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ABSTRACT 

The use of high bandwidth pulses in active sonar systems can reduce interference from reverberation and variability 
due to channel fading.  However, the matched filter detection performance is degraded more by acoustic multipath 
when the bandwidth is increased. The performance degradation due to multipath distortion results when the 
destructive interference of the paths cancels some frequencies reducing the similarity between the echo and the 
transmitted pulse required for matched filter operation. Increased bandwidth means that more frequencies are 
cancelled so distortion and degradation increases. If the acoustic properties of the channel are known well enough to 
predict the acoustic multipath characteristics, detection can be improved by matched filtering for the distorted signal 
rather than the transmitted signal. In cases where the channel properties are unknown, acoustic path delays and 
amplitudes must be estimated from the data itself. In this paper the acoustic path delays and amplitudes are first 
estimated using the Expectation Maximisation (EM) algorithm. The estimates are then used to integrate the return 
from each path recovering part of the loss caused by multipath distortion. 

INTRODUCTION 

For active sonar targets with small relative velocity it has 
been shown (Van Trees 1965) that detection of signals in 
reverberation is enhanced when large bandwidths are used. 
This conclusion assumes a known signal in reverberation 
with known statistical properties. For active sonar the 
statistical properties of the echo signal are usually unknown. 
Acoustic multipath distortion results in a signal that is not a 
single replica of the transmission but several superimposed 
replicas with unknown amplitudes and delays. This distortion 
causes cancellation of the signal at some frequencies so that it 
is more serious when signals have wider bandwidth, as more 
frequencies will be cancelled. 

A variety of strategies (Van Trees 1971) have been suggested 
to compensate for the loss caused by the deviation of the real 
signal from the assumption.  The strategies generally attempt 
to integrate the return from some or all paths to achieve a 
better detection performance with broadband signals. 

In this paper a detector will be presented that estimates the 
amplitudes of the paths and the combines the results to 
provide improved detection performance. Strategies for 
estimating the paths include exhaustive search (Carpenter 
1995), Gibbs sampling (Michalopoulou 2005) and adding the 
largest outputs of the matched filter over a period (Abraham 
2001). The first two strategies have an extremely high 
computational cost while the third could have degraded 
performance because it makes no effort to avoid double 
counting of a single strong signal. 

In this paper the Expectation Maximisation (EM) algorithm 
(Laird 1977) is used to make the estimates in a 
computationally efficient manner. The T-square test 
(Anderson 1958) is used in an attempt to cancel mutual 
interference between different paths. 

DISTORTION TOLERANT DETECTION 

The Problem 

Acoustic multipath propagation can be modelled as resulting 
in the return to the sonar receiver being composed of a sum 
of replicas of the transmitted pulse with different amplitudes 
and delays. The signal model used in this paper is 
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where ][ty is the received signal, 

M is the number of paths, 

][ts is the transmitted signal, 

ka is the path amplitude, 

kτ  is the path delay and 

][tn  is the noise. 

The noise is assumed to have a normal distribution but it is 
not assumed that it is ‘white’ or uncorrelated although only 
with noise considered in this paper. 

The detection algorithm is applied to a block of data so the 
problem is best represented in vector form. 
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Under this formulation the noise process has a multivariate 
normal distribution with mean zero and covariance matrix C. 
The detection problem becomes the decision between two 
hypotheses about the amplitudes. 
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The approach to solving the detection problem is to estimate 
the unknown amplitudes from the model in Equation 2 and 
then declare a detection if they are large enough. Precise 
criteria for ‘large enough’ will be defined below. 

Expectation Maximisation 

The estimation of the parameters for the model in Equations 
1 and 2 is a non-linear optimisation problem. For this work 
the EM method was chosen to perform this optimisation. The 
version of EM used to solve this problem is due to Feder and 
Weinstein (1988). 

The key idea in the EM approach is to devise a set of missing 
data that if known would make the problem much simpler. In 
this problem the solution is known when there is only one 
acoustic path so that the best choice for missing data is a 
decomposition of the problem into M single path problems. 
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The hat symbol (^) is used to indicate estimated quantities 
while the superscript in parentheses records the iteration 
number. For the decomposed problem to sum correctly to the 
true problem it is necessary for 
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Equations 4 and 5 represent the expectation step of the 
algorithm. The maximisation step that completes the iteration 
involves correlation or matched filtering to find the delay and 
amplitude of the path for each individual problem 
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The iterations are repeated until the change in the mean 
square error between iterations is negligible. It is observed in 
practice that convergence is obtained after only four or five 
cycles. 

There are two problems with this algorithm. The first is the 
issue of local maxima common to all multivariable non-linear 
optimisation problems. The algorithm can find a local 
maximum but it is not guaranteed to find the global 
maximum as desired. 

The other problem is a tendency to over estimate the 
amplitudes particularly when the signal is weak (or non-
existent) compared to the noise. When there is no signal the 
amplitude estimate in Equation 7 will have the correct value 
of zero only when all the noise generated samples from 
which we are taking the maximum are zero. This is very 
unlikely. Consideration of the properties of order statistics 
(see Freund and Walpole (1988)) reveals that the values will 
be biased higher than reality.  

The Detector 

Once the parameters of the model have been estimated the 
next step is to apply the estimates to signal detection. An 
issue with the estimates is that they may not be independent. 
If two paths have arrival times separated by less than the 
resolving power of the transmitted pulse the estimates of the 
path parameters will be degraded from what would be 
obtained if only one path was present. 

Inaccuracy and correlation between the amplitude estimates 
is introduced by interference of other paths in estimation of 
the parameters of a particular path. A better detector is 
possible if the detector attempts to decorrelate the estimates 
allowing the value of some amplitude estimates to be 
discounted for inaccuracy and correlations caused by mutual 
interference. To do this, an indication of the correlation that 
exists between the estimates is needed. The Fisher 
information matrix will provide this indication. The 
distribution of the estimates from an unbiased estimator will 
asymptotically approach a multivariate normal distribution 
with the covariance matrix being the inverse of the Fisher 
information matrix (Lehmann 1998). There are two problems 
with using this result. Asymptotically means for large 
samples, which may not be available, and the argument in the 
previous section suggests that the estimates are not unbiased. 
In spite of these problems the Fisher Information is used as 
an approximation in the absence of a better solution. 

Each term in the Fisher information matrix is given by 
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The E in this equation denotes the expectation, the vector θ 
has the estimated parameters as elements and f is the density 
function of the data. For the detection problem from Equation 
3, the parameter vector is provided by the amplitudes 
estimated using EM. Under these circumstances the equation 
for the matrix elements has been found in Lourey (2004) 
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For multivariate normal parameters the Hotelling T-square 
test is used to test for a non-zero mean (Anderson 1958).  It 
has been assumed that the amplitude parameters estimated by 
the EM algorithm are multivariate normal so that 
consideration of the T-square test suggests that the following 
statistic can be used for this problem 
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In summary, the detection procedure proposed in this paper 
consists of iterating Equations 4 to 8 until convergence and 
then evaluating Equations 11 and 12 to provide a statistic. If 
the statistic exceeds a threshold then a detection is declared. 

RESULTS 

A comparison between the algorithm described in this paper 
and traditional methods was carried out using simulations. An 
optimum “clairvoyant” detector designed on the assumption 
the channel is known was also tested to indicate the 
performance loss due to imperfect estimation of the acoustic 
parameters. The first simulation is concerned with the 
performance of the algorithms when the signal model of 
superimposed signals in Gaussian noise is correct and the 
number of paths is known correctly. The case where model 
order is not known is considered subsequently. 

The signal was generated for a simple environment that has 
six acoustic paths with fixed delays and identical amplitudes. 
The transmitted signal was a linear FM chirp modulated from 
200Hz to 400Hz over 0.5 seconds duration and sampled at 
1000Hz. Detection of this signal was tested against ten 
thousand realisations of a white noise background with signal 
energy normalised to give a desired signal to noise ratio (-
20dB). A test consisted of generating a sample of white 
Gaussian noise and then applying each detector to the noise 
and then to noise plus signal.  Figure 1 shows the detection 
probability against false alarm probability for the three 
detectors. Detection performance of the T-square test is 
uniformly better than the simple matched filter for all false 
alarm values. The clairvoyant detector is also shown but 
nearly perfect performance hides this curve under the axes of 
the graph. The dashed line that represents this data can be 
seen to follow the unity probability of detection value 
closely. 

 
Figure 1 Receiver Operating Characteristics comparison for 
detection of six-path multipath signal in white noise (SNR -

20dB) 

These results show that the proposed detector improves on 
the matched filter at least for one particular SNR value. 
Figure 2 shows the results when the simulations were 
repeated for a range of SNR values. Probability of detection 
is estimated for the threshold giving a false alarm probability 
of 0.001.  For this simple multipath environment results 
indicate that, regardless of SNR, the performance of the 
matched filter is improved on by both the performance of the 
T-square test on amplitude estimates and the “clairvoyant” 
detector. 

 
Figure 2 Performance comparisons for detection of six-path 

multipath signal in white noise with probability of false alarm 
0.001. 

A signal formed from six identical acoustic paths does not 
provide a very realistic representation of the true channel in 
the ocean. A more realistic simulation can be obtained from 
the assumption of constant velocity with fixed losses from 
each reflection from the channel boundaries (surface or 
bottom). This model, called the image model is described in 
Brekhovskikh and Lysanov (1982). This simulation used one-
way propagation at a range of 4,000 metres in 100 metres 
deep water with 3dB loss on reflection from the bottom. 
Surface loss was assumed negligible but a 180 degrees phase 
change was applied for each surface reflection. Signal 
amplitude was normalised so that under the assumption of 
spherical spreading (power decreases inversely with range 
squared) the SNR would be -20dB for a single direct path. 
The results of ten thousand runs of this simulation are shown 
in Figure 3. 

 
Figure 3 Receiver Operating Characteristics comparison for 

detection of image model in white noise (SNR -20dB) 

Making the comparison between detectors for different SNR 
values using the image model for a signal is more 
complicated. The statistic for the new test shows more 
variability under this model. As a result at low false alarm 
rates it is not possible to resolve the performance of the T-
square test and the “clairvoyant” detector. At a higher false 
alarm rate the determination of the threshold is easier and 
resolution of the curves is possible. For this reason the 
simulation result shown in Figure 4 is for a one percent false 
alarm rate. 

The result in Figure 4 requires some explanation. The T-
square test and the matched filter converge for low SNR 
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values. This is due to the bias of the amplitude estimates to 
higher values that has been mentioned above. Low amplitude 
paths provide estimated amplitudes indistinguishable from 
estimates resulting only from noise.  Eventually only one 
path is clearly different from the noise and the Matched filter 
and T-square test results converge for low SNR. This 
behaviour is less apparent in Figure 2 because all the signal 
components have the same amplitude and the estimates 
degrade consistently. 

 
Figure 4 Performance comparisons for detection of Image 
Model in white noise with probability of false alarm 0.01. 

CONCLUSIONS 

In this paper detection of sonar returns in the presence of 
multipath distortion was discussed. The degradation of 
detection performance by this phenomenon is more severe 
when using broadband pulses that are predicted to have 
superior reverberation rejection properties. Navies are 
increasingly operating in littoral waters with high 
reverberation levels so the use of high bandwidth pulses with 
increased resistance to this interference is desirable. 

The detector proposed in this paper used the EM algorithm to 
estimate the path amplitudes and delays from the data. It then 
used the amplitudes to perform detection. The path delays 
were used to derive the Fisher information of the amplitudes, 
which was used to approximate the correlation between 
estimated path amplitude due to interference between paths. 
Theoretically allowing for this correlation will give a better 
measure of the value of the data and hopefully better 
detection performance. 

Simulations indicate that when multipath propagation occurs 
the T-test detector can give better performance than the 
matched filter that is usually used for sonar detection. Issues 
remain to be investigated. The approach has been compared 
only to the traditional matched filter and the “clairvoyant” 
detector designed on the assumption of a perfectly known 
environment. Comparison with the latter suggests that there is 
significant room for improvements. A performance 
comparison with other multipath tolerant and 
environmentally adaptive detectors would be valuable. The 
EM algorithm is only one of several algorithms that solve the 
superimposed signal problem, related to multipath 
propagation, and it is not clear which is most suitable for this 
application. 

An important point is that the simulations discussed in this 
paper are for a signal in white Gaussian noise. Investigation 
of the results when reverberation is the background will be 
required before operational applications are considered. 

REFERENCES 

Abraham, D., Hillsley, K. and Norrmann J. 2001, ‘A Robust 
Model-Based Detector for Active Sonar’, Proceedings of 
Oceans 2001, pp 2139-2146. 

Anderson, T. 1958, An Introduction to Multivariate 
Statistical Analysis, John Wiley, New York. 

Brekhovskikh, L. and Lysanov, Y. 1982, Fundamentals of 
Ocean Acoustics, Springer-Verlag, Berlin. 

Feder, M. and Weinstein, E. 1988, ‘Parameter estimation of 
superimposed signals using the EM algorithm’, IEEE 
Transactions on Acoustics, Speech and Signal 
Processing, vol. 36, no. 4, pp 477-489. 

Freund, J. and Walpole, R. 1987, Mathematical Statistics,  4th 
ed, Prentice Hall, Englewood Cliffs 

Carpenter, R. and Kay, S. 1995, ‘GLRT Detection of Signals 
in Reverberation’, Proceedings of the International 
Conference on Acoustics, Speech and Signal Processing, 
pp 3127-3130. 

Laird, N., Dempster, A. and Rubin, D. 1977, “Maximum 
Likelihood from Incomplete data via the EM Algorithm”, 
Annals of the Royal Statistical Society, pp 1-38. 

Lehmann, E. and Casella, G. 1998, Theory of Point 
Estimation, Springer-Verlag, Berlin. 

Lourey, S. 2004, Topics in Underwater Detection, PhD 
Thesis, University of Melbourne, Melbourne VIC. 

Michalopoulou Z. and Picarelli, M. 2005, ‘Gibbs Sampling 
for time-delay and amplitude estimation in underwater 
acoustics’, Journal of the Acoustical Society of America, 
vol. 117, no. 2, pp 799-808. 

Van Trees, H. 1965, ‘Optimum Signal Design and Processing 
for Reverberation-Limited Environments’, IEEE 
Transactions on Military Electronics, July-October, 
1965, pp 212-229. 

Van Trees, H. 1971, Detection, Estimation and Modulation 
Theory, Part III, John Wiley, New York. 

 




