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introduCtion
Accurate representation of the acoustic field in the ocean 

is fundamentally important for many applications in ocean 
acoustics, from traditional naval interests in evaluating 
sonar performance to present day environmental concerns 
in assessment of the impact of anthropogenic sound sources 
on marine life. The measured field from a sound source in 
the ocean is uniquely determined by the physical conditions 
of temperature and salinity in the water, and the depth and 
geoacoustic properties of the ocean bottom. The mapping 
between the physical properties of the ocean waveguide 
and the acoustic field is non-linear, and the relationship is 
expressed by the acoustic wave equation [1, 2]. In all but a 
few simplified ocean waveguide models, analytic solution of 
the wave equation is not possible and sophisticated numerical 
techniques such as ray theory approximations, normal mode 
methods, wave number integral methods and parabolic equation 
approximations have been developed for calculating the field 
in realistic ocean waveguide environments [2]. These methods 
have been tested extensively in benchmarking sessions against 
simulated waveguide environments of varying complexity, and 
are in widespread use for applications with experimental data.

Solution of the wave equation involves satisfying boundary 
conditions of pressure release at the sea surface, and continuity 
of pressure and vertical particle velocity at the ocean bottom for 
the conventional assumption that the bottom is a fluid system; 
if the bottom is an elastic solid, there is an additional constraint 
of continuity of horizontal stress. The effect of the bottom on 
the acoustic field in the water is significant, particularly in 
shallow water environments, and there has been considerable 
research effort to understand the physics of sound propagation 
in ocean bottom materials. The interaction of sound with the 
ocean bottom is described in calculations of the acoustic field 

using geoacoustic models of the physical bottom structure that 
generally consist of profiles in depth, range and cross-range 
of the sound speed, c, attenuation, α, and density, ρ, of the 
bottom materials. In most cases, the cross-range variation is 
negligible, but range dependence of the profiles in depth is 
common. Knowledge of these physical properties is necessary 
for constructing geoacoustic models that will enable accurate 
representation of the field. An example of a simple geoacoustic 
model is shown in Figure 1; the form of this model is typical of 
those used for applications with experimental data.

The geoacoustic model in the figure does not explicitly 
include shear wave parameters. Although shear wave effects 
in elastic solid material can be modelled in most numerical 
propagation codes, the impact of shear wave losses is not 
significant in most shallow water environments that consist 
of fine-grained, high porosity sediment material in which the 
shear wave speed near the sea floor is very low (< 300 m/s). 
Consequently, in most of the geoacoustic inversions reported 
in the literature, the bottom is modelled as a fluid. Exceptions 
to this approach include shallow or deep water environments 
where elastic solid material is found relatively close (within 
a few wavelengths) to the sea floor, e.g. calcarenite and 
limestone sea bottom regions off the west coast of Australia, 
and thin-sediment basalt regions of the Pacific Ocean. In those 
environments, the shear wave speed is comparable to or greater 
than the sound speed in water, and so the coupling with the 
compressional wave generated in the water is very strong. 
Inversions of data from such environments must take account 
of shear wave propagation in the bottom.

The interaction of sound with the ocean bottom has a significant impact on the acoustic field in the ocean, especially in 
shallow water. Over the past several decades, there has been a high level of research activity in ocean acoustics to understand 
the physics of sound propagation in the ocean bottom. This work has led to the general practice of using geoacoustic 
models, - profiles of the sound speed, attenuation, and density of ocean bottom materials ñ to describe the bottom. Much 
of the research was focused on developing inversion methods to determine geoacoustic model parameter values from the 
information about the model contained in measurements of the acoustic field ñ or quantities that can be derived from the 
field ñ in the water. This paper reviews the stages in the development of geoacoustic inversion as a statistical inference 
process to estimate geoacoustic model parameter values and their associated uncertainties. Applications of linear inversions 
and non-linear inversions based on matched field processing are presented for analysis of their performance in estimating 
realistic geoacoustic models. The paper concludes by pointing out limitations in the present day inversion techniques that 
can severely limit performance, and discusses some new approaches that provide robust performance without compromising 
the accuracy of the estimated model parameters.
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Figure 1. Geoacoustic model consisting of a simple layered structure 
of sound speed, c, attenuation, α, and density, ρ

The sensitivity of the acoustic field to geoacoustic model 
parameters was recognised many years ago by researchers who 
noted that improvements in modelling transmission loss data 
[3] and bottom loss data [4] could be obtained by adjusting 
specific model parameters. The simplicity of the approach is 
very appealing, and it continues to be applied in some studies 
[5]. However, an approach to inversion by changing model 
parameters in a trial and error fashion is highly subjective, 
and there is no measure of the uncertainty of the parameter 
value that provides the best fit to the data. More importantly, it 
ignores the sensitivities and the impact of errors in other model 
parameters that are held at fixed values. A more systematic 
approach of iteration over forward models was suggested by 
Frisk [6], but the computation time in executing such a grid 
search over many geoacoustic model parameters was and 
remains prohibitively long.

Over the past twenty years, there has been considerable 
interest in ocean acoustics in developing objective inversion 
techniques to estimate geoacoustic model parameters from 
measurements of the acoustic field – or quantities that can 
be derived from the acoustic field – in the water [7]. This 
approach using remote acoustic sensing is attractive because 
it is an efficient means for characterising the ocean bottom 
over large areas, and the estimates are made on material in 
its natural setting. By comparison, estimates based on point 
measurements that involve analysis of physical samples of the 
bottom material are expensive and time consuming, and may 
introduce additional problems in making measurements in 
other than in situ conditions. However, as will be seen later, the 
general practice is to compare the inferences from inversions 
to ground truth data from physical samples or other in situ 
measurements.

The inversion methods fall into two main categories, linear 
methods that assume small changes from an initial profile, 
and methods that are fully non-linear [8]. Linear inverse 

problems are described by a well-established analytical 
theory that provides measures of the resolution and variance 
of the estimated parameters [9], and they have the additional 
appealing advantage of being computationally very fast. 
The non-linear methods are examples of model-based 
signal processing techniques that were made possible by the 
introduction of efficient numerical techniques for exploring 
multi-dimensional model parameter spaces. Inversion methods 
based on both approaches have been benchmarked in exercises 
with simulated data [10, 11], and have also been applied for use 
with data from experiments in many different ocean bottom 
environments - with varying degrees of success.

This paper reviews the stages in the development of 
geoacoustic inversion as a statistical inference process. The next 
section describes the background for the inverse problem, and 
describes some initial attempts in ocean acoustics to estimate 
geoacoustic parameters from experimental data. Linear inverse 
methods are then introduced, with examples of applications 
that use wave number measurements to infer the sound speed 
profile in marine sediment. Following this, non-linear model-
based inversion is introduced with a discussion of matched 
field processing, followed by a description of inversion by 
Bayesian inference and demonstration of its performance with 
examples of applications to experimental data.

geoaCoustiC inVersion Methods

inverse problems
Inversion can be described as the process of inferring 

information about a physical system from measurements of 
physical quantities that result from an interaction with the 
system. For geoacoustic inversion, this statement translates 
roughly as: given measurements of the acoustic field that has 
interacted with the bottom, what information can be inferred 
about the properties of the ocean bottom that generated 
the measured data? It might be expected that the inversion 
provides estimates of the material properties and structure of 
the real ocean bottom. However, this is not the case. Inversion 
provides the estimates of the parameters of a geoacoustic 
model that is designed to represent the bottom. Since the 
model is never exactly the true ocean bottom and since the data 
contain errors, the inverse problem is inherently non-unique. 
In the inversion process, we are comparing measured data 
with calculated replicas of the data based on the parameters of 
the designed geoacoustic model, and there are many different 
models that will provide very good fits to the data. One of 
the most significant challenges is designing an appropriate 
model, whether this is done by judicious choice based on prior 
information about the bottom structure, or within the inversion 
process itself.

Formally, the inverse problem in ocean acoustics is 
developed in terms of the relationship through the wave 
equation between the model parameters m = [m1,m2,...mM]T 
and the measured data d = [d1,d2,...dN]T. The model parameters 
may be sound speeds, attenuations, densities and thicknesses 
of sediment layers. The primary physical quantity is the sound 
pressure, which can be measured directly with hydrophones in 
experiments. However, other quantities that are derived from 
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the pressure field such as horizontal wave numbers of normal 
modes; bottom reflection loss; modal amplitudes; modal 
dispersion and particle velocity are also used; travel time of 
received signals is also a useful quantity.

Measured data contain noise n that is assumed to be 
additive: d = d0 + n. The vector d0 is the data predicted by the 
wave equation that would be obtained in an ideal, perfectly 
accurate experiment in which the ocean waveguide is described 
by the set of model parameters m:

d0 = F(m) (1)

As mentioned above, this problem has a unique and stable 
solution. The inverse problem of inferring the set of model 
parameters that generated the data is expressed by

m = F-1 (d) (2)

This problem is very difficult to solve, if a solution exists. 
Existence is usually addressed by constructing a geoacoustic 
model that provides an adequate fit to the data, within some 
specified uncertainty. However, the solution is non-unique, 
due to incomplete or inaccurate data, and is generally 
unstable–small errors in the data can lead to large changes in 
the estimated model parameter values. The complete solution 
to the inverse problem must provide both a set of estimated 
values and their associated uncertainties.

It is worthwhile to stress here what is meant by data errors. 
Errors can arise from two different sources: measurement 
errors that are due to inaccurate readings or ambient noise, and 
theory errors due to inaccurate or incomplete parameterisation 
of the geoacoustic model or approximations in the physics 
of the forward propagation problem. The data errors are not 
known explicitly, and it is usually assumed that d is a random 
variable with a Gaussian distribution. The theory errors are 
more difficult to estimate, and they can be the dominant source 
of uncertainty in the inversion.

Linearised inversion
Although the relationship between the pressure and the 

geoacoustic model parameters is non-linear, linear relationships 
can be developed for some observables that are derived from 
the acoustic field. In this approach, the problem is linearised 
in the vicinity of a reference model m0, and it is assumed that 
the unknown model is related to the reference model by a small 
perturbation. Perturbation inversion has the advantage of the 
fast computational speed of linear methods, but there are many 
problems that offset this advantage. The most serious concern is 
that one is never sure that the final model is independent of the 
reference model. In many cases, the inversion does not converge 
if the starting model is not close to the solution, or more likely, 
it converges to a local minimum. Another serious issue is that 
because the relationship is nonlinear, it can be very misleading 
to use only the parameter space near the final estimated model 
to characterise the solution. Nevertheless, if used carefully, the 
approach can generate remarkably useful models.

An outstanding example of perturbation inversion was 
reported by Frisk et al. who developed an elegant method 

for estimating sound speed profiles in marine sediments by 
linearising the relationship between changes in the horizontal 
wave numbers of propagating modes and changes in the sound 
speed [12, 13]. The method assumes a background model for 
the sound speed profile c0 (z) that generates a set of horizontal 
wave numbers k0m and corresponding modal functions Z0m (z) 
for a sound frequency ω that are solutions of the depth-separated 
wave equation,

+ k0
2 (z)  Z0m (z) = k0

2
mZ0m (z)

d1d
dzρ0(z)

ρ0(z)
dz  

(3)

where ρ0(z) is the density profile. The true model is thus

c(z) = c0 + δc(z) (4)

and the wave numbers are changed from those for the 
background model,

k(z) = ω/(c0(z) + δc(z)) (5)

Applying first-order perturbation theory, an approximation can 
be obtained for the change in wave number with respect to 
that for the background model in terms of the change in sound 
speed [13]

δkm = km - k0m =        ∫0
∞|Z0m(z)|2                    dz

1 k0
2(z) δc(z)

ρ0(z) c0(z)k0m  
(6)

For a discretely sampled sound speed profile in depth, (6) can 
be cast in terms of a linear relationship between δk(z) and the 
geoacoustic model parameters,

δk = Gm (7)

where G is a NxM matrix consisting of the background sound 
speed, density and mode functions; N is the number of discrete 
samples of the sound speed profile, and M is the number of 
model parameters [13].

Application of the method requires estimation of the 
horizontal wave numbers of propagating modes. The basis 
for this is the Hankel transform relationship between the 
depth-dependent Green’s function and measurements of the 
variation of pressure with range for a specific sound frequency 
[12]. Good results have been obtained for experimental data 
from range independent waveguides, and an extension of 
the technique for range dependent waveguides using a short-
time Fourier transform was developed by Becker [14]. Figure 
2 shows an example of wave number estimation using this 
technique applied to data from the Shallow Water ’06 (SW06) 
experiment that was carried out on the New Jersey continental 
shelf [15]. The estimated wave numbers of eight modes that 
are resolved in the data change slightly with the increasing 
water depth along the track. The estimated value of mode 6 is 
sensitive to a slow speed layer that pinches out and disappears 
towards the end of the track (Figure 3).
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Figure 2. Modal wave numbers of 8 propagating modes that were 
estimated from SW06 experimental data of sound pressure versus 
range for a frequency of 125 Hz

Figure 3. Chirp sonar depth profile from the SW06 experiment 
showing the depths of interfaces detected in the survey (upper curve: 
sea floor; middle curve: slow-speed erose layer boundary; bottom 
curve: R-reflector)

The inverse problem in Eq. (7) is ill-posed and requires 
some form of regularisation to obtain a solution. Ballard et al. 
[16] introduced a simple approach for piece-wise regularisation 
that enabled solution of a discontinuous sound speed profile, 
and used it to invert a range-dependent sound speed profile 
from the SW06 data. The method requires a priori knowledge 
of the locations of sound speed discontinuities in the sub-
bottom material. This information was obtained from chirp 
sonar surveys of the SW06 experimental sites before the 
experiment, and the resulting section in depth (converted from 
two-way sonar signal travel time) is shown in Figure 3. The 
combined inversion of modal wave number data and two-
way travel time information was able to estimate the sound 
speed in the three different sediment layers that were defined 
by the sonar data. However, without this type of additional 
information, the perturbation inversion can generate only a 
smoothed approximation to the profile [16].

ModeL-Based inVersion
Sophisticated numerical methods for solving non-linear 

geoacoustic inverse problems have been developed and 
implemented within the last two decades. The methods have 
been critically evaluated in workshops with simulated data 
[10, 11], and are in widespread use in applications with 
experimental data. The initial development of these methods 
was based on the use of matched field processing (MFP). The 
concept of MFP was known for a very long time, from the 
first simple experiments of Parvulescu and others at Hudson 
Laboratories that were reported in the mid 1960’s [17] and the 
first formal paper by Homer Bucker in 1976 [18]. However, 
the method could not be applied effectively until modern 
numerical propagation models and fast computers with large 
storage capacity became available. The next section describes 
the background of MFP and the evolution of its use in ocean 
acoustics for source localisation and then geoacoustic inversion.

Matched field processing
A harmonic sound source in the ocean creates a unique 

distribution of the acoustic field in range and depth that can be 
expressed in terms of the propagating modes in the waveguide:

P(r,z) =                      ∑  Zm(zs)Zm(z)
M

m=18π ρ0 (zs)
eiπ/4 exp(ikmr)

kmr  
(8)

It can be seen from Eq. (8) that the spatial variation of the 
acoustic field contains information about the source/receiver 
geometry (r,zs) and the waveguide model parameters that 
generate the modes.

Matched field processing was developed first as a method 
for extracting information about the source location from the 
spatial coherence of the acoustic field. In its most basic form, 
MFP compares measurements of the complex pressure P(r,z) 
at specific sensor locations with calculated replica fields Q(r,z) 
for the same locations. If the propagation model is correct 
(i.e., if the propagation model includes the correct physics of 
the problem), and if the physical model of the waveguide is a 
sufficiently accurate representation of the ocean environment, 
then the calculated field for the correct values of the true source 
depth and range (rs,zs) will be equal to the measured field 
P(rs,zs) (to within a complex constant). This simple description 
defines MFP in terms of physically intuitive comparisons 
between measured and calculated acoustic fields. It is useful to 
retain this very physical picture of MFP in order to understand 
the more formal development.

In analogy with a conventional beamformer, the comparison 
process can be quantified by projecting the calculated replicas 
of the acoustic field on the measured data. The output of the 
MF processor can then be expressed in terms of the normalized 
Bartlett correlation for a frequency ω:

B(r,z;ω) = |Q† (r,z;ω)P(r,z;ω)|2/|Q(r,z;ω)|2|P(r,z;ω)|2 
(9)

                = Q† (r,z;ω)P(r,z;ω)P† (r,z;ω)Q(r,z;ω)/|Q(r,z;ω)|2|P(r,z;ω)|2

where P = [P1,P2,...PN]T is the vector of measurements at 
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an array of N elements, Q = [Q1,Q2,...QN]T is the vector of 
calculated replicas for the array and † denotes complex 
transpose. The quantity PP† is the data covariance matrix 
that contains the relative phase information of the signal field 
across the array of sensors in the off-diagonal terms, as well 
as the signal power at each sensor in the diagonal terms. The 
difference between MFP and conventional beamforming is that 
the relative phase is determined from the full field solution to 
the wave equation instead of from plane waves.

The Bartlett processor described here is just one of many 
matched field processors that were developed and used for 
source localisation [19]. In all cases, the approach involved a 
systematic grid search to calculate an ambiguity surface of the 
matched field processor output over range and depth, as shown 
in Figure 4. This could be implemented very efficiently using 
normal mode propagation models because the environment 
model was constant for all points in the grid so that only one 
calculation of the field was needed. The true source location 
occurred at the ambiguity surface peak, assuming that the 
ocean waveguide environment model was correct.

Figure 4. Matched field ambiguity surface for 45-Hz source from an 
experiment off the west coast of Vancouver Island, British Columbia. 
The peak at ~30 m depth and 7.7 km range indicates the source 
location

The example shown in Figure 4 displays the Bartlett 
matched field ambiguity surface based on data from an 
experiment carried out in shallow water (~400 m) on the 
continental shelf off the coast of Vancouver Island, British 
Columbia. The ambiguity surface peak at a depth of ~30 m 
and a range of 7.7 km indicates the location of the continuous 
wave 45-Hz source that was towed in the experiment. The 
sidelobes in the surface indicate locations of relatively high 
correlations. Since the propagation is bottom limited, there is 
a strong sidelobe at roughly half the distance to the source, 
approximately the range of the first bottom reflection for the 
shallow-angle propagating modes.

optimisation inversions
Although the source/receiver geometry is generally more 

sensitive in MFP, there is also sensitivity to the ocean bottom 
properties that can be exploited to estimate geoacoustic 
model parameters. This hierarchy in sensitivity of geometric 
and geoacoustic parameters was formalised in the concept 

of focalisation by Collins and Kuperman [20]. Their work 
showed that an accurate source location could be obtained 
for ‘effective’ models of the ocean bottom that were not 
necessarily realistic. This result is not unexpected, since the 
inverse problem is non-unique and there are many models that 
can provide a good fit to the data in model-based inversions. 
However, the application of MFP for geoacoustic inversion did 
not follow directly. The reason was simply that the inversion 
process required a computationally expensive calculation 
of the acoustic field to assess each new parameterisation of 
a multi-parameter geoacoustic model, and this prohibited 
a simple grid search for most cases of realistic models. The 
breakthrough that enabled matched field inversion (MFI) came 
with the introduction of numerical search algorithms such 
as simulated annealing [21] and genetic algorithms [22] for 
efficient navigation of multi-dimensional model parameter 
spaces. These methods reduced the computation time of the 
search process that was implemented to assess the models. 
The inversions were initially cast in terms of optimisation 
algorithms that consisted of four basic components:
• A prior geoacoustic model for the ocean bottom environment

• An accurate method for calculating the replica acoustic fields

• A cost function for comparing the measured and 
calculated fields

• An efficient search method for navigating the multi-
dimensional model parameter space
The form of the prior geoacoustic model determined the 

structure and properties of the model that was inverted, and 
so the design of the model required careful development. 
The model was based on knowledge of the local environment 
that was available from ‘ground truth’ information such as 
sediment cores and physical grab samples, and high resolution 
seismic and chirp sonar surveys. Model structure was generally 
based on homogeneous or gradient layers of sound speed, 
attenuation and density to represent the sediment material in 
the ocean bottom, and the distribution of model parameter 
values was assumed to be uniform within the bounds that 
were set. The water sound speed profile was usually taken 
from measurements at the experimental site and was assumed 
known in the inversion. The cost function was generally based 
on the Bartlett processor, although other measures such as the 
high resolution minimum variance processor were sometimes 
used [19]. Models that were tested in the search process were 
selected or rejected based on the change in the cost function. 
Convergence was controlled either by pre-selecting the number 
of iterations, or by a criterion that set a minimum value for the 
change of the cost function (e.g. [24]).

A number of highly efficient numerical search methods 
were developed and implemented in various applications with 
data. Inversions based on simulated annealing were reported 
in the early 1990s [23, 24]. Simulated annealing is an example 
of an approach based on importance sampling for efficiently 
navigating multi-dimensional model parameter spaces. By 
analogy with thermodynamic cooling, SA uses a Boltzmann 
criterion to accept models that do not decrease the cost function. 
This feature allows the search to move away from areas of local 
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minima in the model parameter space, thus enabling a more 
extensive search. The genetic algorithm that is distributed in 
the widely used SAGA software package is another example 
of a global search technique based on importance sampling 
[22]. A number of hybrid search methods were also developed 
that combined global and local search processes such as the 
downhill simplex method, e.g. simulated annealing and 
downhill simplex [25]; genetic algorithm and Gauss-Newton 
[26]; genetic algorithm and downhill simplex [27].

Results of optimisation inversions using simulated 
annealing were conventionally presented in terms of the 
annealing history of each model parameter during the search 
process. However, the annealing history shows only the rate at 
which the optimal values were obtained in the search process. 
Although the annealing rate gives a rough impression of 
which parameters are more sensitive in the inversion, it does 
not give a good indication of how well each parameter was 
estimated. A better but still qualitative sense of the hierarchy of 
sensitivities of the model parameters and a rough measure of 
the uncertainties of the estimated values can be obtained from 
a scatter plot of the cost function values for each model that 
was tested in the search process. Figure 5 shows scatter plots 
for two different model parameters. Scatter plots that appear 
like ‘tornadoes’ as in the left panel indicate well-estimated 
parameters with values that cluster in a small region of the 
allowed range. Those that appear broader at the base, as in the 
right panel, indicate less sensitive parameters that are not well 
estimated; the flatness of the display essentially indicates that 
the experimental data do not contain any useful information 
about the parameter.

Figure 5. Typical scatter plots of cost function values (E = 1 - B(r,z;ω)) 
for two different geoacoustic model parameters. The left panel shows 
clustering of accepted models in a favoured region of the allowed range 
of values; the right panel shows a flat scatter indicating that no particular 
value of this parameter provides a better estimate than any other

Examination of scatter plots from optimisation inversions 
reveals the inherent weakness of the approach. Optimisation 
inversions always provide an ‘optimal’ estimate for each 
model parameter. However, it is usually the case for inversions 
with experimental data that some model parameters are 
insensitive, so that the ‘optimal’ values of those parameters do 
not significantly affect the acoustic field. As a result, inversions 

can be over-parameterised, with meaningless estimates for 
some of the model parameters. In close scrutiny, optimisation 
inversions do not generate statistically valid measures of the 
errors in the estimated values, and consequently do not provide 
a complete solution to the inverse problem. However, it usually 
turns out that the spread of values obtained for a large number 
of optimisation runs (each one with different starting values) is 
contained within the error bounds of inversions carried out by 
Bayesian inference. Thus, the shape of the scatter plot generally 
gives a reasonable qualitative sense of the uncertainty of the 
estimate.

Model parameter correlations
An inherent problem in geoacoustic inversion arises from 

the correlations that exist between model parameters. At the 
very least, this leads to inefficient searches in the inversions. 
Optimisation inversions addressed this problem by re-
parameterising the initial set of model parameters during the 
initial stages of the inversion [28]. Although this enables more 
efficient navigation of the model parameter space in the search 
process and is widely used, it does not eliminate the basic 
problem. The fundamental issue of mismatch remains: due to 
the model parameter correlations, errors in the estimate of one 
parameter will affect the estimates of all the others.

A simple but striking example of model parameter 
mismatch is the acoustic ‘mirage’ in source localisation by 
MFP. D’Spain et al. [29] showed that the range and water depth 
were strongly correlated in matched field source localisation. 
If the water depth used in calculating the replica fields was in 
error, the range was shifted in a predictable way. Since water 
depth and source range are not known exactly in experiments, 
the uncertainty in these parameters generates errors in the 
estimates of all the other model parameters in matched field 
inversions. The impact of this type of mismatch could be 
reduced by including geometric parameters of the experimental 
arrangement in the inversions, at the expense of increased 
computation time in searching a greater number of model 
parameters. This approach was adopted by many researchers. 
It supplied a useful consistency check on the quality of the 
inversions, provided that the inversion generated accurate 
estimates of the geometric parameters. Another well known 
example of mismatch is the correlation between source range 
and sound frequency through the waveguide invariant [1]. 
Errors caused by this effect were encountered initially when it 
was common practice to use only single frequency data in the 
inversions. The use of multi-frequency data (multiple tones or 
broad band signals) mitigates the impact of this mismatch to 
some degree.

These examples of mismatch errors in model-based 
inversions stress the fundamental issue of non-uniqueness of 
the solution to the inverse problem. Some researchers reported 
attempts to generate probabilities of the parameter values 
from the models that were tested in the search process as a 
means to address the uncertainties of the estimated values [30, 
31]. However, the full resolution of the inverse problem as a 
statistical inference process was provided by Dosso [32] who 
introduced Bayesian inference [33] for geoacoustic inversion 
in ocean acoustics.
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geoaCoustiC inVersion By 
statistiCaL inferenCe

Bayesian inference
The Bayesian formulation of the matched field geoacoustic 

inverse problem follows from Bayes’ relationship between 
measured data and a set of environmental model parameters 
that is expressed in terms of conditional probabilities:

P(m|d)P(d) = P(d|m)P(m)  (10)

Here, P(m|d) is the conditional probability of the model given 
the data, P(d|m) is the conditional probability of the data 
given a model m, and P(m) is the prior information about the 
model m. The quantity P(d) is the probability of the data, for 
the selected model parameterisation. If we assume that the 
model parameterisation is correct, then for observed data, 
P(d)=1. However, in general the correct parameterisation is 
not known, and P(d) can be considered as the likelihood of the 
parameterisation given the data.

In the Bayesian framework, the complete solution of the 
inverse problem is given by P(m|d), the a posteriori probability 
distribution (or PPD) of model parameter values. It is evident 
from Eq. (10) that Bayesian inversion involves an interaction 
between the information about the model that is contained in 
the data and the prior knowledge about the model. If there is no 
information in the data about a model parameter, the probability 
of that parameter is close to the original prior probability 
distribution. Otherwise, the final probability distribution is 
determined by the information contained in the data.

The relationship between the data and the set of 
environmental model parameters can be interpreted in terms of 
the mismatch between the measurement and a prediction of the 
measurement q based on the model:

d – q(m) = n (11)

The mismatch n can be interpreted as noise that arises from 
either the uncertainty in the experimental data itself or theory 
errors owing to differences between the environmental model 
and the real earth, or differences caused by an inaccurate model 
of the physics of the problem (in this case, the wave equation). 
The statistical distribution of n is generally not known.

Bayesian inversion is implemented by assuming that the 
conditional probability of the data for a given model, P(d|m), 
in Eq. (10) can be expressed in terms of a likelihood function 
of the data and model mismatch, L(m,d) for data:

L(m,d) =             exp{-[E(m,d)]}1
πN|Cd|  

(12)

where Cd is the data error covariance matrix, N is the number of 
sensors and the data and model mismatch is defined as E(m,d):

E(m,d)= [(d – q(m))† Cd
-1 (d – q(m)] (13)

In many applications, the assumption is made that the 
covariance matrix is diagonal. However, this condition is not 
usually correct, and some attempt must be made to evaluate Cd 

in the inversion. This involves making assumptions about the 
statistics of the data mismatch distribution, and these must be 
verified by statistical tests [34, 35].

Although the complete solution of the inverse problem 
is given by the PPD, it is a multi-dimensional distribution 
that is difficult to visualise. Its interpretation in terms of 
model parameter estimates and their uncertainties involves 
computation of the properties of the PPD, such as the maximum 
a posteriori estimate (MAP), the mean values and covariances, 
and marginal probability distributions. Parameter uncertainties 
can be quantified in terms of credibility intervals, i.e. the γ% 
highest probability density interval (HPD) that represents the 
minimum width interval that contains γ% of the marginal 
probability distribution.

The Bayesian formulation is quite general, and the method 
can be applied to any of the types of data that are derived from 
the acoustic field. For the usual case in matched field inversion 
that the phase (θ) and amplitude (A) of the source sound 
pressure are unknown, the modeled data can be expressed as 

q(m) = Aeiθ Fω(m) (14)

where Fω is the forward propagation model used to calculate 
the replica field at frequency ω for the geoacoustic model m. 
The dependence on the source can be removed by maximizing 
over θ and A to obtain a misfit function that is given by the 
covariance-weighted Bartlett mismatch

Eω(m,d) = dω
+Cd

-1dω -
|Fω(m)Cd

-1dω|2

Fω
+(m)Cd

-1Fω(m) 
(15)

For multi-frequency data the different frequencies are usually 
combined incoherently, so that Eq. (12) becomes a product over 
the number of frequencies, and Eq. (15) becomes a summation.

Limitations of matched field Bayesian inference
Inversions based on the Bayesian formulation were applied 

to experimental data from many different experiments, with 
remarkable successes in estimating geoacoustic profiles that 
compared favourably with ground truth information for the 
local environment [36-39]. However, most of the experiments 
were carried out at sites where the ocean environment was 
benign for MFI: constant water depth and minimal variability 
of the ocean sound speed profile and the sediment materials 
and structure over the track of the experiment. For these 
conditions, the inversions could be carried out assuming that 
the sound propagation was independent of range. An example 
of Bayesian inversion with experimental data from the SW06 
experiment is discussed here that demonstrates the performance 
of the method, and reveals the fundamental limitations of MFI 
in strongly variable ocean environments [40].

The SW06 experimental site is strongly influenced by 
internal waves, eddies and fronts that are shed from the Gulf 
Stream that passes offshore along the coast of New Jersey. 
These features create a highly variable sound speed profile in 
the ocean, with short time scales of the order of minutes and 
spatial variability scales of the order of a few km. An example 
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of the sound speed variability at the site during the experiment 
is shown in Figure 6. The profiles were obtained from CTD 
(conductivity, temperature, salinity) measurements from the 
source ship at stations along the track of the experiment.

Figure 6. Sound speed profiles measured from CTDs deployed along 
the track from the SW06 experiment

The data used in the experiment were multiple CW tones 
transmitted from a ship that held station at a distance of 1 km 
from a bottom moored vertical line array. The array consisted 
of 16 hydrophones equal spaced at 3.75 m, with the bottommost 
sensor about 8.2 m above the sea floor. The water depth was 
~79 m over the propagation path. Data from 7 CW tones over 
the frequency band 53–703 Hz were combined incoherently in 
the inversion.

The ocean environment in SW06 presented a significant 
challenge for MFI due to the strong spatial and temporal 
variability of the sound speed profile in the water over the 
experimental track. The conventional practice in MFI of using 
a single measured sound speed profile for the water column was 
ineffective for inverting the data. A simple demonstration of 
this problem is obtained from an ambiguity surface calculated 
for source localisation using one of the measured profiles. The 
true source location should be at 30 m and 1 km range, but as 
can be seen in Figure 7, the estimated location is near the ocean 
bottom and much closer in range. The ambiguity surface was 
calculated using 7 CW tones that were processed incoherently 
over frequency. In this case, the use of multiple frequencies 
was not effective in mitigating the mismatch caused by the 
unknown variation in the water sound speed profile, since the 
field could not be properly focussed at the receiver for any of 
the frequencies.

Figure 7. Ambiguity surface for multi-tone CW data from the SW06 
experiment

To account for the variability, it was assumed that a single 
estimated profile would account for the changes in the water 
sound speed along the propagation path. The profile was 
modelled by empirical orthogonal functions (EOFs) to account 
for the observed variability in the profile, and the EOFs were 
included as unknowns in the inversion. Consequently, a total 
of 17 parameters were required in the inversion: 4 geometrical 
parameters of the experimental arrangement (source range 
and depth, water depth, and array tilt); 4 EOFs for the sound 
speed profile in the water; and 9 geoacoustic parameters of a 
single layer model of the bottom in which the sediment was 
modelled as a gradient layer for the sound speed and density 
over a halfspace basement (Figure 1). The local environment 
was assumed to be range independent in the inversion.

The inversion results are presented as marginal probability 
densities for the model parameters in Figure 8. Sensitive 
parameters that are well estimated have marginal densities that 
are tightly focused in a favoured region of the parameter bounds; 
the marginal densities for parameters for which there is little 
information in the data are flatter. These shapes are similar to 
the shapes of the scatter plots from optimization inversions for 
parameters with similar sensitivities. However, a statistically 
meaningful measure of the uncertainty can be derived from the 
Bayesian inference, such as the 95% HPD limits. As seen in 
the figure, the geometric parameters indicated by the dashed 
circles were highly sensitive in the inversion, and the estimated 
values compared very well with independent measurements of 
the range, source depth and bathymetry from the experiment. 
The 4 EOFs were also well estimated.

Marginal densities for the layer depth (H), and top and bottom 
sound speed of the sediment layer, cp1 and cp2, respectively 
and the sound speed in the basement half space, cpb, (shown 
in the solid circles) were also tightly focused, indicating that 
these geoacoustic parameters were well estimated. However, 
the marginal densities for the other geoacoustic parameters 
were relatively flat, indicating that the data did not contain 
significant information about them.

The results shown in the figure are typical of those from other 
matched field inversions: the most sensitive parameters are 
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generally the sound speeds in the uppermost layers of sediment 
(within a few wavelengths of the sea floor). A particularly 
striking result from this inversion is the accurate estimate of 
sediment thickness. Ground truth chirp sonar surveys revealed 
a strong sub-bottom reflector at a depth of about 20 m that 
was ubiquitous over the experimental area. The inversion was 
also sensitive to a slow sound speed layer within the sediment 
above the basement reflector. Although the detailed structure 
within the sediment could not be resolved with these data, the 
presence of the low speed layer was inferred from the negative 
gradient of sound speed within the sediment.

Figure 8. Marginal probability densities for the model parameters 
inverted from the SW06 data. The vertical dashed lines represent 
the 95% HPD limits. Red dash-dotted lines are MAP estimates, and 
blue dash-dotted lines are the mean estimates. The solid and broken 
circles indicate well estimated geoacoustic and geometric parameters, 
respectively

Attenuation is interpreted as an intrinsic loss in the 
sediment, and was modelled in this inversion as frequency 
dependent, α0(f/f0)β, where f0 = 1 kHz. The results indicated 
that the inversion with data from a range of 1 km was not 
sensitive to attenuation: the marginal densities for the constant, 
αp1, the exponent, fexp, were flat. However, the experimental 
data are affected by other mechanisms that remove energy 
from the propagation plane, such as scattering. Since the loss 
accumulates with range, data from greater ranges likely contain 
more information about attenuation.

Other insight into the estimated model can be obtained 
from two-dimensional marginal densities. Displays such as 
shown in Figure 9 for the SW06 data reveal model parameter 
correlations, and provide added confidence about the quality of 
the estimated model. From the figure, there is a clear indication 
of the correlation between water depth (WD) and range, and also 
water depth and source depth (SD). The correlation between 
the water depth and first EOF shows the linkage between the 
waveguide depth and the sound speed profile in focussing the 
signal at the receiver. A negative sound speed gradient in the 
sediment layer is revealed in the correlation between the top 

and bottom sound speeds of the layer (cp1 and cp2). Other pairs 
of parameters do not show any strong correlation, as would be 
expected for pairs such as water depth and the thickness of the 
sediment layer.

Although the inversion was successful in providing accurate 
estimates of the geoacoustic model, the overall success of the 
same approach for other data sets at longer ranges was not 
repeated. The success of the inversion reported here depended 
on the assumption that the sound speed variation in the water 
column could be represented by a single profile based on the 
observed sound speed variations. This assumption was not 
upheld for data from ranges of 3 km and 5 km from the same 
experiment. Oceanographic data from moored sensors revealed 
that internal waves passed through the experimental site when 
the longer range data were obtained. Knowledge of the full 
range dependence of the sound speed profile is required for 
inverting these data.

This example indicates the fundamental weakness of 
model-based inversions such as MFI. If the environmental 
variation cannot be modelled sufficiently accurately, the 
inversion will fail. However, the degree of variability that will 
allow simple assumptions such as a single profile is not known. 
And even for simple assumptions, the increased computational 
load of including additional model parameters as unknowns in 
the inversion is a significant drawback.

other challenges in model based inversions
Apart from the issues mentioned above, there are 

other challenges that need to be addressed in model based 
inversions. Most of the inversions reported to date have been 
restricted to low frequencies (< 1 kHz) for which the sea floor 
and sub-bottom layer interfaces are assumed to be smooth. 
Inversions at higher frequencies must address rough surface 
scattering losses in modelling the acoustic field. The impact of 
shear wave propagation in the bottom has been considered in 
some inversions, but this issue is generally ignored. Another 
important issue is the assumption of 2-D sound propagation. In 
most cases, this assumption is valid. However, in experimental 
geometries that involve propagation across a sloping sea 
bottom such as along a continental shelf, 3-D propagation 
effects must be considered. An example reported by Jiang 
et al. demonstrated the impact of 3-D sound propagation on 
MFI at a site in the Florida Straits [41]. In this inversion, the 
sound refracted along the slope could be removed by spatial 
filtering since it was propagated in higher order modes with 
larger propagation angles. Otherwise, a 3-D sound propagation 
model is required [42].

Ocean sediments are porous media, and there has been 
significant research effort in developing theories of sound 
propagation in sediment materials. Among the most well known 
theories are the Biot theory [43, 44], and the more recent theories 
based on viscous grain shearing by Buckingham [45-47]. The 
critical issue for modelling sound propagation is the dispersion 
of sound speed and attenuation in sediments: experiments show 
that the frequency dependence of attenuation in sand sediments 
is non-linear within the low frequency band less than 5 kHz 
[48]. However in most applications of MFI, sound propagation 
has been modelled using viscous fluid models or in some cases 
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visco-elastic models, both of which inherently assume linear 
frequency dependence for attenuation.

The impact of using more appropriate theories of sound 
propagation in marine sediments has not been examined 
extensively in MFI. One of the benefits of using the viscous 
grain shearing theory, for instance, may be in obtaining a more 
efficient set of model parameters for sampling the PPD. The 
theory provides analytic expressions for the sound speed, 
attenuation and density in terms of more fundamental physical 
parameters (such as porosity, compressional and shear grain 
contact stress) that are independent [47].

The inversions have generally assumed that the model 
developed from the prior information is correct. New work by 
Dettmer et al. [49, 50] has focused on removing the dependence 
on a specific form for the prior model in Bayesian inversions. 
Their research has introduced a method for allowing the 
inversion to select models during the inversion process. 
The method shows considerable promise, but at increased 
computational expense. Another approach using particle 
filters for applications in range dependent environments was 
implemented by Yardim et al. [51]. In analogy with a Kalman 
filter, the method tracks the source location and the changing 
ocean bottom environment.

other approaChes for geoaCoustiC 
inVersion

There is no simple remedy to enable model-based 
approaches such as MFI for conditions in which there is 
insufficient knowledge of the waveguide environment. A 
reasonable alternative approach is to use quantities derived 
from the acoustic field in the inversion, instead of the measured 
pressure. Although this usually requires special signal 

processing to extract the observable, there are clear benefits 
if modelling the observable is not sensitive to variability in 
ocean waveguide properties. One example is the use of travel 
time. Jiang et al. [52] reported a Bayesian inversion of relative 
travel times between sub-bottom and sea floor broadband 
signal arrivals to estimate sound speed and attenuation in 
the sediment. The experiment was designed to provide a 
tomographic sampling of the sediment using multiple source 
depths and a vertical hydrophone array at very short range. 
The data (shown in Figure 10 for a single source/receiver pair) 
are more robust to uncertainty in the water sound speed profile 
due to the relatively short range (~ 200 m), assuming that the 
sound speed profile is adequately sampled at the site during the 
experiment.

The sea bottom reflection coefficient derived from 
broadband data in an elegant experimental design has been 
used to invert fine structure of the sediment profile near the 
sea floor [53, 54]. However, the experimental geometry with 
a receiver very close to the sea floor requires calculation of 
reflection of a spherical wave to model the data correctly. Modal 
dispersion data have also been used in linearised inversions 
of time-frequency information [55]. This approach has the 
advantage of using a single receiver since the information is 
contained in the broad frequency band of the data. However, 
the technique is somewhat restricted to longer ranges to enable 
time resolution of the modes.

Perhaps the most novel approaches are those that make 
use of ambient noise. The use of ambient noise measured on 
a vertical array as a fathometer has been demonstrated by 
Siderius et al. [56]. Recently, Quijano extended this approach 
for geoacoustic inversion using the wind noise measured by 
the array as the sound source [57, 58]. The method inverts the 

Figure 9. Two-dimensional marginal probability densities for the model parameters inverted from the SW06 data
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broadband reflection coefficient that is estimated from wind 
noise data on the array. The estimate of reflectivity is self-
calibrated, and the reflection coefficient inversion is robust to 
uncertainty in the water sound speed profile. This is also true 
for the reflection coefficient inversions of controlled source 
data as proposed by Holland and Osler [53].

Figure 10. The multipath signal received at short range over a time of 
about 4 minutes. The top panel shows match filtered multipath signal 
from a 1-s chirp pulse over the band 1.5-2.5 kHz. The bottom panel 
shows the relative signal amplitudes over the time interval. Data are 
from the SW06 experiment

Finally, a promising technique that is robust to uncertainty 
in both the experimental geometry and the water sound speed 
profile was reported by Bonnel et al. [59, 60]. The method 
is based on estimating the modal dispersion from single 
hydrophone data using a signal processing technique known 
as warping. Although the use of modal dispersion data for 
estimating geoacoustic model parameters is not new, warping 
enables the inversion of relatively short range data for which 
the modes are not clearly separated in time. Warping transforms 
the non-linear dispersion relationship in the original time-
frequency domain to single tones at frequencies near the Airy 
frequencies in the warped domain (Figure 11). It is evident 
from the figure that the range of the light bulb is not sufficiently 
great to resolve the modes in the original signal. The warping 
operation is reversible, so that the modes that are resolved in 
the warped domain can be filtered and transformed back to the 
original time-frequency space.

Figure 11. Left panel: original time-frequency dispersion of a light 
bulb shot deployed at a range of about 7 km in the SW06 experiment; 
right panel: the same signal transformed in the warped domain. Four 
modes are resolved at (warped) frequencies between 7 and 30 Hz

suMMary
This paper reviewed the development of geoacoustic 

inversion in ocean acoustics as a statistical inference method. 
The inversion methods fall into two categories, linear and 
non-linear. Linear methods have been implemented using 
relationship between differences in horizontal wave numbers 
and sound speeds compared to an initial model. Linear 
methods have the advantage of efficient computational 
implementation, but the results are sensitive to the initial 
model. The widely used non-linear technique of matched field 
inversion was examined to display its advantages and discuss 
its fundamental limitations. The method is based on matched 
field processing in which model parameters are estimated by 
comparing measured data with calculated replicas of the data. 
The Bayesian formalism for matched field inversion provides 
the complete solution to the inverse problem: estimates of the 
model parameter values and statistically valid measures of 
their uncertainties are derived from the a posteriori probability 
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density. The marginal probabilities derived from the PPD 
indicate the degree to which the experimental data contain 
information about the model parameters. However, if there 
is uncertainty due to variability in the properties of the ocean 
environment, model-based inversions such as matched field 
inversion can fail.

New approaches that are robust to uncertain knowledge of 
the ocean properties and the experimental geometry provide 
some options for alternative methods for model-based 
inversion of geoacoustic model parameters. A few of these 
methods, such as time-frequency analysis of broadband data, 
reflection coefficient inversion and travel time tomography 
were briefly discussed.
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