/m<sup>3</sup> to 600 kg/m<sup>3</sup>, depending on type.
- High dynamic load capacity.
- Outstanding resistance to oil, grease and hydrolysis.
- Low influence of temperature on elasticity from — 20°C to + 70°C.

#### The Advantages of Elastic Bearings with Large Surface Area

For Sylomer-mats the bearing surface can be adjusted to the application by choosing the material type and the thickness. In many cases reasonable advantages result from elastic supporting the full bearing area of machinery, plants, foundations or building components.

- Reduced specific load on foundation.
- Transmission of dynamic forces over whole area.
- Reduced excitation of natural vibrations and bending vibrations in the supported component.
- Reduced sound radiation thanks to "counter-drone" effect.
- High slip resistance.
- No risk of dirt accumulation or "noise bridges".
- Sylomer can be used like "permanent shuttering".
- Simple construction.

#### Application Examples for Sylomer

- · Elastic beds for plant and machinery,
- Vibration isolation of building foundations.
- · Sound isolation inside buildings,
- Vibration isolation in railway track construction.

# Standard Range

| -                                                  |             |           | -           |          |             |          | _           |          |
|----------------------------------------------------|-------------|-----------|-------------|----------|-------------|----------|-------------|----------|
| Sylomer material type                              | R 12        | R 25      | L 12        | L 25     | M 12        | M 25     | S 12        | S 25     |
| Thickness (mm)                                     | 12          | 25        | 12          | 25       | 12          | 25       | 12          | 25       |
|                                                    |             |           |             | 20       |             |          |             | 20       |
| Colour of the material                             | blu         | 9         | gre         | en       | bro         | wn       | blad        |          |
| Recommended max.<br>bed for vibration<br>isolation | 0,03<br>N/n | 35<br>1m² | 0,08<br>N/n | 3<br>nm² | 0,1£<br>N/n | 5<br>nm² | 0,50<br>N/n | )<br>1m² |

SOLE AUSTRALIAN DISTRIBUTORS

# Sizes Available

| Sheets: | 5000 mm x 1500 mm    |
|---------|----------------------|
| strips: | 5000 mm long, width  |
|         | according to the     |
|         | specification of our |
|         | customer             |

Other dimensions, punched sections and special material types can be supplied on request.



B.K. SALES PTY. LTD. 1968 HEATHERTON RD., DANDENONG, VIC., 3175, AUSTRALIA. PHONE (03) 793 3399. TELEX 36101. FAX 794 5001



Vol. 16 No. 2

**CONTENTS** 

Chief Editor: Dr Howard F. Pollard Tel.: (02) 697 4575

Associate Editor: Marion Burgess Tel.: (062) 49 7653

Consulting Editors: Dr. John I. Dunlop Sound Propagation In Air and Matter, Acoustic Non-Destructive Testing

Dr. Marshall Hall Underwater and Physical Acoustics

Dr. Ferge Fricke Architectural Acoustics

Professor Anita Lawrence Noise, Its Effects and Control

Dr. Robert W. Harris Data Processing, Acoustic Emission

Dr. Dennis Gibbings Instrumention, Transducers, Vibration

Dr. Neville H. Fletcher Musical Acoustics, Bioacoustics

Dr. Norman L. Carter Psychological and Physiological Acoustics

Advertising/Administration: Ron Onis Tel.: (02) 527 3173 Fax: (02) 527 4652

#### Subscription Rates (1988):

|         | Surface Mail | Airmail   |
|---------|--------------|-----------|
| 1 year  | A\$36.00     | A\$45.00  |
| 2 years | A\$64.80     | A\$82.80  |
| 3 years | A\$94.50     | A\$121.50 |

Address all correspondence to: The Chief Editor PO Box 180 Gymea, NSW 2227

Acoustics Australia is published by the Australian Acoustical Society (Incorporated in N.S.W.) 35-43 Clarence Street, Sydney, N.S.W. 2000, Australia.

Responsibility for the contents of articles rests upon the authors not the Australian Acoustical Society.

Articles may be reproduced in full provided adequate reference is quoted. Printed by

Cronulla Printing Co. Pty. Ltd., 16 Cronulla Street, Cronulla 2230. (02) 523 5954.

## ISSN 0814-6039

| Pa                                                                                                                                                                     | ge  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Editorial                                                                                                                                                              | 30  |
| News                                                                                                                                                                   | 30  |
| Letters                                                                                                                                                                | 31  |
| ARTICLES                                                                                                                                                               |     |
| Sound Intensity: The State of the Art<br>K. B. Ginn and J. N. Smith                                                                                                    | 33  |
| Laboratory Measurements of the Sound Transmission Loss of<br>Glass and Windows — Sound Intensity versus Conventional<br>Method                                         |     |
| A. Cops and F. Wijnants                                                                                                                                                | 37  |
| Determination of Insertion Loss of Acoustic Lagging by Intensity<br>Measurements<br>Kerry Byrne                                                                        | 43  |
| The Usage of Sound Intensity Techniques for Studying the<br>Effects of Bounding Surfaces on the Radiated Sound Power of<br>Sound Sources     M. P. Norton and J. Soria | 47  |
| REPORTS                                                                                                                                                                |     |
| Some Experiences with Sound Intensity Measurements     Joseph Lai and Marion Burgess                                                                                   | 55  |
| The Influence of Background Noise on Sound Power Determi-<br>nation by Measuring Sound Intensity in Different Environments<br>N, Tandon                                | 57  |
| Book Review                                                                                                                                                            | 58  |
| New Products                                                                                                                                                           | 59  |
| Advertiser Index                                                                                                                                                       | 60  |
| Future Events Inside back co                                                                                                                                           | ver |

In place of their usual inside front cover advertisement, Bruel & Kjaer have supplied the illustration for the front cover. Featured in this issue is a review article by K. B. Ginn and J. N. Smith of Bruel & Kjaer, Danmark.

August 1988



# Micro-18 International Noise Monitor

Sound Level Meter + Noise Dose Meter + Integrating Sound Level Meter





## ACOUSTICAL CONSULTANTS

Three Consultants are required in Sydney by one of Australia's leading Acoustical Consulting firms.

# Senior Consultant

This position offers the opportunity to work independently on major acoustical projects with strong technical support. The work will involve architectural and environmental acoustics and vibration but the opportunity to specialise will environment the supportunity of the specialise will environment the support of the special sector of environment of the special sector of the special of the sector of the special sector of the special sector or Architecture and at least five years' experience in the acoustical field at a professional level.

# Consultant

Opportunity for a young enthusiastic Engineer, Physicist or Architect to learn the practical application of Acoustics whilst contributing to the success of the consulting practice. Applicants should have professional qualifications. Experience in the field of Acoustics is preferred.

#### **Technical Officer**

A technical officer is required as part of the consulting team to carry out acoustical measurement and analysis and to assist with computerised calculations. Training will be provided and the opportunity will arise to work at a professional level from time to time, Tertiary qualifications and experience in the electronics or instrumentation fields are required.

# Contact: Mr. MURRAY

WILKINSON MURRAY GRIFFITHS

246A WILLOUGHBY RD., CROWS NEST, N.S.W. 2065 Tel.: (02) 437 4611 --- Fax: (02) 437 4393

# INTERSTATE

# REPRESENTATIVES

# REQUIRED

If you are an established safety or instrument company with a knowledge or understanding of acoustics, then we are looking for you.

CONTACT Mr. A. SHIPLEY

# ACOUSTIC CALIBRATION LABORATORIES PTY. LTD.

27 Rosella Street, East Doncaster, Vic. 3109

Tel.; (03) 842 8822 Telex: AA35011 Fax: (03) 842 5730

# NEWS

# Editorial

The papers and notes in this issue are all on the topic of sound intensity; the theory, measurement and application. The principle of determining intensity from pressure and velocity measurements was first published in the form of a patent by H. F. Olsen in 1932 (US Patent 1 892 644 "System responsive to energy flow in sound waves"). In the subsequent decades there were sporadic reports on measurements of sound intensity using a variety of instruments but it was not until the late 1970s that there was a sudden increase in interest in the direct measurement of sound intensity. This was brought about by the possibility of using two closely spaced and matched pressure microphones to give both the pressure and the particle velocity associated with the sound field coupled with the availability of advanced computer analysing systems. The commercial production of probes and complete sound

#### ACT April Meeting

The April meeting of the ACT Group was a tour of the National Recording Studios in Canberra. The meeting commenced with an outline of the acoustics aspects of the design of the complex by Eric Taylor, from Godfrey and Spowere -The group were then taken to the various studios and control rooms by Ortner, senior audio engineer Ralph from NRC, who explained the process of audio and video production

The National Recording Studios are Canberra's first major independent video and audio production complex. The facilities cater for all types of production including:

- · documentaries and corporate videos
- advertising for television and radio
- · educational and audio-visual produc-
- · audio post-production for video
- music recording for bands and radio. The audio-studio ranks among the best

in Australia and its acoustically de-signed control room includes a 36channel mixing console and a master synchroniser which locks with the video facilities for frame-accurate sound tracking. Ralph Ortner gave a demonstration of the replacement of a small part of a taped commentary with a corrected version which had been recorded subsequent to the initial recording.

Following the inspection a small group adjourned to a nearby Turkish restaurant for an enjoyable and satisfying dinner

Marion Burgess

intensity analysing systems also led to an increase in the amount of research being undertaken.

The accompanying figure shows the number of papers on sound intensity which have been published in English language Journals since 1973. The classification of the





papers, in terms of theory and application, shows that while the emphasis in the recent years has been on the applications there are still many aspects of the theory of sound intensity which require investigation. It is currently just over half the way through the period 1987-88. vet a substantial number of papers have already been published. The first International Conference on Acoustic Intensity was held in Sen-lis in France in 1981. Interest in the topic has continued and at the Second International Conference in 1985. 80 papers were presented by researchers from over 20 countries. Most acoustics conferences now have a proportion of papers on some aspects of sound intensity.

Included in this issue of Acoustics Australia is a review paper by Bernard Ginn and J. N. Smith from Bruel & Kjaer, Denmark, and the paper by A. Cops and F. Wijnants held over from the April special issue. The other papers and reports are applications of sound intensity measurements for investigations of sound power of sources, insertion losses and noise reductions.

> Marion Burgess Associate Editor

## NSW

# March Technical Meeting

On Friday, 18th March, Graham Caldersmith, who is a violin maker from Canberra, spoke on "Physics and Tradition in Violin Making"

In spite of substantial and continuing research into the physical behaviour of the violin, and persistent attempts at innovation in its design, the violin's essential sounding body has remained unexcelled for 300 years, even while more recent woodwind instruments and piano types have undergone important developments since industrialisation

The violin's dramatic ascent in the Renaissance - Baroque musical expan sion may have impressed into succeed-"violin sterect, pe" which remains un broken, but analyses of the violin's vibrating and sound-generating characteristics suggest a special relationship between the violin's "voice" and human speech/hearing characteristics which is probably optimal.

It is also likely that traditional methods of adjusting the shape of the separate tops and backs, and their wood thicknesses gave the "original master" makers useful information about the musical properties of the complete instruments

Graham provided a survey of principal physical analyses of violin behaviour preceded by a demonstration of traditional and derived modern methods of "tuning" violin tops and backs. The evening was most interesting as well as informative.

## May Technical Meeting

Mr. Keith Davidson, of M. B. and K. J. Davidson Pty. Ltd. was the speaker at a Technical Meeting of the New South Wales Division of the Society, held at the National Acoustic Laboratories, Chatswood, on the 17th of May, 1988. The subject of the talk was "Short Leg a new acoustic measuring technique

The use of computer technology has given a new lease of life to the old 'outbox' processing technique of recording the acoustic signal and analysing it on replay. Using short Leq the raw data can be stored and used to re-create any acoustic situation, where the actual peak value of the signal is not

A lively discussion of the role of short Leg in relation to older methods of acquiring and analysing acoustical data followed Mr. Davidson's talk and his contributions to the discussion were greatly appreciated by those present.

AHLBORN of Holzkirchen, West Germany, makers of temperature measurement and control equipment, have appointed AUSTRALIAN METROSON-ICS Pty Ltd as exclusive agents for their products in Australia and New Zealand. For details of the range of AHLBORN products available contact Australian Metrosonics Pty Ltd, PO Box 120, Mt Waverley, Victoria 3149. Phone: (03) 233 5889.

# LETTERS . . .

#### Digital Audio 1

No doubt Roy Caddy's paraphrase1 of Michael Flanders' "Song of Repro-duction" was well meant: I cannot recall who "Hutch" was, either. But the result was disaster. Not only did he do a grave injustice to Flanders' verse, but he translated "bel canto" into the wrong language doing it.

The original version, as recorded from a live performance of "At the Drop of a Hat" on Parlophone PMCO 1033, went like this:

With a tone control at a single touch. I can make Caruso sound like Hutch Then, I never did care for music much; It's the High Fidelity."

#### Reference

OLD

available

Caddy, R., "Digital Techniques in Audio Equipment", Acoustics Aus-tralia, Vol 16 No 1, pp 20-22.

Dennis Gibbings 7 May 1988

#### Digital Audio 2

Dennis is right in his quotation but so am I.

Flanders and Swan released a mono version of "At the Drop of a Hat", cited by Dennis, in which that line appeared.

Later they issued a stereo recording called "At the Drop of a Hat" which included many omissions and commissions compared with the original mono recording. For example, one "Mud Mud" chorus was sung in Russian.

By this time I suspect that Hutch's star had sunk below the horizon. (I do not know who Hutch was, either.) The essence of revue is topicality so Caruso and Hutch was changed to belle canto and Dutch. With both recordings to choose from I chose the latter as being

In April a visit was made to the School

of Audio Engineering at Milton. Some

twenty people attended and gained a

valuable insight into acoustics associated with studios. Later that month a visit was made

to the factory of Associated Building Panels at Alderley. The company pro-

vided a luncheon and visitors were

shown the manufacturing process of

perforating panels, and were informed

about the range of perforated panels

In June two meetings were held. The

first one dealt with noise associated with

leisure activities and was attended by around 30 people. Four topics were discussed, these being (i) noise from

raceways, (ii) noise from open-air con-certs, (iii) noise from indoor cricket centres and (iv) noise from pubs and clubs. A stimulating discussion ensued

The other June meeting was on the

April and June Meetings

more appropriate to Australia - Joan Sutherland is a bel canto singer.

I do stand corrected though in that I should have cited "Parlophone PCSO 3001" at the end of the article, possibly a unique reference in AA.

May I also admit to another error in my article. I miscalculated and put the notch at C sharp. It should have been the B flat just below four octaves above middle C and B sharp to E flat should have read A flat to C natural

The good news is that the Bureau of Standards has vetoed the notch idea on musical and other grounds. The notch will not be inserted in CDDs.

The issue of the two records with the same title but with minor alterations in content reminds me of seeing the same research information published in a science journal and, with a few alterations and omissions, republished in a non-science journal. Two papers for the price of one?

#### Roy Caddy

4 June 1988

## **Reaction to Jaffe**

Every era has its own special vul-garity. Christopher Jaffe in "Application of advanced electronic systems to concert halls and auditoriums" (Acous-tics Australia, Vol 16 No 1) gives an account of what might pass as a remedy for bad architecture, but what should never be designed for in serious music. The author mentions, inter alia, Dr Beranek and Marshall, I think Marshall's discovery that the first reflections should be from the side-walls and not overhead reflections goes a long way to explain the disappointing results with a number of buildings (such as shown in the paper) which were designed only on Beranek's principles.

In the 1930s all the churches and town halls tried to make organ pipes

people. Tim spoke on silencers in the context of large industrial applications and gave examples on how silencing of of large gas compressors and fans on power station stacks could be achieved. He also gave examples on the characteristics of "thin" and "thick" splitters for reducing noise levels. Both these meetings were held at the premises of the Division of Noise Abatement and Air Pollution Control and thanks go to them for providing the venue and supper. Frits Kamst

## New Members Admissions

We have pleasure in welcoming the following who have been admitted to the grade of Subscriber while awaiting grading by the Council Standing Com-mittee on Membership.

ACT

Mr M. L. Evenett.

New South Wales Mr D. L. Bout, Mr J. W. Cotterill, Mr G. S. J. Glazier, Mrs S. H. McLain, Mr N. I. Oprya, Ms S. A. Ridler, Mr D. J. Spearitt.

New Zeeland (NSW register)

# Mr Effendi.

#### Graded

We welcome the following new mem bers whose gradings have now been approved.

do the work of symphony orchestras with the result that there is now no organ in Sydney fit to play Bach, etc. Today's ambition is to make cone loudspeakers do the work of every conceivable instrument and human or any other voice

Organ pipes still sound like organ pipes and loudspeakers still sound like loudspeakers.

**Campbell Steele** 13 May 1988

#### Ed:

Campbell Steele's comment on organs and Bach would be correct if this were 1958 instead of 1988. Today there are many fine new organs throughout Australia designed especially to play Bach's organ music.

#### Speakers Needed

In my role as President of the Otago Branch of the New Zealand Institute of Physics, I would like to draw to the attention of Acoustical Society members that our Branch has a small amount of money (which can sometimes be sup-plemented from our University of Otago Science Dean's Fund) for bringing speakers to meetings in Dunedin. It is not enough to pay Trans-Tasman fares, but can be used to pay travel for persons passing through other areas of New Zealand, such as Christchurch or Auckland, on their way to more distant places. If any scientists would be interested in giving our members a seminar on a fairly general topic, particularly one on acoustics or some other aspect of building science, we would be inter-ested to hear from them to see if we could work out a suitable arrangement for a visit.

# KEITH R. DAWBER, President of Otago Branch NZIP. PO BOX 56, DUNEDIN, N.Z. 17 June 1988

#### Vol. 16 No. 2 - 32

for each of these topics.

Tasmania (Vic register) Mr R. N. Stone.

**∆ffiliate** Student

- New South Wales
- Mr F. J. Weatherall.
- Subscriber

ACT

- Mr R. Ortner. New South Wales
- Mr. A. J. Madry

Member

- Victoria
- Mr G. P. Benke, Dr M. Podlesak, Mr E. D. Sceney.
- Tasmania (Vic register)
- Mr B. L. Doolan.
- New South Wales
- Mr B. G. Marston
- Western Australia
  - Mr J. D. Macpherson

# Sound Intensity: The State of the Art

K.B. Ginn & J.N. Smith

Bruel & Kjaer A/S 2850 Naerum, Denmark

ABSTRACT: The advant in 1981 of neadity available instrumentation capable of measuring acund intensity has heralded a new era in the world of acoustics. Since that date the continuous progress in the application of the sound intensity technique has been the subject of numerous review articles and international conferences [11] [23] [3]. This paper summarises the present state of instrumentation, standardisation and applications for sound intensity techniques.

# HISTORICAL BACKGROUND

The theoretical background for intensity measurements was described as early as 1932 by H.F. Olson. Several attempts were made in ensuing years to develop practical instrumentation. Methods tried included two closely spaced microphones (Clapp & Firestone 1941) and a hot-wire anemometer with a pressure microphone (Baker 1955). The subject was approached with renewed interest in 1977 by F.J. Fahy and J.Y. Chung who showed independently that the sound intensity function could be calculated from the imaginary part of the cross-spectrum function using a dual channel FFT analyser. O. Roth in 1981 [2] showed how realtime digital filtering techniques could be used for the calculation of sound intensity in standardised octave and third octave bands. From this date onwards sound intensity ceased being a laboratory curiosity and became a practical tool with a large number of applications.

# WHAT IS SOUND INTENSITY?

Sound intensity, or sound-energy flux density, is a vector quantity which is in contrast to sound pressure which is a scalar quantity. Sound intensity describes the net amount and direction of flow of acoustic power at a given point in space. Hence the dimensions are energy per time per area and the units are Wim<sup>3</sup>.

Intensity is normally presented as a level in dB with a reference of 1 pW/m². This reference level is chosen so that for a plane wave in a free field the sound intensity level, L<sub>i</sub> is equal to the sound pressure level, L<sub>p</sub> (1pW/m² is, in fact, an approximation; by using this value there will be a small, insignificant error.)

The plane wave propagating in a free field, mentioned above, is an example of a purely active sound field. A standing wave is an example of a purely reactive sound field where there is no net propagation of sound energy and hence the sound intensity level is zero.

Between these two extremes of a plane wave in a free field and a standing wave in a tube, lie a host of acoustical situations involving sound fields with both active and reactive components where the sound intensity technique can be applied to great effect.

# SOUND INTENSITY MEASUREMENTS

Generally speaking, sound intensity measurements do not, and cannot, replace sound pressure measurements. Sound intensity and sound pressure measurements complement each other. One of the properties of sound intensity meters is that they only measure the propagating, or active, part of the sound field. A sound pressure meter responds to the total sound energy, i.e. the sum of the propagating and nonpropagating parts. The difference between the sound propagating parts. The difference between the sound here pressure-intensity index and it has gained wide acceptance in the sound intensity community as an indicator for difficulty no balaning accurate intensity measurements.

The pressure-intensity index is a field indicator and reveals much about the sound field in which sound intensity measurements are to be taken. However, even if a sound intensity meter has been fully calibrated, sound intensity measurements cannot be taken with confidence until the residual pressure-intensity index of the probe and meter has been measured.

The residual pressure-intensity index of an intensitymeasuring system is an indicator of the phase matching of the whole system. Good phase matching is important measurement of a phase gradient. When no phase gradient is detected between the two microphones, no active intensity exists, however, inevitable minor phase mismatches beween the measurement channels cause the detection of so water the measurement channels cause the detection of so methy affects acoust of the source of the source of the methy affects acoust intensity measurements. see [4].

When taking sound intensity measurements both the pressure-intensity index spectrum of the sound field and the real/dual pressure-intensity index spectrum of the measuring system must be considered. The more diffuse a sound field levels and sound intensity iserels, it is in such diffuse fields that the sound intensity iserels, it is in such diffuse fields that the sound intensity iserels, and the system. Furthermore, a knowledge of the residual pressure-intensity index spectrum exhibits corrections to be made to be intenindex perturbance to be made to be intensity. Furthermore, a knowledge of the residual intensity. These corrections can be made to the middle the subject corrections can be made to the with the walkyzet described in [5].

# SOUND INTENSITY INSTRUMENTATION

The main elements of a sound intensity measurement system are a probe, an analyser, a calibrator, a storage medium and some post-processing capability, see Fig. 1.



Fig. 1. Complete sound intensity system: probe, analyzer and calibrator.



Fig. 2. Simplified cross section of intensity coupler.

# SOUND INTENSITY PROBES

Several probe designs are currently in use. The most common is a two-mich enables the mean sound pressure to be calculated mickway along the probe axis and the particle velocity to be calculated by using the finite difference approximation method. An alternative apparticle winciny, the jill was demonstrated that the state of the art design for an intensity probe is based on two "face to the" microphone littled with passe correctors.

# INTENSITY ANALYZERS

The first dedicated intensity analyser made its debut in 1981 and was based on 1/3 octave parallel digital filters. Since then several instrumentation manufacturers have produced similar systems. Small, battery-operated intensity systems first became available in 1986 in the form of a 1/1 octave analogue filter, serial analyser. At the beginning of 1988 an analyser was released [5] capable of measuring both active and reactive intensity in 1/1, 1/3 and 1/12 octaves. Other quantities related to intensity measurements such as particle velocity, mechanical power and surface intensity can be measured by connection the requisite transducers to the analogue inputs. The storage and post-processing requirements have been built into the analyser itself in the form of a large RAM memory and a 31/2" disc drive. Software for intensity mapping is being developed so that the analyser will be entirely self-contained, no computer will be necessary.

# CALIBRATOR

The calibrator is the last of the elements of an intensity system to be mentioned here although it is arguably the most important. The instrument described in [6] enables intensity systems to be calibrated against simulated sound intensity and particle velocity larves. A simplified crossed for sound intensity and particle velocity calibrations a pistorphone is used as the sound source (Fg. 3). When use d for measuring the residual intensity and residual pressure intensity index of the measurement system and and used to correct the actual intensity measurement for the obase mismatch indox core the instrumentation. In fact



Fig. 3. Pistonphone placed on coupler for sound intensity and particle velocity calibrations.

the post-processing in the new B & K analyser Type 2133 is fast enough to enable pressure-intensity index and correction for phase mismatch to be calculated and displayed in real-time.

#### APPLICATIONS Sound Power Determination

One of the principal applications of sound intensity measurements is the *in situ* determination of sound power radiated by noise sources. The radiated sound power can be determined from intensity measurements on a suitable control surface enclosing the source, since the intensity



Fig. 4. Broadband source placed on coupler for measuring residual intensity and residual pressure-intensity index.

describes the power passing through an area.

$$W = \iint_{S} \vec{I} \cdot d\vec{A} = \iint_{S} I_{a} dA$$

The integration (in practice the summation) over the control surface of the intensity component normal to the surface will directly give the power W of the source. Some of the advantages of using intensity rather than sound pressure measurements for determining sound power are:

- The method excludes any influence from steady background noise provided there is no absorption within the enclosed surface.
- No anechoic or reverberation test chamber is needed. Measurements can be performed in ordinary rooms since reflections can be regarded as background noise.
- 3. Near field as well as far field measurements are acceptable. Near field measurements improve the signal to noise ratio and require less space, but the number of measurement points may have to be increased due to the sound field close to a source being rather complex.
- There is no restriction upon the control surface. Any shape can be used.

#### Source Location

The second main application of sound intensity measurements is source location. The methods can be divided into two main groups, namely source ranking and intensity mapping. Source ranking is used when it is desirable to compare the sound power radiated by various components of an engine. Both the overall sound power level and the sound power level in different frequency bands



Fig. 5. Source ranking of a chainsaw.



Fig. 6. Contour and 3-D plots of sound intensity for a line printer obtained with a measurement grid.

can be compared. Control surfaces are defined around the various components of interest and the sound power of the individual parts is determined from intensity measurements as described earlier. As an aid to source location an intensity map can be produced over the offending machine. With suitable software, number plots, contour plots or 3-D plots can be made of active and reactive intensity.

Fig. 5 shows how by defining small control surfaces, the parts of the chainsaw were ranked in terms of their sound output. Fig. 6 shows how by using a grid, contour plots and 3-D plots of sound intensity can be obtained for a commercial printer.

# OTHER APPLICATIONS

Many other applications are the subject of active research including transmission loss, sound absorption and radiation efficiency [1] [6] [8].

# STANDARDIZATION

There are at present two international bodies working on the preparation of standards for the determination of sound power from sound intensity measurements. These are ISO doubt and the standards which attress the importance of "field indicators" (such as the pressure-intensity index, described above) to quarity the quality of the measurement. Two further groups from IEC and ARSI respectively are engaged in stored from the standard and the store of sound intensity instrumention and calibration.

# SUMMARY

Complete sound intensity systems are now available including probes, analyzers and calibrators. Forthcoming standards will certainly accelerate the promulgation of the intensity techniques which in turn will add to the growing data base. What does the future hold? We do not need to gaze into a crystal ball to predict that the intensity technique will have a long and active life in the service of acoustics.

## REFERENCES

- "Progress in the application of the sound intensity techniques to noise control engineering", G.C. Maling, Proceedings Internoise '86 pp. 41-74.
- 2 "Proceedings Acoustic Intensity Conference", CETIM, 1981 & 1985.
- 3 "Proceedings, Acoustic Intensity Symposium", Tokyo, Japan, 1987 & 1988.
- 4 "Validity of Sound Intensity Measurements" Technical Review 1985 No. 4 Bruel & Kjaer. "Sound intensity", Handbook, Bruel & Kjaer publication.
- 5 "Dual Channel Real-time Frequency Analyzer Type 2133", Product Data Sheet, Bruel & Kiaer publication.
- 6 "Intensity measurements, the analysis technique of the nineties", Bruel & Kjaer publication, BA 7196-13.
- 7 "Sound Intensity Calibrator Type 3541", Product Data Sheet, Bruel & Kiaer publication.
- 8 "Acoustical testing of a diesel engine using STSF", Application Note, Bruel & Kjaer publication.

(Received 22 June 1988)

# APPENDIX

# Theory of Sound Intensity

#### Pressure Velocity Relation

It can be shown that in a medium without mean flow, the intensity vector component in the direction r equals the time averaged product of the instantaneous pressure *p* and the corresponding instantaneous particle velocity *u*, at the same position.

$$I_r = \overline{pu_r}$$
 (1)

Pressure can be measured easily, it is the most commonly measured quantity in accustics. The particle velocity is estimated from a measurement of the pressure gradient. This method rests on the linearized Euler equation, which is the equivalent of Newton's second law. In the direction reve have

$$\rho \frac{\delta u_r}{\delta t} = \frac{\delta p}{\delta r}$$
(2)

or solving for u,

$$u_r = -\frac{1}{\rho} \int \frac{\delta p}{\delta r} dt$$
(3)

where p is the density of air.

#### Finite Difference approximation

The pressure gradient can be approximated by using two identical pressure microphones.

$$\frac{\delta p}{\delta r} = \lim_{\Delta r \to 0} \left( \frac{\Delta_p}{\Delta_p} \right) \approx \left( p_{\theta} - p_A \right) / \Delta r$$
 (4)

The instantaneous pressure can be taken as the mean value of the two pressure signals.

$$p \approx \frac{(p_B + p_A)}{2}$$
(5)

 $\Delta$  is the separation between the two measurement points. These approximations are valid provided that  $\Delta$  is small compared to the wavelength. A practical sound intensity probe consists of two lockey spaced pressure microphones, allowing m42% allowing m42% and the component of the pressure gradient along a time bining the contrast of the informations. Hence, the magnitude Modern sound intensity resolutions are performed using the following equation:

$$l_r = \overline{pu_r} \approx -\left[\left(p_B + p_A\right)/2\rho\Delta r\right] \int (p_B - p_A) dt$$
 (6)

The reactive intensity, which is the product of the pressure and the quadrature component of the particle velocity can be obtained from

$$J_r = \overline{\rho u_{quad}} = \overline{-\left[\left(p_B + p_A\right) / 2\rho\Delta r\right]\left(p_B - p_A\right)} \quad (7)$$

# Signal Processing

For processing the signals from the transducers, two approaches are in current use. The digital filter approach is a direct method, by which sound intensity is calculated in true real time in the time domain. In the FFT approach the intensity is calculated in the frequency domain from the imaginary part of the cross-spectrum function.

$$I_r(f) = -(ImG_{AB} / \omega_P \Delta r) \qquad (8)$$

The reactive intensity can be obtained from

$$J_r(f) = \frac{-1}{2 \omega \rho \Delta r} \left( G_{BB} - G_{H} \right) \qquad (9)$$

# Laboratory Measurements of the Sound Transmission Loss of Glass and Windows— Sound Intensity versus Conventional Method

A. Cops and F. Wijnants Laboratorium voor Akoestiek en Warmtegeleiding K.U. Leuven Celestijnenlaan 200 D 3030 Leuven, Belgium

ABSTRACT: When designing buildings with a maximum of sound instaktion against traffic noise it is important to know the different sound transmission path of the faceback, which are generally complex. Fast of all the design of the veskets parts in the faceback, namely the windows, has to be improved. With the conventional measuring methods it only possible measure the generational issues involved of the complex faceback, not the individual parts separately, is this research the sound intensity technique has been used. With this inclusion, it has a possible to measure different parts of building constructions separately. Research has been used. With this inclusion it is a possible to measure different parts of building constructions separately. Research has been used. Not this inclusion it is a possible to measure different parts of building constructions separately. Research has been used. Not this inclusion it is a possible to measure different parts of building constructions separately the second building and the second measure different research the exercision of a second construction and have been preferred is the better accuracy and reproducibility which can be obtained with the different measuring methods.

## 1. INTRODUCTION

In recent years a new technique has been developed to measure the sound radiation of sources and structures. This technique, known as the sound intensity technique, has been primarily applied to measure the noise power of sources but is used also extensively to measure the sound transmission loss of building structures [1-7].

In order to validate this method it is important to compare the multix with the still existing methods and eventually with models like the Statistical Energy Avalosis technique T, Ih models like the Statistical Energy and the solver fixed points measurements of the radiated sound intensity. As of great inpostners is the value of the pressurements body on the states scanning method and the solver fixed points measurements of the radiated sound intensity conditions in the receiving room or to the special energy vortices near strongly radiating panels (55.1 in order to clear this point, measurements have been done with the sound and windows and at a greater distance.

The most important skywards of the intensity method over the conventional two-comm method is the possibility to measure the sound transmission loss of individual parts of a facade or maissure the sound transmission loss of the main fame, the opening frame which contains the glass panel and the glass panel shaft, of a PKC, a wooden and an aluminam window loss of the complex which contains the glass bar and an experiment of the shaft of the sha

### 2. THE TWO MICROPHONE TECHNIQUE

It is well known that the sound intensity radiated by a structure in a direction r can be calculated from the sound pressure measurement at two closely spaced points A and B from

$$l_f = [(p_A + p_B)/2], (1/\rho) [((p_A - p_B)/\Delta r)]dt$$
 (1)

or from

$$I_r = (2\pi \rho \Delta r)^{-1} \{ (Im \{G_{AB}\}/f) df \}$$
 (2)

with:

pA and pB the microphone pressures

Δr the microphone separation

Im (GAB) the imaginary part of the cross-spectrum between the two microphone signals A and B.

While the sound intensity measured with this two-microphone technique is a function of the phase difference between the signals in the points A and B, a phase error between both measuring channels will cause an error in the sound intensity level. It can be shown that the error is given by [10]:

$$L_{c} = 10 \log \left[1 \pm 10^{1LK-LK,0^{10}}\right]$$
(3)

- L<sub>K</sub> the measured pressure-intensity index, which is defined as the measured difference between the sound pressure and the sound intensity level
- LK.0 the residual pressure-intensity index.

This residual pressure-intensity index is a measure of the bias error that may be present between the two channels of the equipment and thus is a measure of the quality of the system.

#### Table 1-

Residual pressure intensity index  $L_{K,0}$  of the measuring sound intensity equipment and the pressure-intensity index  $L_K$  at different probe distances to the test objects

| 1/3 Oct. |      |         |        |                           | Doub    | le glass  | panel |
|----------|------|---------|--------|---------------------------|---------|-----------|-------|
| Band     |      | Glass p | ane 6m | m thick                   | (10/12  | 2/4) mm : | thick |
| Fred.cy  | LK.0 | Lĸ      | LK     | L <sub>K</sub><br>abs.mat | Lĸ      | Lĸ        | Lĸ    |
| (Hz)     |      |         |        | in niche                  | (10 mm) | (4 mm)    |       |
|          |      | 5 cm    | 28 cm  | 5 cm                      | 5 cm    | 5 cm      | 28 cm |
| 100      | 8    | 2.4     | 10.8   | 3.3                       | 10.6    | 2.2       | 6.1   |
| 125      | 9    | 2.8     | 19.7   | 3.3                       | 5.9     | 2.4       | 9.1   |
| 160      | 10   | 11.0    | 4.2    | 3.6                       | 4.9     | 2.8       | 1.7   |
| 200      | 11   | 4.0     | 2.2    | 3.2                       | 2.4     | 1.7       | 1.1   |
| 250      | 12   | 5.1     | 0.2    | 3.7                       | 4.4     | 2.0       | 1.8   |
| 315      | 13   | 5.2     | 1.1    | 3.6                       | 6.2     | 3.1       | 1.9   |
| 400      | 14   | 4.6     | 1.5    | 3.6                       | 7.5     | 4.6       | 2.9   |
| 500      | 15   | 6.5     | 3.1    | 4.0                       | 7.5     | 5.3       | 5.8   |
| 630      | 16   | 8.3     | 4.6    | 4.2                       | 8.2     | 6.1       | 7.3   |
| 800      | 17   | 7.9     | 4.8    | 4.6                       | 9.5     | 6.4       | 6.0   |
| 1000     | 17   | 8.5     | 5.2    | 5.0                       | 11.6    | 8.4       | 4.5   |
| 1250     | 17   | 9.8     | 5.5    | 5.8                       | 12.7    | 9.5       | 6.0   |
| 1600     | 17   | 16.6    | 6.3    | 7.3                       | 9.1     | 9.8       | 5.7   |
| 2000     | 17   | 14.6    | 6.9    | 6.2                       | 6.1     | 11.7      | 4.6   |
| 2500     | 17   | 12.3    | 6.1    | 3.7                       | 3.8     | 10.5      | 4.0   |
| 3150     | 17   | 4.3     | 4.8    | 2.6                       | 3.1     | 8.5       | 3.6   |
| 4000     | 17   | 4.0     | 3.5    | 2.2                       | 3.4     | 4.4       | 3.5   |
| 5000     | 17   | 3.8     | 3.2    | 1.7                       | 1.5     | 3.4       | 0.7   |

A possible way to determine L<sub>K</sub> is to apply the same signals to both measuring channels. Due to a phase error between the channels a residual intensity level is measured. The difference between this level and the measured sound pressure level is by definition the residual pressure intensity index. During this measurement the Bruel & Kjers sound intensity analysing system, Type 3300 has been used and an estimation of the pressure intensity index is given in Table 1.

If the intensity is not measured in one point, but will be given as a mean value of N points, it can be shown that Equation 3 will also give the error, on the mean sound intensity level caused by the phase error, if L<sub>K</sub> is considered as the global pressure-intensity index:

$$L_K = 10 \log \sum_{N} 10^{L_p/10} - 10 \log \sum_{N} 10^{L_p/10} = L_p - L_l$$
 (4)

Whereas the measured phase is proportional to the microphone distance  $\Delta$  thetwork A and B, an increase of this distance will result in a decrease of the distance will cause another error, namely the error due to the finite distance approximation (11). As a consequence the microphone distance distance are chosen in 11). As a consequence the microphone distance distance are increased on the distance and the distance distanc

Another measuring error which will be shortly discussed in relation to this two-incorpone technique is the statistical error. By taking the mean value of the sound intensity between N points, this measuring error can be divided into two independent parts, et al. Statistical error obtained by defining the sound intensity itself and et a caused by the spread of the sound error or a quantity is defined as the tatio of the square cost of the variance of this quantity to the quantity itself, one has

$$\epsilon(I) = [\epsilon^2_1(I) + \epsilon^2_2(I)]^{\frac{1}{2}}$$
(5)

 $\epsilon_1(I) = \{(1/2NBT)\{1 + (1/\gamma^2_{AB})\} + \{(1/\gamma^2_{AB}) - 1\}\cot^2\theta_{AB}\}^{1/2}$  (6a)

Vol. 16 No. 2 - 38

with:

B = the used bandwidth

T = the measuring time

 $\gamma^2_{AB}$  = the coherence between the two signals A and B

θ<sub>AB</sub> = the phase difference between A and B

#### 3. MEASUREMENT EQUIPMENT AND RESULTS

The laboratory facility to measure the sound transmission loss of test objects with effect the sound intensity or the conventional method, as well as the complete measuring equipment is abown in Figure 1. The absorbing wedges surrounding mens were placed to optimise the sound field conditions into the receiving room. Measurements have been done in an opening with dimensions of 15.0 m by 1.25 m and a nich4 depth of 4.0 m as placed as shown in Figure 2. The measured glass panels staggered as shown in Figure 2. The measured glass panels 21 within the rolid.

The two-microphone technique can be applied in two ways to determine the sound intensity radiated by a test object. By fixed point measurements, the test object is subdivided in a large number of equally sized areas and the sound intensity level is measured in the conter point of these areas. When using the scanning method, the test object is divided in as smaller speed of about 1 cm's over each of these areas during a well-offered time. The scannet method is a faster and essair way in obtaining results. The scannet method is a faster and essair tom the sound intensity method is given by

$$R = Lp_1 - 10 \log \{(1/N) \sum_{i=1}^{N} (i/I_0)\} - -6.2 + 10 \log (1 + (3S_1/8V_1))$$
(7)

VERTICAL SECTION OF SOUND TRANSMISSION ROOMS



together with the equipment used to measure the sound transmission loss of building constructions

Acoustics Australia



Figure 2: Mounting of the test specimen on the staggered opening, following DIN 52 210 (dimensions in mm)

with:

Lp1 = the mean value of the sound pressure level in the transmitting room

I = the radiated sound intensity by the ith surface

N = the number of the subdivided surfaces.

The last term in the equation is the correction for the Waterhouse-effect [4,13,14].

Results obtained with the fixed points and the scanning method have been compared for a 6 mm thick glass panel. During the fixed points measurements the panel was subdivided into 120 areas of equal size. The scanning method was applied twice: once with 30 and once with 4 areas of equal size. During all the measurements the distance of the centre point of the intensity probe was kept constant at 5 cm from the panel. The deviation of the measuring results obtained with the fixed point method and those from the scanning method are represented in Figure 3. The agreement between the results obtained with both measuring approximations is, over the whole frequency region, within the measuring accuracy. Nevertheless the agreement with the fixed points method is better if the number of scanned surfaces is rather large. In all other measurements with the sound intensity method the scanning approximation, with a large number of measuring areas, is used. The sound transmission loss of a test object can also be measured using the well-known conventional two-room method and is in this case calculated with the conventional formula corrected for the Waterhouse-effect 4.13.141:



$$R = Lp_1 - Lp_2 + 10 \log (S/A_2) +$$

18

with:

Lp1 and Lp2 the mean value of the sound pressure level in the transmitting and receiving rooms respectively

S the surface area of the panel

- S1 and S2 the total surface area of the transmitting and receiving rooms respectively
- V1 and V2 the volume of the transmitting and receiving rooms respectively

A2 the absorption of the receiving room

Whereas both measuring rooms have equal volumes of 87m<sup>3</sup> the last term in this expression vanishes.

The results of the conventional acount transmission loss measurements of the glass panel with thickness 6 mm are compared in Figure 4 with the results of the sund intensity method. This fugure shows discreased in the second second 2000 and 2000 Hz, which is the region around the coincidence forquency of the glass panels. The deviations below 200 Hz can be explained by a lack of diffusivity of the transmitting room. Around the coincidence frequency the difference between the results of both measuring methods is caused by a measuring area due to the passe error on the sund intensity measureeric due to the passe error on the sund intensity measuremeasured pressure-intensity index of the saved field close to the 6 mm thick test object. At 1900, 2000 and 2500 Hz where



Vol. 16 No. 2 - 39



the observed discrepancies become important, the difference between  $L_K$  and the estimated residual pressure-intensity index  $L_K$  of the measuring equipment becomes rather small; which, according to formula 3, indicates that the phase error is important at this frequency.

In order to verify whether this phase error is caused by the semi-diffuse sound field conditions in the receiving room or by the complexity of the sound field very close to the radiating panel, sound intensity measurements are performed with the centre of the probe at 28 cm from the radiating panel. This



measuring area is situated at the object of the riche. The results of these measurements are shown in Figure 5. At is clear, they are in better agreement with the conventional method results. This can be explained because of a smaller phase error in the vicinity of the coincidence frequency with the second intention lines, and hence the phase error is much smaller at a large distance of the panel, except at 100 and 125 Hz. It can be concluded that the higher Ly values close to the panel are due to the complexity of the radiating sound field. No explanation is found for the large Ly at 100 and 125 Hz. In can there is found for the large Ly at 100 and 125 Hz. In can there is found for the large Ly at 100 and 125 Hz. In can tempt to within the riche, absorbing material was placed at the dogs of the naishor of the measuring compension in the resolving room.

The sound transmission loss of the panel was measured using the sound intensity technique and keeping the distance of the probe centre to the panel constant at 5 cm. As shown in Table 1, the L<sub>K</sub> and thus the phase error is reduced. However, the sound transmission loss of the panel has increased by 1 to 2 dB (Figure 6) especially in the mid frequencies where standing waves occur with reflecting niches and vanish with absorbing niches. In this case a comparison with the conventional method is not significant due to the change in niche configuration. It is expected that the Lx becomes smaller, and thus the results are more accurate, if a heavier test object is tested, because this will have a less complicated vibrating pattern than the 6 mm glass panel. In order to investigate this assumption, a second series of measurements was performed on a double glass panel composed of two panes with thicknesses 4 mm and 10 mm which are separated by a 12 mm air space. The critical frequencies of the panes are 3050 Hz and 1220 Hz respectively.

The results of the measurements of the sound transmission loss using the conventional and the sound intensity method, with the probe close to the surface, are shown in Figure 7. The deviations between the results are generally less than for the 6 mm pane measurements. The mason is that, for all the frequencies, except near the coincidence frequency of the 10 mm pane, the pressure-intensity index of the sound field near the object is much smaller than LKO and therefore the phase error on the intensity results is rather small. It can be noticed that the coincidence dip of the 10 mm papel is not observed with the intensity method, which can be explained by the higher Ly at these frequencies (Table 1). As seen from Table 1, L<sub>K</sub> becomes maximal at the critical frequency of the 10 mm glass pane. This can be explained by the fact that during the measurements the double glass panel was placed with the 10 mm pane facing the receiving room. A second intensity mapping was done, with the panel turned around so that the 4 mm pane faced the receiving room. Again the results matched those obtained with the conventional method and therefore are not shown here. Now the maximum values of the pressure-intensity index were found at 2000 Hz, 2500 Hz and 3150 Hz, which corresponds with the critical frequency region of this 4 mm pane (Table 1).

In Figure 8 the results of the sound transmission loss at the same double panel obtained with the intensity method, with the probe centre at 28 cm, are compared with those of the conventional method. Now the agreement between the results is very good over the whole frequency region and the pressureintensity index has decreased to such a low level that the phase error is negligible.

The most important advantage of the sound intensity method compared with the conventional one is the possibility to measure the STL of individual parts of a facade element separately. This procedure has been followed to measure the sound transmission loss of the main frame, the opening frame which contains the glass panel and the glass panel itself. Measurements have been done on three different windows: a PVC, a wooden and an aluminium window containing a 6 mm thick glass panel. The main frame and the opening frame are subdivided in eight equal surfaces and the radiated sound intensity level is obtained by scanning over a well-defined time. The glass panel is subdivided in at least 30 equal parts and the same scanning time per surface is used. The measurements have been done with the centre point of the intensity probe at 5 cm from the measuring object. Figure 9 represents the STL results obtained for the three different parts of the PVC window. Over the whole frequency region the main frame and the opening frame give better results than those of the glass panel. It is amazing that in the coincidence frequency region of the glass panel the STL values of the frames also have a tendency to drop. This is, expecially for the opening frame, due to the strong connection with the glass panel. Also in this figure the overall calculated STL of the window is presented.



Acoustics Australia



— — — o intensity metrica, distance or the centre or the proof to the measuring object 5 cm

In Figure 10 the overall STL obtained with the intensity method is compared with the conventional method results. Also measurements with the intensity technique have been executed with the centre of the probe at a distance of 28 cm from the window. At this distance only the total STL can be measured. As before the results between the intensity and the conventional method are in better agreement than with the short distance measurements. The results obtained in the wooden and the aluminium windows show the same tendency. This is the reason why these figures are not included within the text. It can be concluded that with the intensity method it is possible to measure different parts of composed structures separately. This is only possible with the centre of the intensity probe at short distances to the measuring object. Nevertheless the overall results show some small discrepancies compared with the conventional method especially for strong radiating objects. It is expected that with less radiating surfaces the agreement between both measuring methods will be still better.

# 4. CONCLUSIONS

The accuracy and the validity of sound transmission loss measurements with the sound intensity technique depends on the difference between the measured pressure-intensity index  $L_{K,\Phi}$  which is a measure of the bias error of the equipment. From Equation 3 is is clear that for small differences the measuring accuracy is

bad. If the differences are larger than -7 dB an accuracy better than 1 dB is obtained. Since L<sub>2</sub>(a) is determined by the phasematching of the system it can be controlled by adjustment of the microphone significiary. The surface of the object depends on the amount of absorption in the receiving coro, on the tradiation pattern of the messuring object and on the standing waves within the niche as is clearly shown with the experiments on the 6 mm thick gluss panel.

If the sound transmission loss of the measuring object is higher and, as a consequence, the radiating pattern of the surface is less complicated, these inconveniences are less important as shown in the experiments with the double glass panel with thickness (101/24/4 mm.

The intensity technique is especially valuable to measure the STL of individual parts of composed building constructions fike windows or other constructions. This gives the possibility to detect the weakest parts in the constructions and to redesign them.

(Received 8 September 1987)

#### REFERENCES

- M.J. Crocker, B. Forssen, P.K. Raju and Y.S. Wang, Application of Acoustic Intensity Measurement for the Evaluation of Transmission Loss of Structures, Proceedings of the international Congress on Recent Developments in Acoustic Intensity Measurements, CETWIN, Senis, France (1981).
- 2 M.J. Crocker, B. Forssen, P.K. Baju and A. Mielnicka, A Measurement of Transmission Loss of Panels by an Acoustic Intensity Technique, Proceedings Inter-Noise 80, Miami, Florida, Vol. II, pp. 741-746 (1980).
- 3 A. Cops and M. Minten, Comparative Study Between the Sound Intensity Method and the Conventional Two-Room Method to Calculate the Sound Transmission Loss of Wall Constructions, N<sup>DSM</sup> Control Engineering Journal, Vol. 22, No. 3, pp. 104-111 (1984).
- 4 R. Halliwell and A. Warnock, Sound Transmission Loss: Comparison of Conventional Techniques with Sound Intensity Techniques, Journal of the Acoustical Society of America, Vol. 27, pp. 2094-2103 (1985).
- 5 A. Cops, M. Minten and H. Myncke, The Use of Intensity Techniques in Building and Room Acoustics and Noise Control, Proceedings of the 5th FASE Symposium, Thessaloniki, pp. 67-85 (1985).
- 6 A. Cops, M. Minten and H. Myncke, Influence of the Design of Transmission Rooms on the Sound TransmitSion Loss of Glass Intensity Versus Conventional Method, Noise Control Engineering Journal, Vol. 28, No. 3, pp. 121-129 (1987).
- 7 M. Minten, A. Cops and F. Wijnants, The Sound Transmission Loss of a Single Panel Measured with the Two-Microphone and the Conventional Method – Comparison with the Statistical Energy Analysis Model, Applied Acoustics lin press).
- 8 J. Tichy and G.W. Elko, Application of Sound Intensity Measurement Technique, Tech. Memo. No. 83-180, Applied Research Laboratory, Penn State University (1983).
- 9 R.V. Waterhouse, D.G. Crighton and J.E. Flowcs-Williams, A Criterion for an Energy Vortex in a Sound Field, Journal of the Acoustical Society of America, 81, (5), May 1987.
- S. Gade, Validity of Intensity Measurements in Partially Diffuse Sound Fields, Technical Review B&K, No. 4 (1985).
- South reasons and D.R. Tree, Finite Difference Approximation Errors in Acoustic Intensity Measurements, Journal of Sound and Vibration, 75 (2), pp. 229-238 (1981).
- 12 DIN-52 210 Amendments to Part 2 and Part 3 for the Determination Airborne Sound Insulation of Windows and Glass for Windows, (1980).
- R.V. Waterhouse, Interference Patterns in Reverberant Sound Field, Journal of the Acoustical Society of America, 27, p. 247 (1955).
- 14 ISO 3741, Acoustics -- Determination of Sound Power Levels of Noise Sources - Precision Methods for Broad-Band Sources in Reverberant Rooms (1975).

# Determination of the Insertion Losses of Acoustic Laggings by Intensity Measurements

K.P. Byrne

School of Mechanical and Industrial Engineering The University of New South Wales P.O. Box 1 Kensington NSW 2033

ABSTRACT: The development of a rig which was used with acoustic intensity measurements to experimentally determine the insertion icoses produced by typical industrial acoustic legigings is described. The experiments were designed to test the validity of theoretical predictions of the insertion losses. It is shown how flanking transmission in the rin had to be controlled to allow meanindul measurements to be made.

# INTRODUCTION

Acoustic laggings are used to inhibit the transmission of the sound radiated from vibrating surfaces such as those of ducts, pipes and machines. The basic components of ducts, pipes and machines. The basic components of acoustic laggings are provuos layers, impervious barriers and wind blanks and the impervious barriers is the site often metal cadding sheets or loaded plates testers. Sometimes "damping layers" are attached to the impervious barriers of nothing more than a blanket of a provus material which is laid over the vibrating surfaces and then covered with a metal cladding several porcus layers and several impervious barriers are also used.

The transmission of sound through plane multi-laver structures has been studied for many years. [1] to [3]. Much of this work has been directed towards understanding and predicting sound transmission through building elements such as double wall partitions. Surprisingly, there has been very little interest in studying the performance of acoustic laggings despite their widespread industrial use. The Australian Electrical Research Board acknowledged this point and sponsored a research project which was directed towards improving the understanding of how acoustic lagoings, particularly those of the type used in the power generation industry, function. The work, which was carried out in the School of Mechanical and Industrial Engineering at The University of New South Wales, involved both a theoretical and an experimental component. The purpose of the experimental component was to verify the accuracy of the theoretical predictions. Details of the theoretical work are given in reference [4] along with comparisons between predicted and experimental results. An outline of the development of the rig used for the experimental work is given in this paper.

# THE EXPERIMENTAL RIG

A method of measuring the insertion losses of an acoustic lagging in various frequency bands involves the measurement of the sound reduction indices of a base structure, for example, a metal plate, and those of the base structure plus lagging. The source leadures in divises of an acoustic construction are usually measured by mounting the construtions and the source, and measuring the sourch pressures in the rooms. The University of New South Wales dees not posess such fractiles and a specially constructed rig was provide the source of the source of the source of the *Figure*. If the logging was supported on a grid of the tensiond wrises which were located approximately 20mm above the



Figure 1: Initial rig configuration.

base plate. This arrangement was adopted to avoid the mechanical excitation of the lagging by the vibrating base plate. It is possible, in principle at least, to determine with such a rig, the insertion losses produced by a lagging by measuring the sound pressures in the room containing the rig with and without the lagging present. However, it is necessary to achieve a situation in which the bulk of the acoustic power flow into the room is through the base plate or the lagging when it is present. It was suspected that this situation could not be achieved when the lagging was present, as flanking transmission through the side walls of the rig would be important. In view of this suspicion, which was subsequently confirmed, it was decided to try to overcome the problem by using intensity measurements to determine the space averaged acoustic intensity radiated from the base plate and the lagging. These two sets of acoustic intensity measurements would allow the insertion loss produced by the lagging to be determined. Several workers [5] - [7] have described how intensity measurements can be used to measure the transmission losses of panels and so some basis for measuring the insertion losses in this way was available. The acoustic intensity measurements were made with a B & K Sound Intensity Probe Type 3519 and a B & K Dual Channel Analyser Type 2032. The probe was fitted with 1/2" microphones spaced 12mm apart which, under reasonable conditions, would allow measurements to be made from 80 Hz to 5000 Hz. The narrow band intensity measurements made with this system were processed with a HP 300B computer to give 1/3 octave band intensity measurements. A discussion of this type of measurement system is given by Ginn and Upton [8]. Acoustic intensity measurements were made at approximately 100 locations uniformly distributed over a circular area 1000mm in diameter above the base plate or the lagging. The intensity probe was located normal to and 200mm from the surface of interest. These 100 measurements were averaged to give the final result. Similar processing was also applied to determine the space averaged 1/2 octave sound pressures at the probe.

The 2380mm diameter base plate was made of 6mm thick steel plate. This material and thickness were chosen as they are representative of plates used in many ducts in thermal power plant. The critical frequency for 6mm steel plate is approximately 2000 Hz. At higher frequencies the propagation velocity of flexural waves in this thickness plate is greater than the velocity of sound in air at ambient conditions. The base plate was bolted to a heavy rolled angle ring which was attached to the top of the inner corrugated iron tank shown in Figure 1. This inner tank, which was approximately 2230mm in diameter and 1600mm deep, contained four box mounted 275 watt speakers which were driven by band limited random noise. This system was used to acoustically excite the base plate. The transmission of sound from the walls of this inner tank was inhibited by placing it in an outer tank and filling the cavity between the two tanks with sand. The rig in this configuration is subsequently referred to as the "initial rig configuration" and was as shown in Figure 1.

Unfortunative, it was found that flanking transmission was a problem with the initial rig configuration. Even with a simple lagging there apparently was, in some frequency bands, a net flow of acoustic energy into the lagging from the region above it. The intensity probe was used to locate the sources of the coustic energy can be from the ennotiar gap found that this acoustic energy can be from the ennotiar gap surface of the outer lank. It was decided to view of this and the possible ambient noise problem to enclose the intensity probe in a lined chamber and to lag the outer tank with the possible ambient noise problem to enclose the intensity and the possible ambient noise problem to enclose the intensity and the possible ambient noise problem to enclose the intensity and the possible ambient noise problem to enclose the intensity and the possible ambient noise problem to enclose the intensity and the possible ambient noise problem to enclose the intensity and the possible ambient noise problem to enclose the intensity and the possible ambient noise problem to enclose the intensity and the possible ambient noise problem to enclose the intensity and the possible ambient noise problem to enclose the intensity and the possible ambient noise problem to enclose the intensity and the possible ambient noise problem to enclose the intensity and the possible ambient noise problem to enclose the intensity and the possible ambient noise problem to enclose the intensity and the possible ambient noise problem to enclose the intensity and the possible ambient noise problem to enclose the intensity and the possible ambient noise problem to enclose the intensity and the possible ambient noise problem to enclose the intensity and the possible ambient noise problem to enclose the intensity and the possible ambient noise problem to enclose the intensity and the possible ambient noise problem to enclose the intensity and the possible ambient noties and the possible ambient on the possible ambient 50mm of high density mineral wool and 0.7mm thick sheets of flat galvanised steel. The rig in this configuration is subsequently referred to as the "final rig configuration" and was as shown in *Figure 2*.



Figure 2: Final rig configuration.

# TYPICAL RESULTS

#### Results with initial rig configuration

The results of measurements made to establish the insertion loss of a "typical" lagging with the test rig in its initial configuration as shown in Figure 1 are plotted in Figures 3 and 4. The typical lagging was formed of a 20mm airspace,



Figure 3: Space averaged sound intensity measurements with initial rig configuration. --- Bare plate. --- With "typical" lagging.







Figure 5: Predicted and measured ½ octave band insertion losses for "typical" lagging. Measured values with initial rig configuration. — Theoretical values. — Derived from measured intensities. — Derived from measured pressures. [-----Resociated with negative intensity with lagged plate].

a SOmm threeglass blanket with a flow resistivity of 17.600 Roykim and a OS firm thick aluminum sheet. The insertion losses derived from the space averaged intensity measurements plotted in Figure 3 and those from the space plotted in Figure 3 and the formation of the space spatial of Figure 3. The theoretically predicted insertion losses derived by the theory decoded in reference [4] are also shown. The "negative" intensities in some 'vo converse data set whom figure 3 reveals the shortcomings of the figure actual the shortcomings of the rigourd explored as a flow of caculac energy into the legging from the region above it caculate energy into the legging from the region above it pressure measurements, atthough not showing this grosser, octivolaty ho not agree well with the predicted result.

## Results with final rig configuration

The results corresponding to those shown in Figures 3 to 5 are shown in Figures 6 to 8 for the rig in the final configuration. The features of the rig in the final configuration are shown in Figure 2.



Figure 6: Space averaged sound intensity measurements with final rig configuration. --- Bare plate, --- With "typical" legging.



Figure 7: Space averaged sound pressure measurements with final rig configuration. --- Bare plate. --- With "typical lagging.



Figure 8: Predicted and measured ½ octave band insertion losses for "typical" legging. Measured values with final rig configuration. — Theoretical values. — Derived from measured intensities. — Derived from measured pressures.

# COMMENTS OF THE RESULTS

It is well known that it is difficult to make reliable acoustic intensity measurements in an acoustic field which is highly reactive or contains a significant diffuse field component. It can be seen, with reference to Figures 3 and 4 that in the 400 Hz 1/2 octave band the sound pressure level was 60dB and the sound intensity level was 44dB giving a Reactivity Index of 16dB. The sound pressure level and the sound intensity level were 58dB and 40dB respectively in the 500 Hz 1/3 octave band and so the Reactivity Index was 18dB. It was decided, in view of these high Reactivity Index values, that the initial rig shown in Figure 1 would need modification to reduce the Reactivity Index of the sound field in which the intensity probe operated. The initial rig was modified to produce the final rig shown in Figure 2. It can be seen from Figures 6 and 7 that the Reactivity Indices in the 400 and 500 Hz 1/2 octave bands were reduced to 3dB as a result of the modifications. Satisfactory measurements then could be made. The excellent agreement between the predicted and measured insertion losses can be seen in Figure 8. It is also noteworthy, that over much of the frequency range, the insertion losses derived from pressure and intensity measurements are identical. The main implication of this result is that the methods used to control the flanking transmission were too effective and so over much of the frequency range of interest, acoustic intensity methods were not in fact necessary to measure the insertion loss produced by the lagging. The zealous application of effective methods for controlling flanking transmission arose from the difficulties encountered initially.

#### REFERENCES

- London, A.: "Transmission of Reverberant Sound through double Walls", J.Acoust. Soc.Am., Vol. 22, 1950, pp. 270-279.
- 2 Ford, R.D., Lord, P. and Williams, P.C.: "The Influence of Absorbent Linings on the Transmission Loss of Double-leaf Partitions", J.Sound Vib., Vol. 5, No. 1, 1967, pp. 22-28.
- 3 Sharp, B.H.: "Prediction Methods for the Sound Transmission of Building Elements", Noise Control Eng., Vol. 11, No. 2, 1978, pp. 53-63.
- 4 Au, A.C. and Byrne, K.P.: "On the Insertion Losses Produced by Plane Acoustic Lagging Structures", J.Acoust. Soc.Am., Vol. 82, No. 4, 1987, pp. 1325-1333.
- 5 Crocker, M.J., Rajee, P.K. and Forssen, B.: "Measurement of Transmission Loss of Panels by the Direct Determination of Transmitted Acoustic Intensity", Noise Control Engineering Journal, Vol. 17, No. 1, 1981, pp. 6-11.
- 6 Cops, A. and Minten, M.: "Comparative Study Between the Sound Intensity Method and the Conventional Two-Room Method to Calculate the Sound Transmission Loss of Wall Constructions", Noise Control Engineering Journal, Vol. 22, No. 3, 1984, pp. 104-111.
- 7 Forssen, B. and Crocker, M.J.: "Determination of Transmission Loss of Double Walled Panel Structures, Including Cavity Absorption of Stiffeners, by use of the Sound Intensity Technique", Internoise 65, Munich, 1965, pp. 1147-1150.
- Rose Ba, Murich, 1985, pp. 11471130.
  B Ginn, K.B. and Upton, R.: "Comparison of Sound Intensity Measurements made by a Real Time Analyser Based on Digital Filters and by a 2 Channel FFT Analyser", Internoise 85, Munich 1985, pp. 1079-1082.





# The Usage of Sound Intensity Techniques

for Studying the Effects of Bounding Surfaces on the Radiated Sound Power of Sound Sources

M.P. Norton and J. Soria Department of Mechanical Engineering University of Western Australia Nedlands, 6009, Western Australia

ABSTRACT: Sound intensity measurement techniques are utilised to demonstrate that bounding surfaces can direct the radiates and power of source so the uncelled source source and the corresponding acoustic wavelength. There exists that if the term is a source s

# 1. INTRODUCTION

It is a common assumption in most noise control texts that the radiated sound power of a source is constant, irrespective of the source location within the environment. However, for certain types of sources, the close proximity of rigid reflecting surfaces can significantly increase the sound power radiated at low frequencies. Practically, this means that sources situated close to rigid boundaries such as walls, floors and corners may produce sound pressure levels greater than for free-field operation, and consequently exceed specified noise criteria. The assumption of a constant power sound source is based upon the approximation that the acoustic radiation impedance of a source in a freefield remains the same when the source is relocated in some environment other than a free-field. This is not always the case and, often for vibrating and radiating structures, a better approximation is to assume that the sources are constant volume sources, i.e. the motion of the vibrating surface is unaffected by the acoustic radiation load, implying an infinite internal impedance. Bies1 discusses the effects of variations in acoustic radiation impedance on the sound power of various types of sound sources

This paper reviews the theoretical concepts associated with three different sound power models (constant power sources, constant volume sources and constant pressure sources) and reports on some experiments that have been conducted using a custom-built portable, sound intensity measurement system to analyse the effects of bounding reflecting surfaces on the radiated sound power of a small domestic vacuum cleaner motor and a pneumatic hand drill.

# 2. THEORETICAL CONCEPTS

Most industrial noise sources are mounted on a ground plane or in close proximity 0.1. In the far-field, they can often be approximated as single point sources. The effects effects are particularly pronounced when the source durfects are particularly pronounced when the source durlane. The analysis which follows into the source durties than one acoustic wavelength ( $\lambda$ ) from the ground has concept of directivity which the reader might be familiar more, net. on the source are well known and documented. This section relates to a point which is often omitted in the lifestation on noise control engineering – that the radiated inflated by relation to a source on the selected by rigit, reflecting planes.

Consider the case of a monopole near a rigid; reflecting, ground plane. At some point in the far-field, the sound pressure will be the sum of two sound waves — I is a direct and a reflected wave. The reflected wave can be modelled problem thus reduces to that of two interfering monopoles in practice, the ground plane will have some finite reflection coefficient (not all the sound will be necessarily reflected) and there will be some finite phase difference between the two waves. If, as an other direction guards, then the reflection ground plane is a hard or flecting surface, then the reflection opcome is a hard or flecting surface. The molecular ground plane is a size of the reflection of the source strength (a dicole is monophele of qual source strength (a dicole is modelind a two out-of-phase monopoles of equal source strength).

The combined velocity potential at the observer position (some point, X, in space) can be obtained from the monopole velocity potential,  $\phi$ , with the source strength  $\Omega_{1}(t)$  and  $\Omega_{2}(t)$  being of equal strength and phase. It is<sup>2</sup>

$$\phi(r,\theta, \theta) = - \frac{Q_p e^{i(\omega t - kr)}}{4\pi r} 2 \cos(kd \cos \theta) , \qquad 1$$

where  $Q_{e}$  is the peak value of the velocity potential, r is the radial distance,  $\theta$  is the angular position, k is the wavenumber and d is the distance from the acoustic centre of the source to the ground plane. When  $d << \lambda$ , kd << 1 and the above equation simplifies to

$$b(r,t) = -\frac{2Q_p e^{i(\omega t \cdot kr)}}{4\pi r} . \qquad 2$$

Equation 2 is simply double the far-field velocity potential for a monopole sound sourced The hard, reflecting ground plane has resulted in a doubling of the velocity potential which in turn produces a fourdid increase in the sound intensity. There is only a twofold increase in the radiated sound power because the intensity only needs to be integrated over half space (the other half is balfied by the rigid ground plane). The sound intensity is<sup>2</sup>

$$I(r) = \frac{Q_{ms}^{2} k^{2} \rho_{0} c}{4 \pi^{2} r^{2}}, \quad 3$$

and the radiated sound power is

$$\Pi = 2\pi r^2 I(r) = \frac{Q_{ms}^2 k^2 \rho_0 c}{2\pi} . \qquad 4$$

The interesting result to come out of this limit analysis is that the radiated sound power of the monopole has been doubled. This is essentially because while the r.m.s. strength, Q<sub>max</sub> and the surface vibrational velocity of the source have not changed (from when it is radiating into free space), the reflecting plane has produced a doubling of the velocity potential and the acoustic pressure. So, instead of having a constant sound power, the source has a constant volume velocity. These concepts of constant volume velocity sources as opposed to the more commonly referred to constant power sources are discussed from an engineering noise control point of view in this paper. They can be regarded as an upper limit - in practice the effects on non-perfect reflections from the ground plane will reduce the effect of the image source. Norton<sup>2</sup> discusses a more rigorous analysis for the effects of a reflecting plane on a monopole.

Now, for a simple omni-directional sound source,

$$\Pi = \frac{4\pi r^2 I}{\Omega}, \quad 5$$

where I is the sound intensity, r is the distance from the source, and O is the directivity factor (note that O is not a source strength here). For a constant power source, II = I [] = a constant, thence, as O increases, p<sub>me</sub> and I increase. If, for argument, the source were a constant pressure source, p<sub>me</sub> = a constant and as O increases II would decrease. The concept of a constant pressure source is a theoretical one and, as will become evident shorthy. It represents the lower limit of variations in radiated sound power. If the source were a constant volume source, II would increase as Q increases; thus an increase in p<sub>rms</sub><sup>2</sup> and I is a function of both Q and II.

From the preceding discussion it can be seen that for a constant power source, the effect of the ground reflector is source, in addition to this, the pressure is doubled. By considering velocity potentials and analysing the problem from fundamentals, it is evident that instead of a hocklid increase is alloby all to be battled acids of a directivity induction has alloby all on the battled acids of a directivity induction factor to be accounted for — the radiated sound power of the source has increased. The velocity potential (and hence the source) pressure) everywhere has now doubled. Thus, the double pressure) everywhere has now doubled. Thus, becomes

$$I = \frac{\Pi_0 Q^2}{4\pi r^2}$$
. 6

By taking logarithms on both sides

$$L_p = L_{\Pi_0} + 10 \log_{10}Q^2 - 10 \log_{10}4\pi r^2$$
. 7

Based on the arguments presented in the preceding paragraphs, in principle, three sound power models can be postulated: constant power: constant volume: and, constant pressure. The effects of source position on these sound power models are summarised in Table 1. From the table it can be seen that if a sound source is modelled as a constant power source, the source position does not affect its radiated sound power; if a sound source is modelled as a constant volume source, reflecting surfaces increase the radiated sound power of the source; if a sound source is modelled as a constant pressure source, reflecting surfaces decrease the radiated sound power of the source. The constant volume model is a conservative model and represents an upper limit. In reality, most practical sources fall somewhere in between the constant power model and the constant volume model - i.e. hard reflecting surfaces do have an effect on the sound power radiated by the source at frequencies where the distance, d, from the acoustic centre of the source to the reflecting surface is smaller than the acoustic wavelength (d <<  $\lambda$ ). As mentioned in the introduction, constant power and constant volume sources can be thought of in terms of acoustic radiation impedances: the widely used constant power source model is based upon

TABLE 1 Variations in radiated sound power for different sound power models

| Source<br>Position                                 | Directivity | Sound<br>Const. | Const.                    | Const.        |
|----------------------------------------------------|-------------|-----------------|---------------------------|---------------|
|                                                    | Q           | 11 = 1          | l₀ II = Il₀Q              | $II = II_0/Q$ |
| Free space                                         | 1 (+0 dB)   | llo             | H <sub>0</sub>            | Ilo           |
| Centre of a<br>large flat<br>surface               | 2 (+3 dB)   | IIa             | 2 II <sub>0</sub> (+3 dB) | II_/2 (-3 dB) |
| Intersection<br>of two<br>large flat<br>surfaces   | 4 (+6 dB)   | lla             | 4 IIa (+6 dB)             | ll√4 (−6 dB)  |
| Intersection<br>of three<br>large flat<br>surfaces | 8 (+9 dB)   | lla             | 8 IIa (+9 dB)             | li√8 (−9 dB)  |

the approximation that the acoustic radiation impedance of a source in a feed-fed remains the same when the source is relocated close to reflecting surfaces, whereas the constant source source model accounts for the fact that the motion small motors, pumps, etc.) is unaffected by the acoustic small motors, pumps, etc.) is unaffected by the acoustic constant pressure source model is only a theoretical concopt, representing a lower limit. There is some discussion sources can be modelled as constant pressure sources sources can be modelled as constant pressure sources (left), but this point needs to be quantified.

The experiments reported on in this paper, using sound intensity measurement techniques, illustrate that the radiated sound power of a small domestic vacuum cleaner voronnent. When the distance, d, from the accountic centre of the source to the reflecting plane is less than the acoustic voronnent. When the distance, d, from the accountic centre of the source to the reflecting plane is less than the acoustic vertice to the reflecting plane is less than the acoustic than that predicted by the constant volume model. Typical increases in radiated sound power for sound sources positioned in a correr, over the corresponding free-field values, cleas where d<-s, i all those dominant source frequencies where d<-s, i all all ness deminant sources frequen-

# 3. DETERMINATION OF SOUND POWER USING THE SOUND INTENSITY TECHNIQUE

# 3.1 General comments

The principle of sound intensity (and sound power) measurement using the two microphone technique is well established and will therefore only be briefly outlined here. Progress in the application of sound intensity techniques to noise control engineering can be found in a recent paper by Maling<sup>3</sup>.

The sound power, II, of a noise source can be approximated by a finite sum of the form

$$\Pi \approx \sum_{k=1}^{m} I_{n,k} \Delta S_k$$
, 8

where  $l_{ij}$  is the average normal sound intensity component over the surface read  $\Delta_{ij}^{c}$  this is usually achieved by dividing the imaginary surface into smaller discrete surfaces on these smaller surfaces. The sound intensity is then given by the sum of Equation 8. An alternative, is to sweep the sound intensity problem over a larger presentative surfaces sound intensity by the sweep surface area results in the radiated sound power through that representative surface sound intensity by the sweep surface area results in the radiated sound power it hough that representative surface radiated sound power in this reveation.

# 3.2 The custom-built signal processing unit

Radiated sound power estimates, using the sound intensity technique, can be obtained practically via an idogue or digital techniques. The custom-bulk signal processing unit small, portable, relatively inexpensive and easy to construct, using the sound of the sound state of the processing unit unitiple: configuration. Some of the prorequisite for this unit were that it should include: (i) the setting of the calibration constants for the two microphones; (ii) analog outputs after the signal processing stage to allow for tape recording or digital analysis; (iii) external octave or one-thirdoctave filters and (iv) true mean-square averaging and immediate display of the overall axial sound intensity vector. The term "axial" refers to the direction which is collinear with the two microphone membranes.

The two microphone output voltages, V1 and V2, are applied to the individual inputs into the unit where they are multiplied by their respective calibration constants, i.e. a. [pressure/volts] and a 2 [pressure/volts]. The gain in each channel can be set to the particular calibration constant of the microphone by using an internal reference source. At this stage, both microphone signals are also ac-coupled and low-pass filtered. This process is achieved by using matched broadband amplifiers with individual variable gains in conjunction with matched low-pass filters. This section of the circuit has less than 1.5° phase variation between both channels in the frequency range 100 Hz - 12.8 kHz. The difference between the two pressure signals is then fed into an integrator stage. A considerable amount of time was spent in optimising the integrator. The final version which is installed in the signal processing unit has a gain accuracy which is better than 0.1 dB, and a phase which is accurate to within 2° in the frequency range 100 Hz - 12.8 kHz. The signal from the integrator is fed separately into a sum and difference amplifier. In the sum amplifier, the sum of the two microphone pressures is added to the integrating amplifier output signal. In the difference amplifier, the sum of the two microphone pressures is subtracted from the integrating amplifier output signal. The sum and difference amplifiers in the signal processor unit have a gain error of less than 0.06 dB, and the relative phase difference between them is less than 1º in the frequency range 100 Hz - 12.8 kHz. It should be pointed out that the error values given in the preceding paragraph are the worst case values. These worst case values occur at the high frequency end of the operating range for all the components with the exception of the integrator. The low frequency phase error for the sum and difference amplifiers and the filters is approximately ±0.1°. These points are verified with the accurate results obtained during the calibration procedure which was conducted in a standing wave tube (see section 3.3 and Table 2).

The signal analysis required to evaluate the sound intensity component  $I_{i}$  in terms of the signals  $I_{i}$  and  $I_{2}$  from the second set of sum and difference amplifiers is quite straightforward. The output from the final summing amplifier is given by

$$I_1 = \int (p_1(t) - p_2(t)) dt + (p_1(t) + p_2(t)) , \qquad 9$$

and the output from the final difference amplifier is given by

$$I_2 = \int (p_1(t) - p_2(t)) dt \cdot (p_1(t) + p_2(t)) . \qquad 10$$

In practice, the signals are usually stationary and the expected square values of Equations 9 and 10 can be timeaveraged and subtracted from each other. Denoting the time-averaged value by an óverbar, the process yields,

$$\overline{l}_{1}^{2} \cdot \overline{l}_{2}^{2} = 4 \ (p_{1}(t) + p_{2}(t)) \int (p_{1}(t) \cdot p_{2}(t)) dt$$
. 11

Hence, from the two microphone definition of sound intensity, the sound intensity vector component in the x-direction is

$$I_{x} = \frac{\overline{I_{1}^{2}} \cdot \overline{I_{2}^{2}}}{8 n \Delta x}.$$
 12

The mean square value of a signal can also be evaluated by the area under the auto spectrum of the signal. Thus, between the frequencies f<sub>1</sub> and f<sub>2</sub>,

$$I_{\chi}(f_{1}, f_{2}) = \int_{f_{1}}^{f_{2}} \frac{\left[G_{11}(f) - G_{22}(f)\right]}{8 \rho \Delta x} df , \qquad 13$$

where G<sub>11</sub>(f) and G<sub>22</sub>(f) are the one-sided auto spectra of I<sub>1</sub>(t) and I<sub>2</sub>(t) respectively.

# 3.3 System calibration

A Brueli & Kjaer (§ & K) type 3519 sound intensity probesystem was used. This system can be used with 6.35 mm diameter type 4135 microphones or 12.7 mm diameter type face-to-face configuration, separated by a plastic paper of either 6 mm or 12 mm for the 6.35 mm microphones. The probemicrophones are calibrated using a B & K platonphone type microphones are calibrated using a B & K platonphone type to gain differences between the two microphones. Both the zmm spacing 55 mm microphones and 15 mm spacing/12.7 mm microphone configurations ever used in the variance of the system of the state of the system of the variance of the system of the system of the system to gain differences between the two microphones Both the variance and the system of the system of the system ing/12.7 mm microphone configurations were used in the variance are compared by dised-to acade frequencing

The complete sound intensity measurement system was collibrated in a pipe with a standing sound wave (with a standing wave ratio of - 3-17 dB). The sound intensity of a plane standing wave in a pipe can be estimated by measuring the minimum and maximum mean square pressure along the pipe. It can be shown's that using these two values, the sound intensity can be calculated from

$$I_{g} = \sqrt{\frac{p_{\min}^{2}}{\rho c}} \frac{p_{\max}^{2}}{\rho c}, \quad 14$$

where L is the sound intensity in the axial direction and pc is the characteristic impedance. A horizontally suspended steel pipe 3.050 m long with an inside diameter of 203 mm was used for this purpose. A loudspeaker was fixed at one end, whilst the other end was left open. The first higher order acoustic cut-off frequency was calculated to be at 940 Hz. Sinusoidal excitation was applied to the loudspeaker below the first acoustic cut-off frequency at 480 Hz, 547 Hz, 716 Hz, 775 Hz and 836 Hz. The frequencies used for the sinusoidal excitation were in close proximity to the organ pipe mode frequencies. Using a 1 m long extension rod, the sound intensity probe was inserted into the pipe to determine the minimum and maximum sound pressure level for each particular excitation frequency. Equation 14 was then used to determine the sound intensity. The sound intensity was also measured with the sound intensity probe and the signal processing unit. The results of both methods are summarised in Table 2.

It should be pointed out, that the outputs 1, and 1, from the signal processing unit were feel find to a two-channel spectrum analyser, where the sound intensities from the two auto spectra Gi, and Gg, and Equation (14) were evaluated. The results in Table 2 are very encoursiging with the largest discrepancy being only 1.3 dB at 547 Hz, all other measurements being within 1 dB. This is particularly so because such a sound field is purely reactive, and it is well

Acoustics Australia

TABLE 2 Sound intensity measurements in a pipe with sinusoidan excitation of organ pipe modes

| Frequency<br>(Hz) | l (using eqn 14)<br>(dB) | I <sub>x</sub> (S.I. system)<br>(dB) |
|-------------------|--------------------------|--------------------------------------|
| 480               | 95.5                     | 95.5                                 |
| 547               | 86.5                     | 87.8                                 |
| 716               | 95.3                     | 95.6                                 |
| 775               | 97.5                     | 97.8                                 |
| 836               | 98.1                     | 98.0                                 |

known that differential phase shifts in the microphone channels lead to an overestimation of sound intensity in highly reactive fields.

The reactivity index, L<sub>p.</sub> (Gade<sup>5</sup> discusses reactivity index is no-modetall of the complete sound intensity system (12.7 mm microphones & 50 mm spacer) was estimated to be -13.1 dB at 250 Hz and -17.0 dB at 500 Hz and at 250 Hz and -2.3 dB at 500 Hz. Hone, the low frequency dynamic capability of the system is well in excess of the recommended 7 dB.

As a further qualitative test, sound pressure level measurements were obtained at distances of 350 mm, 700 mm and 1400 mm from the acoustic centres of the sources in sach case, here was a clear decrease in sound pressure that the tief was not highly reactive, Also, the experimental results obtained with the custom-built signal processing unit compared very favourably with similar experimental results obtained with a Data Precision DATA 6000 digital signal analysiar (using the cose-spectra technique) the only phase associated with the BAS sound intensity probe.

## 4. EXPERIMENTAL CONSIDERATIONS

Two common appliances (a small domestic vacuum cleaner motor and a pneumatic hand drill) were chosen for the experimental measurements because their compact size, output noise spectra and lack of strong directionality meant that they could reasonably be approximated as monopole sound sources at low frequencies.

Sound power measurements were first made for the vacuum cleaner motor. For this machine, the major noise sources are the electric motor itself, suction fan noise and vibration and structure borne noise radiated by the plastic casing. It has been shown in the theoretical section of this paper and in other recent investigations (for example Zhao and Zheng\*) that the increase in radiated sound power caused by bounding surfaces is significant only at frequencies where d << \. For a practical source placed in contact with a floor or the junction of intersecting surfacs, the dimension d is the effective radius of the course. This dimension is approximately 85 mm for the vacuum cleaner motor, and a sound wave with this wavelength corresponds to a frequency of - 4 kHz. Increases in radiated sound power would therefore only be expected at frequencies somewhat less than -1 kHz for the vacuum cleaner motor section. From the sound pressure level spectrum in Figure 1 (uncalibrated sound pressure level scale relative to 2 x 105 Pa) it was observed that the noise output peaked at - 2800 Hz, but that identifiable components existed at frequencies as low as 800 Hz. This suggests that the overall radiated sound power of the vacuum cleaner motor should not be affected by the bounding surfaces - i.e. only the sound



Figure 1: Sound pressure level spectra of the vacuum cleaner motor and the pneumatic hand drill (relative units, dB re 2 × 10<sup>5</sup> Pa)

power associated with frequency components less than - 1kHz should be affected.

A small pneumatic hand drill was chosen as the second source because of its very small size and the ability to adjust the running speed to give a noise output with high sound levels at low frequencies. A primary peak of - 350 Hz was selected with a number of strong harmonics falling in the frequency range of interest, resulting in a noise source with distinctly different spectral characteristics to those of the vacuum cleaner motor. This is clearly evident from the second sound pressure level spectrum which is also presented in Figure 1. The effective radius of the hand drill is approximately 40 mm. This corresponds to an acoustic wave with a frequency of -8.6 kHz, implying that increases in radiated sound power could be expected at frequencies below - 2kHz. Here, since the dominant frequencies in the sound pressure spectrum are less than 2 kHz, the overall radiated sound power of the hand drill should be affected by the bounding surfaces.

An important consideration concerning the relative sound powers radiated in the various measurement locations is to ensure that other factors do not alter the running condition of the source over the time period required for the experiments. In the case of the electric vacuum cleaner motor, no significant fluctuations in input electrical power or operational efficiency would be expected to occur as all measurements were taken consecutively once the motor had been 'warmed up' to a steady state. For the pneumatic hand drill, a large constant pressure air supply was used, and the control valve used to regulate the running speed was securely taped to prevent accidental adjustment of the setting. It may be concluded therefore that any variation in radiated sound power that did occur was due to the effect of the nearby reflecting surfaces, and that no other sound power variations occurred.

The sound power radiated by the two experimental sources was determined using the sound intensity measurement system discussed earlier in this paper. Signal digitisation, sampling and data processing were performed with a Data Precision DATA 6000 digital analyser controlled by an HP-86 incrocomputer. Experimental measurements were conducted in a large room which provided an environment in which the sound field was not diffuse for the types of sound sources used. Four source measurement locations were used within the room, these being: (i) the source suspended by a boom 1600 mm above the tilde lindeum floor; (ii) on the floor in the centre of the room; (iii) at the junction of the floor and a plaster coated brick wall; and (iv) in a corner.

Sound intensity measurements were made using a cubic surface enclosing the source. The sweep technique was used to scan the sound intensity probe over the measurement surfaces with an extension arm and a hand orip whilst the microphone signals were being sampled and analysed. A cube with 515 mm sides was selected to define the surface over which the sound intensity was measured, and the total radiated sound power was determined by summing the contributions for all the cube faces which were not coincident with a reflecting plane. The cube dimension was chosen such that the source could be kept at some distance from any one measurement face (and hence from the probe), as recommended by Rasmussen 7 and Wu and Crocker<sup>®</sup>, Six scan lines per surface were used, resulting in a characteristic sampling length, l,, of nearly 85 mm. This dimension(1,) is small compared to both the distance from the acoustic centre of the source to the scan surface, and an acoustic wavelength in the frequency range of interest. This relates to the accuracy of approximating the true surface integral by a number of discrete measurements and is discussed in some detail by Pope9.

Care was taken during the experimental program to use a constant and consistent a scanning speed as possible to improve the precision for hand-swept scanning, as recommended by Bockhoff<sup>4</sup>. In addition, a slow sweep rate was used so that at least two samples were taken per scan. and a total of 50 averaged samples were taken for each surface. Due to the airflow generated by both appliances, a spherical windshield was used with the sound intensity probe. The effect of a windshield is to reduce the accuracy of the individual sound intensity measurements. However, it has been demonstrated by Rasmussen10 that this effect cancels for relative measurements made under similar conditions. Thus, the differences between the sound power radiated for a source in free space and in contact with various reflecting surfaces (e.g. a corner) can be used with confidence.

It is a recognized fact that reflections due to microphone clips, extension arms and so on can cause errors in the determination of sound intensity. However, the B & K sound intensity probe and extension have been designed to minimize such errors. Similarly, it might be expected that the reflecting surfaces (i.e. walls and floor) could cause measurement errors when the sound intensity probe is in close proximity to them during a scanning process. Investigations conducted by Thompson and Huvnh11 and Thompson and Tree<sup>12</sup> indicate that for  $d \ll \lambda$  (i.e. low kd). the errors associated with such reflections are insigificant. Parameter limits of  $0.1 \le k \Delta r \le 1.3$  and  $0 \le \Delta r/r \le 0.5$  are suggested for a "worst-case" design with a maximum inaccuracy of + 1.5 dB (k = \u03c6/c is the wavenumber. Ar is the microphone separation, and r is the distance between the source and the measurement point). The system used in the experiments reported on here is well within these operational guidelines.

# 5. DISCUSSION OF RESULTS AND CONCLUSIONS

The experimental results for the radiated sound power of the domestic vacuum cleaner motor and the pneumatic hand drill are presented in Figures 2, 3 and 4. Narrowband (100





Figure 2: Relative radiated sound power levels (dB difference) for the vacuum cleaner motor. (F - difference between floor and freespace values; W/F - difference between wait/Nor intersectionand free space values; C - difference between corner and freespace values; C

preumatic Dritt (100 Hz bands)



Figure 3: Relative radiated sound power levels (dB difference) for the pneumatic hand diff. (F = difference between floor and freespace values; (WF = difference between wallfloor intersectionand free space values; C = difference between corner and freespace values;

Overall dB Difference in Sound Power



Figure 4: Relative overall radiated sound power levels (dB difference) for the vacuum cleaner motor (VM) and the pneumatic hand dtil (PD) for different source locations. (F - difference between Mail/toor intersection and free space values; C - difference between comer and free space values).

Hz frequency bands) and overall sound power measurements were obtained. The results in Figures 2 and 3 are relative radiated sound power levels (dB differences between the different locations and the free space value) for the narrow band measurements at low frequencies where

 $d\ll \lambda \cdot i.e.$  the results are presented in 100 Hz frequency bands with conter frequencies ranging from 250 Hz to 950 Hz. The significant increases in radiated sound power for the different locations are clearly seen. The results presented in Figures 2 and 3 clearly illustrate that the

radiated sound power of a sound source is dependent upon its environment when the distance, d, from the acoustic centre of the source to the reflecting plane is less than the acoustic wavelength, \u03c3 - i.e. reflecting surfaces can affect the sound power characteristics of a sound source. The results presented in Figure 4 are relative overall radiated sound power measurements (dB differences between the different locations and the free space value). The overall sound power radiated by the vacuum cleaner motor is not affected by the bounding, reflecting surfaces, whereas the overall sound power radiated by the pneumatic hand drill is. This is because the dominant source frequencies for the former (see Figure 1) are greater than ~ 2 kHz - i.e. in the region where d > \lambda . whilst the dominant source frequencies for the latter (see Figure 1) are less than -2kHz - i.e. in the region where d << \ .

The results in Figure 2 demonstrate that increases in low frequency narrowahan related sound power are observed even though the dominant source of sound is at a much higher frequency (see Figure 1). However, because one is the peak level at - 2800 Hz one would expect the errors in the peak level at - 2800 Hz one would expect the errors in were recorded in some frequency bands are probably a consequence of this. What is clear is that whils the related sound power (Figure 4) key do have a noticeable effect on the radiated sound power in the low frequency bands.

The results in Figure 3 pertain to a situation where the dominant source of sound is within the low frequency region. The peaks at 350 Hz, 450 Hz, 750 Hz and 850 Hz correspond, in general kerns, with the maxima in the sound pressure level spectra (Figure 1), and the reflecting surfaces do have a distinct effect on the overall radiated sound power (Figure 4).

Two main conclusions come out of this study. Firstly, reflecting, bounding surfaces do indeed affect the radiated sound power of sound sources at frequencies where the distance, d, from the acoustic centre of the source to the reflecting plane is less than the acoustic wavelength, \lambda. Theoretical upper limits, based on a constant volume source model, for the variations in radiated sound power indicate that if the source is located at the centre of a large flat reflecting surface, or at the intersection of two large flat reflecting surfaces, or at the intersection of three large flat reflecting surfaces, the radiated sound power is - 3, - 6 or - 9 dB respectively greater than what it would be in free space. Secondly, in practice, the general trend is for the increases to be somewhat less than that predicted by the constant volume model because the effects on non-perfect reflections from the bounding surfaces will reduce the effect of the image source.

As already stated earlier on in this paper, these results are very important for engineering noise control — they are generally not well understood by noise control engineers and are therefore often overlooked when estimating noise radiation levels from sound sources.

## REFERENCES

- 1 Bles, D.A. (1982) Noise control for engineers. University of Adelaide, Mechanical Engineering Department Lecture Note Series.
- 2 Norton, M.P. (1988) Fundamentals of noise and vibration analysis for engineers, Cambridge University Press (In Press).
- 3 Maling, G.C. (1986) Progress in the application of sound intensity techniques to noise control engineering. Inter-Noise 86, Cambridge, USA, 41-74.
- 4 Bockhoff, M. (1984) Some remarks on the continuous sweeping method in sound power determination. Inter-Noise 84, Honolulu USA, 1173-1176.
- 5 Gade, S. (1985) Validity of intensity measurements in partially diffuse sound fields, B&K Tech, Review, 4, 3-31.
- 6 Zhao, S. and Zheng, S. (1986) Influence of acoustic environments on sound power radiated by noise sources. Inter-Noise 86. Cambridge USA, 345-348.
- 7 Rasmussen, P. (1986) Sound power measurements by different operators. Inter-Noise 86, Cambridge, USA, 1121-1124.
- 8 Wu, M.Q. and Crocker, M.J. (1986) A computer simulated investigation of the estimation error of sound power measurement. Inter-Noise 86, Cambridge, USA, 1129-1134.

- 9 Pope, J. (1985) Validity of sound power determination using sound intensity measurements. 2nd Int. Cong. Acoust. Intensity, Sentis, France.
- 10 Rasmussen, G. (1984) Practical application of intensity measurements. Inter-Noise 84, Honolulu, USA, 1133-1138.
- 11 Thompson, J.K. and Huynh, T. (1984) Intensity measurement errors in a reactive environment. Inter-Noise 84, Honolulu, USA, 1143-1148.
- 12 Thompson, J.K. and Tree, D.R. (1981) Finite difference approximation errors in acoustic intensity measurements. Journal of Sound and Vibration, 75(2), 229-238.

# ACKNOWLEDGEMENTS

The financial support provided by Worksafe Australia (Nationa) Occupational Health and Sately Research Grant) is gratefully acknowledged together with the assistance provided by Mr. SJ. Drew in parts of the experimental programme, and Mr. R. Greenhaigh in the design and construction of the custom-built, portable sound intensity measurement system.

(Received 20 April 1988)





The South Australian Section of IEEE is proud to be able to host ASSPA 89. ASSPA 89 aims to provide a forum for Australian workers active in the pervasive field of Signal Processing with particular emphasis on applications.

SCOPE

The following list is a guide to areas in which papers are invited:

- Signal Processing for Detection, Estimation and Tracking — Theory and Application
- Array Signal Processing Theory and Application
- Image Processing
- · Spectrum Estimation
- · Remote Sensing Applications
- · Pattern and Target Classification
- · Signal Processor Applications and VLSI
- · Applications of Neural Networks
- · Other Applications of Signal Processing

#### PAPER SUBMISSION

Prospective authors should request a Paper Description Cover Sheet from the Technical Subcommittee Convenor and submit it with a one-page summary of their paper for review. Submission of a summary implies a commitment to present the paper if accepted and to adhere to imescales and procedures given here. The schedule for paper submission to the Technical Subcommittee Convenor is as follows:

- Four copies of summary and Cover Sheet: October 3, 1988
- Notification of acceptance despatched: November 1, 1988
- Papers for final refereeing and print: December 30, 1988

In addition to invited papers a limited number of review papers will be included. Proposals for review papers should be raised with the Technical Subcommittee Convenor as early as possible.

#### EXHIBITS

An equipment exhibition will be part of the Symposium. Prospective exhibitors should contact the Symposium organisers.

#### FOR FURTHER INFORMATION

To ensure that you are on the mailing list for further information forward your name and address to the Symposium organisers.

## TECHNICAL SUBCOMMITTEE CONVENOR

Mr. G. C. Mountford Maritime Systems Division Weapon Systems Research Laboratory PO Box 1700, Salisbury, SA 5108 Phone: (08) 259 6491 Fax: (08) 259 5139

#### SYMPOSIUM ORGANISERS

Techsearch Incorporated GPO Box 2471, Adelaide, SA 5001 Phone: (08) 267 5466 Fax: (08) 267 4031

# CHADGYP POURED IN PLACE GYPSUM ROOF DECKS

CHADGYP Roof Deck Systems provide: • Versatility of design • A monolithic high sound transmission barrier • Excellent sound absorption (particularly at low frequency) • Effective thermal insulation • Speed of installation • Total composite roof and ceiling system • Fire resistance ratings.

Sydney (02) 428 1388

Melbourne (03) 560 2422

THE CHADWICK GROUP

For more information phone

antes .

Street cancels

Canberra (062),80 6333

# **CIRRUS SOUND LEVEL METERS**

CIRRUS CRL 2.37

- Easy to read analogue indicator.
- Type 1 Accuracy.
- L3M Microphone connection allows easy interchange of microphones.
- Analogue outputs available.
- Computer output available.
- · Built-in octave filter.
- Linear, "A" and "C" weightings.

CIRRUS CRL 2.36

- The latest and most advanced Sound Level Meter available from Cirrus.
- Computes Short Leq on a 1/8, 1 and 10 second time base
- Internal Memory removes the need to have an external storage device.
- Stores 114,000 roadings providing approximately 4 hours 30 hours or 2 weeks of data depending upon sample time selected.



 Interfaces via R S232 to a Micro Computer with software available for data collection and analysis.

MEASURING UP TO YOUR NEEDS AVIDSON PTY LLTD. 17 Robrins Stark, Moorebox, V.E. 3148, 97277 Was, ASARYS OXXXVII 2.1 Orbohrus Stark, Moorebox, OxXVII 007, VII (19) 11 5011 Tas. Imboore Stry, LLL (002) 72 1300 Joseph Lai and Marion Burgess Department of Mechanical Engineering University College, University of New South Wales Australian Defence Force Academy A.C.T. 2600

ABSTRACT: Sound intensity methods in a normal environment are compared with standard laboratory methods for the measurement of (a) sound power from a small hand drill, (b) sound transmission loss of a wall.

# 1. INTRODUCTION

The Australian Defence Force Academy, incorporating a Vorwarity College of the University of New Social Wales, received its frat insiste of students in 1986. In the following council facilities within the Department of Mechanical Engineering were purchased and the anenchic room commissioned Lai, 1987. This engineemic included a Buaid B Kjer proba, type 3319 and a deticated micro-computer. Over the lay vare reperingen with much or Joseph and a social repering has been obtained in a rumber of areas. This note outlines has been obtained in a sumber of areas. This note outlines torhings.

# 2. SOUND POWER

With the use of sound intensity measurements, the determination of sound power from machinery and other noise sources duet not have to be made in a special acoustic environment, directly not the measurement of the sound intensity normal to a sufficient from the measurements of the source intensity normal to a sufficient from the measurements of the source intensity normal to a sufficient from the use of the source intensity normal to a sufficient from the use of the source intensity of the source of environments of the source intensity of the lower frequency limit is related to the plase minanth of the microphones and difference approximation used in the derivation of the the two microphones. Directly which and the presense at the two microphones.

In theory, for measurements of the sound power of a source. the effect of external noise should be negligible as any sound which passes into the enclosing surface through one area will pass out through another. In practice there is a limit to this external noise suppression and this was examined by measuring over a surface enclosing no sound source. The external noise was provided by a loudspeaker source having a sound power of 89 dB. The apparent sound power of the nonexistent source range from - 78.4 to 77.8 dB. The results, similar to those of Stirnemann et al (1985), indicate an external noise suppression of around 10 dB for the sound intensity system used. A simplified model, developed to examine the sensitivity of the apparent power measured to the error, e, associated with the intensity measurement showed that for low values of e the noise suppression changed rapidly, e.g. for  $\epsilon$  from 0 to  $\pm 0.5$  dB the noise suppression ranged from >50 dB to 20 dB (Lai and Dombek, 1987). For an error  $\epsilon$ , of  $\pm 1$  dB, the noise suppression

Acoustics Australia

was of the order of 10 dB which agrees with most measurements reported to date.

Good agreement has been obtained between determinations of the sourd power of sources form measurements of the room and from sourd intensity measurements in a normal environment is room of volume 85 m<sup>2</sup> with a reverberation time of 08 are at 500 Hz. The comparisons for a small hand mems a BBK reference sourd sources, type 4206, was used in the anothoir room. As the motor in the hand dtill sets all circulation, the measurements at the low frequencies without a windscene let to vary high values. The measurewith was a windscene let for wary high values the fore of the measurements appression of the effects of the measurements appression.

### 3. ACOUSTIC PROPERTIES OF BUILDING MATERIALS

Measurements of sound intensity can be used for determination of the sound transmission loss (STL) of building materials. The STL is defined as:

where W<sub>i</sub> is the incident sound power W<sub>r</sub> is the radiated sound power



A direct measure of the sound power radiated by the partition can be determined from the sound intensity measure meta on the roceiving also of the test walk. The incident pressure in the source source . The conventional methods for determination of STL are based on measurements of the sound pressure is holds in traveleasent assure and receiving rooms, to agree with those obtained using the conventional methods in traditional testing facilities (a) coord, Minner and Myrke, 1987). The errors and limitations associated with such measure. Anderson 1987:

There have been few reports in the litestature of field measurements of transmission loss where it would seem that the use of sound intensity for a direct measurement of the transmittent sound power would reduce some of the problems inherent in determination of field transmission loss by the conventional methods. One of the difficulties have been that while the problem are relatively small and compact, the analysing equipment and to move around. National 1988 (has reported on field measurements made at the Building Respect based for measurements made at the Building Respect based for the measurelater vocanted analysier.

Recent experiences by the authors with measurements of the field transmission loss of some walks in a building highlighted some of the practical considerations necessary. Some of the walks to be tested comprised the facade of the building, it was considered that the area surrounding the building would be an ground noted was a potential problem and as the walk ware likely to have a high noise reduction the measurements were made at times when the ambient noise was minimum.

The first results indicated large amounts of negative intensity indicating that the sound energy was travelling into the wall, not out from if it is soon became appairent that the fluctuations significant effect on the results even though the windshield was used. As it was impossible to continue with the measurements by avoiding the wind guats, come flexibility of the constructed from a lightweight simble framework, 1.2 m wide by 2.2 m high, call with Ringelass and a thin incide rowing. With these screens in position, about 1 m either side of the size of wall to be canned, the effect of wind fluctuations was and of wall to be canned, the effect of wind fluctuations was

For some of the one-third actaw bands of interest, the difference between the sound pressure levels and the sound initianity levels was high of the order of 15 dB witch indicated that the accuracy of the initensity measurements was limited. Targes showed that there were significant amounts of ingative transmission from elements of the construction other than those under stars. A procedure for minimising the limitations to those under stars. A procedure for minimising the limitations to those under stars. A procedure for minimising the limitations to those under stars. A procedure for minimising the limitations to these under stars. A procedure for minimising the limitations to the absent source of the absention on the stars. The field transmission loss values obtained for one of the test walls are shown on Figure 2. Only the data for which the difference between the pressure and intensity levels was within an acceptable range is plotted. The agreement with published data for a similar construction can be seen from this figure.

# 4. CONCLUSIONS

Experiences with a sound intensity system have indicated that sound power data can be obtained with a minimum of effort. However it is important that the inherent errors and limitations that the inherent errors and limitations. The pressure-intensity difference provides a good indication when the measurement conditions are such that accurate values of the sound intensity are not likely to be obtained. An examination of the narrow band data can also indicate problem realiting analysis system. On an IFT analysis system over a realiting analysis system.

Future areas for investigation will include studies of the radiation patterns of vibrating objects and further work on investigations of the acoustic properties of building materials both inside an anechoic room and under field conditions.



x-----x Published data from conventional tests in laboratory

#### 5. REFERENCES

- Gade, S. (1985) "The validity of intensity measurements", Bruel & Kjaer Technical Review, 4, pp. 3-31,
- Lai, J.C.S. (1987) "An anechoic chamber at the Australian Defence Force Academy", Acoustics Australia, 15, p. 14.
- Lai, J.C.S. and Dombek, A. (1987) "Comparisons of various methods for determination of sound power levels of noise sources", prcCeedings, Acoustics in the Elighties, Aust. Acoust. Soc. Conference, Hobart, pp. 199-208.
- Nielsen, T.G. (1986) "Field measurements of sound insulation with a battery operated intensity analyset", Bruel & Kjaer Technical Review, 4, pp. 3-10.
- Stirnemann, A., Bolleter, U. and Rathe, E.J. (1985) "Possibilities and limits of sound power measurements with a real-time analyser", J. Sound and Vibration, 98 (3), pp. 403-413.
- van Zyl, B.G. and Erasmus, P.J. (1987) "Sound transmission analysis in reactive sound fields by sound intensimetry", Noise Control Engineering, 28139, pp. 113-119.



# The Influence of Background Noise on Sound Power Determination by Measuring Sound Intensity in Different Environments

# N. Tandon ITMMEC, Indian Institute of Technology New Delhi 110016 India

ABSTRACT: The effect of the background noise levels on the sound power determination by sound intensity technique is investigated. The scanning method of measurement is used in an ordinary room and in an acoustic chamber. The results indicate that the sound power can be determined accurately even if the background noise level is higher than the source level, in both the rooms. Background noise levels of about 5 dB higher than the source level can be accepted for an accuracy of 1 dB in the asound power levels.

# 1. INTRODUCTION

One of the advantages of determining sound power of sound sources by sound intensity measurements is that the measurements can be performed even in the presence of steady background noise. The measurements are conducted with the probe held normal to a hypothetical surface, called the control surface. enclosing the source and assuming that there is no sound absorption within this surface, so that the background noise entering the surface is equal to the noise leaving the surface. So it is even possible to perform measurements when the extraneous noise levels are higher than the source levels. But in practice limitations are imposed by the dynamic range of the instruments, sound field distribution and the measurement distance from the source [1-2]. The present work is aimed at investigating the extent of the influence of the background noise on sound power obtained from sound intensity. The measurements were performed in two different environments of an ordinary room (96 m<sup>3</sup> volume) and an acoustically damped room (66 m<sup>2</sup> volume) whose walls and ceiling have been treated with sound absorbing materials [3]. The sound absorption coefficient for the acoustic room varies between 0.83 and 0.91 in the frequency range of 125 Hz to 8 kHz. The average reverberation time of the ordinary room is 0.93, 1.06, 1.07 and 1.01 sec. at 250, 500, 1k and 2k Hz respectively.

#### 2. EXPERIMENT

All the intensity measurements have been performed over a linetre cubical book subpaccontrol subtace enclosing a reference scand source ISSI. A speker used as a source of producing backgrowth noise was placed at a distance of 1.5 m. Inten one backgrowth noise was placed at a distance of 1.5 m. Inten was measured normal to the five surfaces of the box using a face to face intensity proble with 12 mm spacer, a dual channel FFI and a desk top computer. A random noise signal was fed to the speker through a power amplifier. Sound intensity was measured by sweeping locaring method the proble manually between sweeps taing 20 cm signary. The data was started in the computer and the sound power determined in the frequency range 125 to 56 kt. Before determining the sound power of the reference source, SS, with background noise, the sound power of the source alone without speaker was determined six times in each room to study the reproducibility of the measurements. The results of these measurements are given in Table 1. As seen in the table quite good reproducibility was obtained in both the rooms, with a lower standard deviation for the acoustic chamber.

The sound power obtained without the speaker in each room is taken as the reference sound power of the source. The difference between the background and the source noise,  $\Delta L_{p}$ , is defined as

$$\Delta L_p = L_{p,BN} - L_{P,RS}$$

where L<sub>pack</sub> is the sound pressure level of the speaker, for dvin a random noise arguin, measured at the base edge of the control surface box, facing the speaker and L<sub>pack</sub> as the L<sub>pack</sub> and L<sub>pack</sub> as the L<sub>pack</sub> and L<sub>pack</sub> as the local surface box. The sound box and the sound box and the sound box and the rooms. The obtaining sound power of the source in both the rooms. The difference in the sound power level of the source obtained with the background noise and the sound power level of the source and the sound box and the source box

$$\Delta L_w = L_{w,BN+RS} - L_{w,RS}$$

Table 1-Reproducibility of Measurements

| Measurement No.                | Sound Power Measured, dB |                  |  |  |
|--------------------------------|--------------------------|------------------|--|--|
|                                | Ordinary room            | Acoustic chamber |  |  |
| 1                              | 79.6                     | 79.6             |  |  |
| 2                              | 79.5                     | 79.5             |  |  |
| 3                              | 79.7                     | 79.5             |  |  |
| 4                              | 79.7                     | 79.5             |  |  |
| 5                              | 79.7                     | 79.5             |  |  |
| 6                              | 79.7                     | 79.6             |  |  |
| Standard deviation, $\sigma_n$ | 0.076                    | 0.047            |  |  |



Figure 1: Influence of the difference of background and source noise level,  $\Delta L_P$  on the accuracy of sound power determination.

# 3. RESULTS AND DISCUSSION

The values of  $\Delta L_{\rm m}$  obtained for both the rooms are plotted against  $\Delta_{\rm he}$  first  $r_{\rm he}$  for rule  $\tau_{\rm he}$  and  $\tau_{\rm he}$  against  $\Delta_{\rm he}$  first  $\tau_{\rm he}$  in the ordination of power determined, time replety when  $\Delta L_{\rm p} > 10$  dB in the ordination that  $\sigma_{\rm he}$  and  $\sigma$ 

Figure 2 shows the average reactivity, the difference between the measured value for pressure (L<sub>P</sub>) and intensity (L<sub>1</sub>), around



sound pressure level difference, ALP

the control surface for different values of  $\Delta L_p$ . As expected, the accuracy of sound power determination in Figure 1 suffers with increasing value of reactivity. The speed of the sweep was kept constant throughout the measurements whereas it should be slower for high values of reactivity. So probably better results (i.e. higher levels of  $\Delta L_p$  being acceptable can be expected if the scanning speed is slower for higher  $\Delta L_p$  levels

#### REFERENCES

- Crocker, M.J. "Direct measurement of sound intensity and practical applications in noise control engineering", Proceedings Inter-Noise '84, pp. 21.
- 2 Bockhoff, M. "Sound power determination in the presence of background noise", Proceedings 2nd International Congress on acoustic intensity, France, 1985, pp. 275.
- 3 Tandon, N. and Kristiansen, U. "An acoustic chamber for sound intensity measurements", Pramana, Vol. 27, No. 3, 1983, pp. 413. (Received 26 April 1988)



# FREQUENCY ANALYSIS R. B. Randall

Bruel & Kjaer Publication, 1987, 344 pp. Price \$60.

The newly published third edition of B K's frequency analysis book coversboth signal analysis, often referred to an or channel analysis, often called two channel analyditional distinction between analog isod digital analysis, the author, R. B. Randall, prefers to distinguish between analysis performed using FFT (fast tourler transformation) and analysis performed using lifetri, where digital filtertoremed using lifetri, where digital filter.

What characterises this book is its balance between in-depth-going background theory on signal processing, explained in a pictorial and easy-tounderstand manner, and examples of applications ranging from the electroacoustic to the machine diagnostic fields.

 $\infty$ 

In it the reader will find all necessary definitions from the simplest, such as power spectral density and averaging process. to more elaborate ones such as impulse response, cross-correlation or frequency response. Less straight forward analysis (such as the analysis of short or long transients or the analysis of non stationary signals) are explained in detail. The merits of different techniques are discussed in a manner which enables easier selection of the most appropriate. Examples cover reciprocating machine cycle analysis, fast or slow run-up and c<sup>OBS</sup> down, and speech analysis.

Never techniques, such as Hilbert transform and Cepstrum analysis, are extensively covered. Examples of application of the Hilbert transform for amplitude demodulation in the diagnostics of rolling element bearing faults, as well as phase demodulation for analysis of torsional vibration in reciprocation machines, are illustrated. The various applications of Cepstrum analysis for echo removal, evaluation of reflecting properties of surfaces, detection of voiced speech and determination of voice pitch as well as determination of harmonic and side band patterns for diagnostic in rotating machines are described. The use of complex Cepstrum for echo removal in time domain and general deconvolution is also mentioned.

Besides many original examples of measurements, this book contains an extensive bibliography. It can be used as a text book or, by use of its very complete index, as a reference book. The author, Bob Randall after

The author, Bob Randall, after working as an application engineer in signal analysis and machine diagnostics for 17 years in Bruel & Kjær, is now appointed as Senior Lecturer in Mechanical Engineering at the University of New South Wales, Sydney, Australia.

Joelle Courrech

# NEW PRODUCTS $\equiv$

# Echotech

### Tec Smart Meter

The Tec Smart Meter is a predictive maintenance analyser which is totally automated. Predictive maintenance is a relatively new concept in the field of machinery maintenance. Predictive maintenance is a systematic programme of regularly monitoring machinery to determine the actual mechanical condition while under operating conditions. By continuous or periodic monitoring of machine parameters such as vibration, electrical current, temperature, pressure or other process variables, and by comparing the results to previous or normal operation "baseline" readings, developing problems can be detected. With this advanced early warning of developing machinery problems, dramatic improvements can be made in maintenance planning.

In addition to the route scanning survey functions, the SMART METER displays and stores complete signatures for on-the-spot trouble shooting or for fault diagnostics/root cause analysis back at the host computer. The features include selectable FFT resolution from 100 lines up to 1600 lines, making it 100 lines up to 1000 lines, maxing in especially useful for analysing more complex machine trains. With this expanded capability, TEC offers a Plot Expand Function which permits the user to more readily identify a frequency region of the plot by expanding the region to fill the entire display. TEC TEC also offers a back-lit display for use in dimly lit areas.

The SMART METER can be employed as a useful teaching apparatus for Mechanical, Electrical, Civil and Chemical Engineering departments. Model 1320 second generation SMART METER offers a 16 bit 8065 micro-processor, a dynamic range of better than 65db, automatic selection of the correct input amplifier gain, automatic spurious data rejection, and the ability to measure phase which enables the dynamic balancing of rotating machinery.

Further information: Echotech Pty Ltd, 6/22 Bridge St, Eltham, Vic 3095 (tel (03) 439 5222).

# Bruel & Kiaer

Software for Machine Fault Diagnosis Bruel & Kjaer Type 7616 Application Software is designed to help the main-tenance engineer co-ordinate the vibration monitoring activities of a maintenance team using one or more Type 2515 Vibration Analysers. The Type 7616 organises the collection of vibration data and process parameters, such as temperature, speed and load, and automatically reports changes in the vibration spectrum. Special attention is paid to machine process parameters in order to make relevant comparisons, since vibration spectra vary with these para-meters. The Type 7616 distinguishes between 30 different process parameters per machine.

By using a three-dimensional plot (showing the vibration increase of sev-

eral spectra simultaneously) and performing a trend analysis of vibration increase, the maintenance engineer can schedule maintenance in advance of a predicted breakdown. It is also possible to make trends in any combination of process paramaters.

The Type 7616 runs on the IBM XT or AT Personal Computers. Access to the different functions of the Type 7616 can be limited to suit the responsibilities of individual members of the maintenance team. The routines for the day-to-day collection of data are designed to be used by any member of the team.

#### New Sound Intensity Probe

Sound Intensity Probe Type 3545 is a lightweight two-microphone probe for measuring sound intensity in the frequency range 20 Hz to 10 kHz. It has a single cable, terminated by an 18-pin plug, which is specially designed for connection to Dual Channel Real-time Frequency Analyser Type 2133.

Type 3545 is supplied in an attache Type 3545 is supplied in a case containing Microphone Pairs Types 4178 and 4181, a 14" dual pre-amplifier. spherical and ellipsoidal windscreens and a telescopic rod for holding the probe.

The probe can also be fitted to Remote Control ZH 0354, which services all measurement and control functions. Extension cables are available to enable measurements to be performed up to 100 metres from the analyser. The dual preamplifier is connected to the tip of the Remote Control Unit via an 18pin plug, which both allows signals to pass directly to the analyser and carries the polarisation voltage for the micropho nes

Complete calibration of sound intensity measurement systems which use the Type 3545 can be conveniently made with Sound Intensity Calibrator Type This permits simultaneous set sitivity adjustment of both channels of the analyser (in pressure, particle velocity or intensity mode) and allows determination of the Residual Pressure-Intensity Index of the microphone-preamplifier-analyser combination.



#### Sound Intensity Calibrator

Bruel & Kjaer's new Sound Intensity Calibrator Type 3541 enables users to calibrate fully their intensity-measuring equipment. Probe microphones are inserted into the unique coupler which, in conjunction with a pistonphone, simu-lates a plane wave passing along the axis of the microphone probe.

Type 3541 is supplied with a call- bration chart which states the levels of sound pressure, sound intensity and particle velocity which are to be de-tected in the coupler. Correction terms for the calibration levels when condi-tions are different to the original calibration are also given on the calibration chart, together with instructions for using the Type 3541.

In addition to the calibrations, Type 3541 can be used to measure the residual pressure-intensity index spectra of intensity-measuring equipment. This is important if the equipment is to be used accurately. Residual pressureintensity index spectra are measured by using the coupler and a broad-ban sound source

# Fully Automated Monitoring System

Bruel & Kiaer introduce the answer to achine-condition monitoring, the fully automatic monitoring system based on software package Type WT 9118. The system combines the security of a permanently installed broadband monitoring scheme with the powerful detection capabilities of spectrum comparison monitoring, the ultimate two in one. All signal channels, up to a maximum of 512, are monitored via a Type 2505 Multipurpose Monitor which compares their overall vibration level against three preset limits. Any violation of these limits will trigger alarms via Trip Relay Box WB 0376 and, if necessary, shut down the machine.

The spectrum comparison system monitors each channel seguentially. It produces a proportional-band fre-quency spectrum of the machines vibration levels for comparison with a similar spectrum taken when the machine was in a known "healthy" condition. As soon as a fault begins to develop, the shape of the frequency spectrum changes and this change will be detected by the spectrum comparison. By analysis of the "fault" spectra via the Type 2033 High Resolution Signal Analyser the cause of the fault can be diagnosed

fault spectra detected by the spectrum comparison system are retained on disc and a short fault warning is given via an on-line printer. Spectra for each channel may be stored under six separate speed classifications, allowing different machine operating conditions to be taken into account and minimising erroneous fault warnings. The machine speed is detected via Tacho Interface WB 0915. If a fault is identified, its rate of increase with running time can be displayed. A least-squares extrapolation can then be made, giving a prediction of when a pre-defined "danger" limit will be exceeded in the form of a trend analysis. Further Information: Bruel & Kjaer Aust, 24 Tepko Road, Terrey Hills, NSW 2084

#### **Envelope Analysis**

#### - the key to rolling-element bearing diagnosis

Diagnosing faults in rolling-element bearings is made easier with the latest in vibration-analysis instrumentation from Bruel & Kjaer. By combining Vibration Analyzer Type 2515 with Envelope Detector WB 1048, envelope analysis can be effectively used to identify and diagnose bearing faults.

Envelope Detector WB 1048 contains an eight-position bandpass filter and has three gain ranges. It can also be minium box and will fit into one of the minium box and will fit into one of the pockets of the leather case of the pockets of the leather case of the dimension to the battery-case of the 2815, making it the most powerful, portion the market today.

# Metrosonics

#### **RS232** Interface

Metrosonics Inc. announces availability of the Model dt-435 Data Translator that enables the company's noise and industrial hyglene data loggers to interface to an RS-232C device such as personal or mainframe computers, digital recorders and modems.

The dt-435 gives users of the Metrosonics dt-301 Noise-Profiling Dosimeter, dt-331 Universal Data logger, dt-633 Metroreader and Interscas 5000 series Toxic Gas Dosimeter the floxibility of writing their own programmes for analysing and archiving occupational exposure data, and the opportunity to utilise computers not currently supported by the company's software.

The d1-435 is the size of a pocket calculator and operates on an internal battery or external power. Internal switches allow selection of baud rate, parity and word size, to ensure proper communication with the receiving device.

AUSTRALIAN METROSONICS Pty Ltd is presenting a family of new AHLBORN portable temperature measuring instruments, microprocessor controlled, as seen recently at the Hannover-Fair.

Technical description and further details clarify that this new series THERM 2280 is based on the very modern technology of microprocessing, C-MOStechnology and a 30-year-old experience.

These instruments are based on a homogeneous concept, for example, microprocessor controlled technology, digital linearisation, autocalibration as well as a precise reference-junction compensation. Different kinds of thermocouples or even NTC-, Pt 100- and infrared-sensors can be connected.

The instruments offer temperature ranges of -200 to +1760,0°C with a resolution of 0,1 K or 0,01 K.

All instruments can be run by an alternative power supply: 9 V battery or mains adapter.

Further information: Metrosonics, P.O. Box 120, Mt Waverley 3149, Victoria (tel (03) 233 5889). NEWS . . .

# ICA - 1989

Dr. Neville Fletcher attended the recent ICA meeting in Bordeaux at which the arrangements for the 13th Congress in Belgrade (Aug. 24-31, 1989) were discussed.

He reports that the planning has adwared to the stage that invitations, search is the stage that invitations, search and the stage of the stage of the search and the stage of the stage of the about a month's time and there is a stage that the stage of the stage of the about a month's time and there is a stage that the stage of the comments of the stage of the stage of the comments of the stage of the stage of the comments of the stage of the

For the satellite symposia in Zagrab (September 1-3) on Electroacoustics and in Dubrovnik (September 4-6) on Sea Acoustics the attendance is expected in each case to be about 200. Dubrovnik, in particular, is most attractive from the tourist point of view.

Robert Angus has returned to Queensland to take up a new position at Vipac. Robert, whose spacial areas of interest are machine and structural vibration, has been working in Vipac's Melbourne office for the past two years.

#### \* \* \*

Note Eddington and Warren Renew, both of the Division of Noise Abstement and Air Pollution Control, as well as Frits Awants of Winders, Barlow & Morrison Pty, Ltd, will attend the Noise 88 Conference in Stockholm and the Inter-Noise '88 Conference In Avignon, France, All three are presenting papers.

# POLMET 88

Polmet 88 is the second in a series of international conferences and exhibitions on Pollution in the Urban Environment, to be held in Hong Kong from 28th November to 2nd December 1988.

The conference is being organised jointly by the H.K. Institution of Engineers and the H.K. Government Envirommental Pollution Advisory Committee. The main theme will be Pollution in the Metropolitan and Urban Environment, with emphasis on issues of relevance to countries in Asla and the Pacific Region.

Prominent organisations and corporations concerned with environmental protection and management have already confirmed their participation in both the exhibition and the conference. The conference has already attracted more than 300 delegates from many countries.

Further information: POLMET 88 Secretariat: 9/F, Island Centre, No. 1 Great George Street, Causeway Bay, HK. Telephone: 5-8954446, Telex: 74679 BINHK HX, Fax: 5-777791.

# WESTPAC III

The 3rd Western Pacific Regional Conference is to be held from November 2-4, 1998 in Shanghai, China, The tig member acceleration of the state ing member acceleration of the state ing members are encouraged to participate in this Conference, which will be accelerate the state of the contributed papers on all topics of accustice plus acceleration visits and a technical exhibition. A number of postchina are also planned.

Registration fees are \$U\$150 prior to August 31st and \$U\$160 afterwards. If any AAS member is planning to attend, the Society's Council would be interested to know — could you please inform Mr. R. A. Plesse, General Socretary.

Further information: Secretary of Westpac III c/- Institute of Acoustics, Academia Sinica, 17 Zhongguancun Street, P.O. Box 2712, Beijing, China.

## FASE

The 8th Symposium of the Federation of Acoustical Societies of Europe (FASE) will be held during the week of Acoustical Societies of the thome will bo for papers has been distributed. Provisional title, and abstract, should be forwarded to the Secretariat:

Viajes el Corte Ingles, Dpto. Congresos, Avda, Cesar Augusto, 14, 2a planta, 50004 Zaragoza, Spain.

#### Standards

A new American National Standard is now available. It is ANSI S12.8-1987 and tilled "Methods for determination of insertion loss of outdoor noise barriers".

This standard presents methods for insertion loss. It does not standardise determination of outdoor noise barrier insertion loss. It does not standardise different barriers or lo generalise or certily the performance of a paticular background notand to maximum background notand to maximum descriptor, and the time averaged A weighted level or otave band sound pressure level, or Arweighted sound sound prostate level, or Arweighted sound proprinte descriptoring in not precluded.

# ADVERTISER INDEX

| Bruel & Kjaer Front cover and in | sert |
|----------------------------------|------|
| B.K. Sales Inside front co       | ver  |
| Acoustic Cal. Labs               | 30   |
| ASSPA 89                         | 53   |
| Australian Metrosonics           | 30   |
| Chadwick                         | 54   |
| Davidson                         | 54   |
| Kell and Rigby                   | 46   |
| Wilkinson Murray Griffiths       | 30   |

Readers are asked to mention this publication when replying to advertisements.

# FUTURE EVENTS

Indicates an Australian Conference

# 1988

#### September 5-7, CRACOW

CONFERENCE ON NOISE CONTROL 88 Details: Dr. R. Panuszka, Organising committee Conference Noise Control 88, Inst. of Mechanica & Vibroacoustics AGH, A1. Mickiewicza 30, 30-059 Krakow, Poland.

# October 3-5, CHICAGO

IEEE ULTRASONICS SYMPOSIUM Details: Univ. Illinois, Bioacoustics Research Lab., Atten: W. D. O'Brien Jr., Urbama, Illinois 61801, USA.

# October 4-7, HIGH TATRA

ELECTROACOUSTICS 27th Conference. Details: House of Technology, Eng L. Goralikova, Skultetyho ul. 1, 832 27, Bratislava, Czechoslovakia.

#### October 15-16, WASHINGTON

HISTORY OF ULTRASOUND Details: American Institute of Ultrasound in Medicine, 4405 East-West Highway, Suite 504, Bethesda, MD20814, USA.

# October 17-21, WASHINGTON

WFUMB/AIUM MEETING AND 2nd CONGRESS OF SONOGRAPHERS Details: AUUM, Conventions & Education, 4405 East-West Hwy., Suite 504, Bethesda, MD 20814, USA.

#### November 2-4, SHANGI

WESTPAC III

Developments of Acoustics in the Western Pacific Region. Details: Secretariat Westpac III, Institute Acoustics, Academia Sinica, 17 Zhongguancun St, Beiling, China,

#### November 14-18, HONOLULU

2nd JOINT MEETING OF ACOUSTICAL SOCIETIES OF AMERICA AND JAPAN Details: Secretariat ASA-ASJ Joint Meeting, Ac.Soc.Japan, Ikeda Bldg 4F, Yoyogi 2-7-7, Shibuya, Tokyo 151, Japan.

#### November 14-17, KOBE

9th INTERNATIONAL ACOUSTIC EMISSION SYMPOSIUM

Details: Prof. Dr. I. Kimpara, Dept. Naval Architecture, Faculty of Eng., University of Tokyo, 3-1, Hongo-7, Bunkyo-ku, TOKYO 113, JAPAN.

### November 24-25, VICTOR HARBOUR

# NOISE INTO THE NINETIES

Details: R. P. Williamson, School of Built Environment, SAIT, Nth. Terrace, SA 5000.

#### November 25-27, WINDERMERE

AUTUMN CONFERENCE — IOA Noise In and Around Buildings Details: Institute of Acoustics, 25 Chambers Street, Edinburgh, EH1 1HU, U.K.

# November 28 - December 2,

#### POLMET 88

Pollution in the Metropolitan and Urban Environment.

Details: Polmet 88 Secretariat, c/- Hong Kong Institution of Engineers, 91F, Island Centre, No 1, Great George St, Causeway Bay, Hong Kong.

# 1989

#### March 7-10, HAMBURG

86th AES CONVENTION

Details: Herman Wilms, Exhibition Director, Zevenbunderslaan 142/9, Brussels, Belgium 1190.

#### April 3-5, LIVERPOOL

MODERN PRACTICE IN STRESS AND VIBRATION ANALYSIS

Details: Meetings Officer, Institute of Physics, 47 Belgrave Square, London, SWIX 8QX, U.K.

#### April 10-14, PERTH

1989 NATIONAL ENGINEERING CONFERENCE

Developing Australia's Resources Details: Conference Manager, 1989 Nat, Eng. Cont., Institution of Engineers, 11 National Circuit, Barton, ACT 2600.

#### April 24-28, ZARAGOZA

ath FASE SYMPOSIUM Environmental Acoustics Details: Viajes el Corte Ingles, Dpto Congresos, Avda. Cosar Augusto, 14, 2a planta, 5000 4 Zaragoza, Spain.

#### April 25-29, GLASGOW

INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING

Details: Inst. Elect. & Electronic Eng., Conference Co-ordinator, 345 E 47th St., New York, NY 10017, USA.

## May 22-26, SYRACUSE

MEETING OF ACOUSTICAL SOCIETY OF AMERICA

Details: Murray Strasberg, ASA, 500 Sunnyside Blvd., Woodbury, New York 11797, USA.

#### May 23-27, GDANSK

4th SPRING SCHOOL ON ACOUTO-OPTICS

Details: Prof. A. Sliwinski, Inst. of Experimental Physics, University Gdanak, Wita Stwosza 57, 80 952 Gdanak, Poland.

#### June 7-10, PECS

6th SEMINAR ON NOISE CONTROL Detalls: Optical, Acoustical & Filmtechnical Soc., F0 u. 68, H-1027, Budapest II, Hungary.

#### August 16-18, SINGAPORE

INTERNATIONAL CONFERENCE NOISE & VIBRATION 89

Details: The Secretariat, International Conference Noise & Vibration 89, cl-School of Mechanical & Production Engineering, Nanyang Technological Institute, Nanyang Ave., Singapore 2263.

#### August 19-22, MITTENWALD

INTERNATIONAL SYMPOSIUM ON MUSICAL ACOUSTICS

Details: Sekretariat des ISMA 1989, c/-Muller-BBM, Robert-Koch-Str 11, 8033 Planegg, W. Germany.

#### August 24-31, BELGRADE 13th ICA

#### September 4-6

SYMPOSIA Sea Acoustics — Dubrovnik. Electroacoustics — Zagreb. Details: 13 ICA Secretarist, Sava Centre, 11070 Belgrade, Yugoslavia.

#### October 4-6, MONTREAL

IEEE/UFFCS Ultrasonics Symposium. Details: Allied-Signal Inc., Atten.: H. van de Vaart, PO Box 10221R, Morristown, NJ 07960, USA.

#### October 18-19, BARCELONA

II WORLD CONGRESS OF CHRONICAL RONCOPATHY "Snore and OSAS Syndrome."

Details: Prof. E. Perello, Facultat de Medicina, Universitat Autonoma de Barcelona, Passeig de la Vall D'Hebron, S/N 08035 Barcelona, Spain.

#### November 6-10, ST LOUIS

MEETING OF ACOUSTICAL SOCIETY OF AMERICA

Details: Murray Strasberg, ASA, 500 Sunnyside Blvd., Woodbury, New York 11797, USA.

#### December 4-6, NEWPORT BEACH INTER-NOISE 89

Details: Inter-noise 89, Inst. Noise Control Eng., PO Box 3206, Poughkeepsie, NY 12603, USA.

| - | - | - |
|---|---|---|
|   |   |   |
| ч |   |   |
| ~ | ~ | • |
|   |   |   |

#### May 21-25, PENNSYLVANIA

MEETING OF ACOUSTICAL SOCIETY OF AMERICA

Details: Murray Strasberg, ASA, 500 Sunnyside Blvd., Woodbury, New York 11797, USA.

# November 26-30, SAN DIEGO

MEETING OF ACOUSTICAL SOCIETY OF AMERICA

Details: Murray Strasberg, ASA, 500 Sunnyside Blvd., Woodbury, New York 11797, USA.

# RUSTRALIAN ACOUSTICAL SOCIETY

# 1988 ANNUAL CONFERENCE NOISE INTO THE NINETIES

# VICTOR HARBOUR 24 - 25 NOVEMBER, 1988

| Venue:              | Apollon Motel, Victor Harbour                                                                                                                                    |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Registration:       | Registration will commence on the evening<br>of 23rd November, 1988. Registration will<br>be on a limited basis. Invitations will be<br>distributed during July. |
| Registration Fees:  | Full-time delegates - \$185.00<br>Accompanying delegates - \$80.00<br>(excluding accommodation and tours).                                                       |
| Further Information | : Mr. R. P. Williamson,<br>School of Built Environment<br>S.A.I.T.                                                                                               |

North Terrace, S.A. 5000 Tel: (08) 236 2227

# SUSTAINING MEMBERS

AQ-VIB DIVN. OF AQUA-COOL TOWERS PTY. LTD. UNIT 7. 2 STANTON ROAD

SEVEN HILLS 2147

ASSOCIATION OF AUSTRALIAN ACOUSTICAL CONSULTANTS

C/- SCIENCE CENTRE 35 CLARENCE STREET SYDNEY, N.S.W. 2000

BILSOM AUSTRALIA PTY. LTD. P.O. BOX 754 CHATSWOOD 2067

BORAL AUSTRALIAN GYPSUM 676 LORIMER STREET PORT MELBOURNE, VIC. 3207

BRADFORD INSULATION, C.S.R. LTD.

12 MOUNT STREET NORTH SYDNEY 2060 BRUEL & KJAER (AUST.) PTY. LTD. JAMES HARDIE INDUSTRIES LTD. 24 TEPKO ROAD G.P.O. BOX 3935 TERREY HILLS, N.S.W. 2084 SYDNEY 2001

BHP COATED PRODUCTS DIVISION P.O. BOX 77 PORT KEMBLA, N.S.W. 2505

CMA FOAM GROUP 1 HEATHCOTE ROAD LIVERPOOL, N.S.W. 2170

THE CHADWICK GROUP 292 BURNS BAY ROAD LANE COVE 2066

FOAMLITE AUSTRALIA PTY. LTD. P.O. BOX 331 SUNNYBANK, QLD. 4109

INDUSTRIAL NOISE CONTROL PTY. LTD. 7 LEVANSWELL ROAD MOORABBIN, VIC. 3189 SYDNEY 2001 NAP SILENTFLO PTY. LTD.

P.O. BOX 173 CLAYTON, VIC. 3168

PEACE ENGINEERING PTY. LTD. UNIT 2/20 MARIGOLD STREET REVESBY, N.S.W. 2212

SOUND ATTENUATORS AUSTRALIA P.O. BOX 269 DRUMMOYNE 2047

SOUNDGUARD PTY. LTD. P.O. BOX 246 RYDALMERE, N.S.W. 2116

RYDALMERE, N.S.W. 2116

K. H. STRAMIT LTD. 52 MANDOON ROAD GIRRAWEEN 2145