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ABSTRACT 

An upstream turbulence/fluctuation has been shown to increase the unsteadiness in the wake of a three-dimensional 
bluff body (Mittal, 2000). This inevitably will influence the radiated acoustic waves in the far field. In this paper, the 
effects of fluctuating freestream disturbances on the wake structure and sound radiation from a two-dimensional flow 
over a circular cylinder are investigated. The flow field is obtained by numerically solving the incompressible Navier-
Stokes equations. At a Reynolds number of 40, the addition of fluctuating disturbances in the freestream causes the 
otherwise steady wake to oscillate at the frequency of the disturbance. This oscillation is enhanced with increasing 
energy and frequency of the fluctuations. The corresponding acoustic field is obtained by using an Expansion about 
Incompressible Flow (EIF) method. The computed acoustic field shows a dipole directivity, which is similar to that of 
a natural vortex shedding. Moreover, using the rms plot of the fluctuations of the EIF source terms, the location of the 
dipole source in the wake of the cylinder is accurately identified. 

INTRODUCTION 

With the increased speed of transport vehicles in recent years, 
vehicle noise has become one of the major environmental 
problems. The noise produced by commercial aircraft during 
take-off and landing is a concern to the community living in 
the vicinity of an airport. Wind noise in a car causes some 
discomfort to the passengers at speeds above 120 km/hr 
(Larsson, 2002). In order to reduce noise, many studies have 
been conducted to understand the mechanism of sound 
generation by a fluid flow. In the case of the flow over a bluff 
body, the vortex shedding behind the bluff body was 
identified as the primary drive in the sound generation 
process.  

Recently, the study of the flow over a bluff body was 
extended by Mittal (2000) and Bagchi and Balachandar 
(2004) to include freestream turbulence. Mittal used a 
sinusoidally oscillating transverse velocity to represent the 
freestream turbulence while Bagchi and Balachandar 
employed a precomputed isotropic turbulent field. Despite 
these differences, they came up with the same conclusion that 
the unsteadiness in the wake region was significantly 
increased by the addition of the freestream turbulence. As 
reported by Mittal, the fluctuation of kinetic energy in the 
wake could reach as high as 38.6 times that in the freestream. 
Since the sound generation process is closely related to the 
wake activity, the freestream turbulence will inevitably 
influence the radiated sound in the far field.  

In this paper, the effects of fluctuating freestream 
disturbances on the wake structure and sound radiation from 
a two-dimensional flow over a circular cylinder are 
investigated. The Reynolds number based on the mean flow 
is chosen to be 40. This corresponds to a steady wake regime 
with no sound radiation in the absence of the freestream 
disturbances. Therefore, any wake oscillation and sound 
radiation observed in this study are purely associated with the 
freestream disturbances. The effects of different forcing 
frequencies and intensities of the disturbances are also 
investigated. 

SIMULATION TECHNIQUE 

In the flow computation, the flow field is obtained by solving 
the unsteady, incompressible Navier-Stokes equations,  

∇ ⋅ u = 0,  (1) 

∂u

∂t
+ u ⋅ ∇( )u = −∇p +

1

Re
∇2u ,  (2) 

where u  and p  are the incompressible velocity vector and 
pressure, and Re is the Reynolds number of the flow. 
Without any loss of generality, an elliptic coordinate system 
(ξ,η )  is used to express the spatial operators. 

The computational domain is discretized by using a hybrid 
Fourier-Chebyshev collocation method. The Fourier 
collocation method is naturally used in the periodic azimuthal 
(η) direction. The collocation points are placed uniformly 
within [0,2π ] with a grid spacing of ∆η = 2π /Nη  where Nη  
is the number of grid points in the azimuthal direction. The 
Chebyshev collocation method is applied in the radial (ξ ) 
direction. The collocation points are defined according to the 
following mapped Gauss-Lobatto grid distribution, 
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where  i = 1, 2,K , Nξ  and Nξ  is the number of grid points in 
the radial direction. The terms ξo and ξn  in Eq. (3) are the ξ  
coordinates of the cylinder and the computational boundary 
respectively.  

In the temporal discretization, a time-split method of Streett 
and Hussaini (1991) is used to advance the flow field in time. 
A semi-implicit method is employed in order to avoid the 
severe numerical instabilitites associated with the viscous 
stability limit and the pure advection limit. The viscous terms 
are  discretized  using  a  Crank - Nicholson  method  and  the  
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Figure 1. A typical mesh of the flow domain. 

nonlinear  and  cross  derivative terms are discretized using a 
third order Adams-Bashforth method.  

The fluctuating freestream disturbance is introduced at the 
inflow boundary (see Fig. 1). It is modelled by using Mittal’s 
sinusoidally fluctuating transverse velocity. The expression is 
given by 

uy = Ain sin 2π Ωt( ),               (4) 

where Ain  and Ω are the amplitude and nondimensional 
frequency of the disturbance respectively. The amplitude of 
the disturbance Ain  is related to the fluctuation kinetic energy 

level k 0  by Ain = 2 k 0 . Since viscosity will cause this 
disturbance to decay before reaching the cylinder, this 
fluctuation kinetic energy level is specified at a certain 
location upstream of the cylinder (l /d)  where d  is the 
cylinder’s diameter, and the amplitude at the inflow boundary 
is then calculated accordingly. The amount of amplification 
can be obtained from the one dimensional convection-
diffusion equation as  
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where Al /d  and k l /d  are the amplitude of the disturbance and 
the fluctuation kinetic energy level at the location l /d , and 
R  is the distance between the inflow boundary and the 
cylinder.  

In the acoustic computation, an Expansion about 
Incompressible Flow (EIF) method (Shen et. al., 2004) is 
employed to simulate the generation and propagation of the 
acoustic waves. It is classified as a hybrid method where the 
acoustic field is computed from the unsteadiness in the 
incompressible flow field. The governing equations for the 
EIF method are given by 

∂ ′ ρ 
∂t

+
∂f i

∂xi

= 0 ,           (6) 
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Here, ρ0 , u0i  and P  are the incompressible flow quantities, 
and ′ ρ , ′ u i  and ′ p  are the acoustic quantities. Together they 
represent the compressible flow quantities 

ρ = ρ0 + ′ ρ ,   ui = u 0i + ′ u i    and   p = P + ′ p .    (11) 

The speed of sound c  in Eq. (8) is defined as 
c2 = γ P + ′ p ( )/ ρ0 + ′ ρ ( ) where γ  is the ratio of specific 
heats. It is nonuniform in the acoustic field and accounts for 
the refraction of acoustic waves during the propagation 
process. The convection and nonlinear effects of the acoustic 
waves are also evident from Eq. (9). Moreover, the 
generation of the acoustic waves in this EIF method is 
performed through the acoustic source term on the right hand 
side of Eq. (8). This acoustic source term depends on the 
unsteadiness of the pressure field, which is very similar to the 
dilatation theory in Ribner’s acoustic analogy (Ribner, 1959).  

To compute the acoustic field, the spatial and temporal 
operators in Eq. (6) – (8) are discretized by using an eleven-
stencil-points Dispersion-Relation-Preserving (DRP) method 
(Bogey and Bailly, 2002) and a fourth order Runge-Kutta 
method respectively. The DRP method is an optimised finite 
difference method with a better wave resolution property than 
a simple finite difference method. It only requires 4.65 points 
per wavelength to resolve the acoustic waves as compared to 
6.58 points per wavelength for a finite difference method of 
the same stencil size. The superior wave resolution is evident 
from the group velocity plot in Fig. 2. The group velocity of 
the finite difference method is observed to deviate earlier 
from unity, resulting in a larger dispersion error.  

 
Figure 2. Group velocities of the eleven-stencil-points DRP 

method and the finite difference method.  

At the computational boundary, a Perfectly-Matched-Layer 
(PML) absorbing boundary condition (Hu, 2001) is applied. 
The acoustic waves are smoothly attenuated in this absorbing 
layer before reaching the computational boundary. Twenty 
radial grid points are allocated for this absorbing layer to 
ensure a perfectly nonreflecting condition is achieved.  

Due to the larger acoustic wavelength, the acoustic domain 
extends beyond the flow domain. A hyperbolic tangent 
mapping function is used in the radial direction to achieve 
appropriate grid spacings in both near and far fields. The grid 
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stretching in this mapping function is limited to lsfmax = 0.05  
in order to avoid any generation of spurious waves. Here, 

lsf =
ri+2 − ri+1

ri+1 − ri

− 1 is the local stretching factor in the grids 

and ri  is the radial location of the grid point i . On the other 
hand, the grid spacing in the azimuthal direction is kept 
constant. The value is the same as that in the flow domain.  

RESULTS 

In the current study, three different configurations of the 
freestream disturbances are considered. They are listed in 
Table 1. The fluctuation kinetic energy level k l /d  in the table 
corresponses to an upstream location l /d = 5. The intensities 
of the fluctuations I  are also provided in the fourth column. 
It is defined as the ratio between the root-mean-squared (rms) 
value of the freestream fluctuations to the freestream 
streamwise velocity, I = vrms /u∞  where vrms = Al /d 2 . The 
maximum value of vrms  investigated here is 10% of the mean 
flow velocity.  

The flow and acoustic domains used in the computations 
remain the same for all cases. The former has a radius of 30d  
and is discretized by using 100 ×160 grid points in the radial 
and azimuthal directions respectively. The acoustic domain 
extends to 220d  including the PML absorbing layer. It 
comprises of 400 ×160 grid points with radial grid spacings 
of 0.05 in the near field and 2 in the far field.  

Table 1. Parametric range of the freestream disturbances. 

Case k l /d  Ω I  

1 0.002 0.06 6.3% 

2 0.002 0.1 6.3% 

3 0.005 0.1 10% 

Flow Field 

Consistent with classical experimental and numerical results, 
data from the incompressible flow calculation (without any 
freestream disturbance) shows a steady wake behind the 
cylinder if there are no disturbances upstream. A pair of 
recirculation bubbles is observed in the wake (see Fig. 3a). 
They are 2.26d  in length, measured from the downstream 
surface of the cylinders. The separation points were found to 
be   ± 53.7o from the positive x  direction. These results agree 
well with earlier data presented in Coutanceau and Bouard 
(1979) and Dennis and Chang (1970). Despite the relatively 
short length of the recirculation bubbles, the shear layers in 
the steady wake extend to a considerable distance 
downstream. This is evident from the steady state vorticity 
field in Fig 3b.  

Upon adding the freestream disturbances, the wake behind 
the cylinder becomes unsteady which is obvious from the 
instantaneous vorticity plots shown in Fig. 4. They are taken 
at the time instant when a maximum lift occurs. The 
responses of the wake are shown to depend on the nature of 
the freestream disturbances. For a low frequency disturbance 
Ω = 0.06  (case 1), the shear layers are observed to oscillate 
in the transverse direction at the disturbance frequency. The 
wake appears to have enough time to respond to the 
disturbance so that no significant interaction between the two 
shear layers is observed.   As a result, the shear layers remain  

 
Figure 3. Plots of (a) streamlines and (b) vorticity field. Solid 

and dashed lines represent positive and negative contour 
levels respectively. Contour levels are from -0.2 to 0.2 with 

an increment of 0.025. 

 
Figure 4. Vorticity fields of (a) case 1, (b) case 2 and (c) case 

3. Solid and dashed lines represent positive and negative 
contour levels respectively. Contour levels are from -0.2 to 

0.2 with an increment of 0.025. 

integrated structures in spite of the oscillations. This 
phenomenon was also observed by Mittal (2000) in the flow 
over a sphere at Re=150 with a low frequency freestream 
disturbance. 

For a higher frequency of freestream fluctuation Ω = 0.1 
(case 2), the freestream disturbance causes the shear layers to 
interact. They become unstable at a certain distance in the 
wake and this results in the formation of discrete vortices.  

This vortex formation is similar to the vortex shedding 
process where positive and negative vortices are produced in 
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turn, one after the other. The frequency of this vortex 
formation is the same as the disturbance frequency.  

Increasing the fluctuation kinetic energy level in the upstream 
to k l0 / d = 0.005  (case 3) only moves the instability point in 
the upstream direction. The vortex formation process remains 
the same. However, Fig. 4c features transverse contour levels 
that are not seen in the earlier cases. These transverse contour 
levels correspond to the vorticity sheets produced by 
sinusoidally oscillating the transverse velocity in the 
upstream. Their magnitudes are large enough to be 
observable within the given contour levels. The regions 
between two transverse solid lines contain the local peak 
positive vorticity of the disturbance while the regions 
between two transverse dashed lines contains the local peak 
negative vorticity of the disturbance.  

On the other hand, the local peak positive and negative 
transverse velocities of the disturbance occur in between the 
transverse solid and dashed lines. The former is located 
downstream of the solid lines while the latter is located 
downstream of the dashed lines. By using this information, 
the negative vortex is observed to form when the maximum 
transverse velocity pushes the positive vorticity shear layer 
upward and disintegrates a fraction of the shear layer with 
negative vorticity. The reverse is also true for the formation 
of a positive vortex.  

Furthermore, it is commonly found in multiphase particulate 
flows that the interaction between the freestream disturbance 
and the particulates can result in either an increase or a 
decrease in the fluctuations of kinetic energy in the flow. 
Gore and Crowe (1989) showed that this disturbance 
enchancement and suppression depended only on the ratio 
between the particulate size d p  and the characteristic length 
of the disturbance le . The critical ratio was given by 
d p / le = 0.1, above which the freestream disturbance were 
enhanced. Hestroni (1989) on the other hand demonstrated 
that the enhancement and suppression processes depended on 
a few parameters, which collectively formed the particulate 
Reynolds number 

Re p =
(u f − u p )d p (ρ p − ρ f )

µ f

,     (11) 

where u p  and ρ p  correspond to the velocity and density of 
the particulate, and u f , ρ f  and µ f  correspond to velocity, 
density and dynamic viscosity of the flow medium.  

For the interaction between the freestream disturbance and a 
single particulate, which was modelled as a sphere, Mittal 
(2000) and Bagchi and Balachandar (2004) reported 
disturbance enhancements in almost all of their simulations. 
Only one case of disturbance suppression was reported by 
Bagchi and Balachandar, which occurred at a high 
disturbance intensity and with an intermediate sphere size.  

Following Mittal, the fluctuation kinetic energy level k  at 
every point in the flow field is computed and normalized by 
the upstream fluctuation kinetic energy level k l /d . The 
expression is given by 

k 
k l /d

=

1
2 u − u ( )2

+ v − v ( )2 
  

 
  

k l /d

,         (12) 

 
Figure 5. Fluctuation kinetic energy fields of (a) case 1, (b) 

case 2 and (c) case 3.  

where the overbar represents time averaged quantities. This 
ratio determines the amount of enhancement or suppression 
of the freestream disturbances. Disturbance enhancement is 
characterised by k /k l /d > 1 while disturbance suppression is 
characterised by k /k l /d < 1. 

Figure 5 shows the normalized fluctuation kinetic energy 
levels for the three cases listed in Table 1. The freestream 
disturbances are enhanced in all cases with regions of 
k /k l /d > 1 existing in the wake of the cylinder. Two local 
maximum amplifications are observed in the fields. They are 
located at distances of 5.5d , 4.5d  and 3.1d  from the 
cylinder surface in cases 1, 2 and 3 respectively. This 
location of maximum amplification is clearly shown to move 
upstream with an increase in the disturbance frequency and 
intensity. Away from the wake region, reductions in the 
freestream disturbances are also observed. However, these 
reductions are due to the dissipation effect rather than the 
interaction between the disturbances and the circular 
cylinder.  

The maximum amplification factors in cases 1, 2 and 3 are 
11.5, 14.3 and 8.7 respectively. These data show that the 
freestream disturbances are significantly enhanced in the 
wake of the cylinder. These amplifications remain quite 
strong even at a considerable distance downstream. The 
amplification factor is still larger than 4 for cases 1 and 2, and 
2 for case 3 at the location 20d  downstream. 

Futhermore, the increase in the disturbance frequency (from 
case 1 to case 2) is shown to result in an increase in the 
amplification factor. This can be attributed to the increased 
activities in the shear layer that leads to the formation of 
discrete vortices. On the other hand, a further increase in the 
disturbance intensity (from case 2 to case 3) actually 
decreases the amplification factor. This is because the 
increase in the fluctuation kinetic energy in the wake is 
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hindered by the freestream fluctuation kinetic energy, which 
has a higher magnitude in case 3. As a result, the ratio of the 
downstream fluctuation kinetic energy to that in the upstream 
becomes smaller.  

Apart from the flow structure and fluctuation kinetic energy 
level in the wake, the freestream disturbance also affects the 
lift and drag forces on the circular cylinder. The oscillations 
of these lift and drag forces are summarised in the lift-drag 
phase plot in Fig. 6. In the absence of the freestream 
disturbance, no lift is produced and the drag coefficient is 
computed as 1.52. With the addition of freestream 
disturbances in cases 1, 2 and 3, these lift and drag forces 
fluctuate in time. The lift fluctuation has the same frequency 
as the disturbance frequency while the frequency of the drag 
fluctuation is twice the disturbance frequency.  

The mean lift force remains zero for all cases but the mean 
drag force increases with the increase in frequency and 
intensity of the disturbance. The mean drag coefficients for 
cases 1, 2 and 3 are 1.54, 1.58 and 1.61 respectively. The 
fluctuations of the lift and drag forces are also found to 
behave in the same manner as the mean drag coefficient. The 
former are given by 0.127, 0.140 and 0.231, and the latter are 
given by 0.00304, 0.00369, 0.00896.  

 
Figure 6. Lift-drag phase plots. 

Acoustic Field 

In the aerodynamically generated sound, the acoustic waves 
are produced by the unsteadiness in the flow field. This 
implies that the steady wake in Fig. 3 does not produce any 
sound radiation. Therefore, the acoustic waves produced in 
cases 1, 2 and 3 are purely associated with the freestream 
disturbances. The instantaneous acoustic fields in these cases 
are given in Fig. 7. The acoustic waves were clearly shown to 
come from the flow regions at the center of the acoustic 
domain. They are stronger in the transverse direction, giving 
a dipole characteristic to the sound radiation pattern. This 
dipole characteristic is also supported by the directivity plots 
in Fig. 8 where the curves bulge in the transverse direction. 
These directivity plots are obtained by computing the 
circumferential sound pressure level at a radius of 200d . The 
expression of the sound pressure level is given by 

SPL = 20log10

′ p rms

2 ×10−5

 
  

 
  , (13) 

where ′ p rms  is the rms value of the acoustic pressure 
fluctutations.  

 
Figure 7. Acoustic pressure fluctuation fields of (a) case 1, 

(b) case 2 and (c) case 3. White and black contours represent 
the crests and troughs of the acoustic waves respectively. 
Their intensities are associated with the amplitudes of the 

waves.  

As shown in Figures 7 and 8, the peak intensities of the 
acoustic waves occur at angles of   ± 97o measured from the 
positive x  axis. The margin of error is given by  ± 2.75o. 
This slight upstream directivity is similar to the acoustic 
radiation produced by a circular cylinder in the natural vortex 
shedding regime (Inoue, 2002). Inoue showed that this slight 
upstream directivity was due to the Doppler effect, which  
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Figure 8. Directivities of acoustic waves at a radius of 200d  

from the cylinder. 

 
Figure 9. Acoustic spectra at an observation point located at 

200d  above the cylinder. 

intensified the upstream portion of the acoustic waves. 
Without the Doppler effect, Inoue showed that the acoustic 
waves from a natural vortex shedding would have peak 
intensities at angles close to   ± 90o.  Moreover, Fig. 7 also 
shows that the acoustic waves are completely attenuated by 
the PML absorbing boundary condition before reaching the 
computational boundary. Owing to the absorbing layer, no 
significant acoustic waves are reflected back to the 
computational domain.  

In contrast to the slight upstream directivity in case 1, the 
acoustic field produced by a higher frequency disturbance 
(case 2) shows peak intensities at angles of   ± 70o. The 
margin of error is the same for both cases. The difference in 
the directivities between cases 1 and 2 can be explained by 
the difference in the wake structures in those cases. The wake 
in case 1 is slowly modulated by the freestream disturbance 
without any significant interaction between the shear layers 
while the wake in case 2 involves a vortex formation from the 
instability in the shear layers. The latter was also observed in 
the mixing layer case where the discrete vortices produced by 
the mixing layer instability caused a slight downstream 
directivity (Colonius et. al., 1997). Moreover, the higher 
disturbance intensity in case 3 only produces a higher sound 
intensity while the directivity remains the same as in case 2. 

Furthermore, the wavelengths of the radiated waves appear to 
be shorter in the upstream than those in the downstream. This 
is because the effective propagation speeds of the acoustic 
waves are modified by the effect of mean flow convection. In 

the upstream, the effective propagation speed is reduced, 
producing shorter wavelength waves. The reverse is true 
downstream of the cylinder. This is an illustration of Doppler 
shift owing to the mean flow. 

On the other hand, the acoustic waves that propagate at 
angles  ± 90o travel at the ambient speed of sound and 
maintain the original wavelengths. These original 
wavelengths can be obtained from the acoustic spectra in Fig. 
9. These spectra are computed from the temporal evolutions 
of the acoustic pressure fluctuations at an observation point 
located at 200d  above the cylinder. They clearly show two 
distinct peaks at two different frequencies. The lower 
frequency is the dominant frequency that characterizes the 
frequency and wavelength of the radiated acoustic waves 
while the higher frequency is in fact only a harmonic of the 
lower one.  

As expected, the dominant frequencies in cases 1, 2 and 3 are 
found to be close to the frequencies of the freestream 
disturbances. Small differences exist but they are believed to 
be caused by insufficient sampling rate. By using the 
dominant frequencies obtained from Fig. 9, the wavelengths 
of the radiated acoustic waves in cases 1, 2 and 3 are 
computed as 106, 71 and 71 respectively.  

Acoustic Source Identification 

In hybrid methods, the sound generation due to the flow 
evolution is provided by the acoustic source terms on the 
right hand side of the governing equations. These acoustic 
source terms therefore can be used to determine the exact 
location of the acoustic sources in the flow region. This 
approach was used by Iida et. al. (2004) to identify the 
acoustic sources in the wake of a rotating circular cylinder. 
They chose the acoustic source term in Powell’s acoustic 
analogy for this purpose. Its expression is given by 

SPowell = ρ0∇⋅ ω × u( ),               (14) 

where ρ0  is the ambient density, ω  and u  are the vorticity 
and velocity vectors respectively. This Powell’s source term 
was chosen among others because it was compact in space 
and gave a direct relationship between the vorticity 
fluctuation and the sound generation.  

In their analyses, regions of high contour levels of the 
acoustic sources were identified as the locations of the 
acoustic sources. Nevertheless, higher contour levels of 
acoustic sources do not necessarily produce stronger acoustic 
waves. This is because the acoustic waves are generated by 
the fluctuations in the acoustic sources. It is not due to the 
intensity of the acoustic sources. This point was also 
acknowledged by Iida et.al. (2004) who discovered that the 
radiated acoustic waves were weaker at a higher rotation rate 
despite the increasing intensity of the acoustic sources. 
However, no further attempt was made to give a better 
identification of the acoustic sources.  

In this paper, an effective acoustic source term is proposed. It 
is based on discarding the time-averaged value of the acoustic 
source term. Its expression is given by  

Seff = S − S ,           (15) 

where Seff  and S  are the effective and time-averaged 
acoustic source terms. The EIF acoustic source term in Eq. 8 
is  
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Figure 10. Acoustic source rms fields of (a) case 1, (b) case 2 

and (c) case 3.  

 
Figure 11. Time evolution of the acoustic source at the local 
maximas. Solid and dashed lines correspond to the top and 

bottom maximas respectively. 

employed here to determine the location of the acoustic 
sources. Since this EIF acoustic source term involves a time 
derivative, its time average vanishes for a periodic problem 
S = 0. Therefore, 

Seff = S = −
∂P
∂t

.             (15) 

The rms of this acoustic source term is plotted in Fig. 10. In 
all cases, two local maximas can be identified behind the 
circular cylinder. They are located at distances of 4.7d , 3d  
and 2.5d  from the downstream surface of the cylinder. They 
are clearly shown to move upstream with the increase of 
disturbance frequency and intensity. 

These local maxima represent the local maximum 
fluctuations of the acoustic sources. Since the fluctuations at 
the top and bottom local maxima are   180o  out of phase (see 
Fig. 11), they form dipole type acoustic sources that produce 
acoustic waves in the transverse direction. In cases 2 and 3, 
these local maxima represent the dominant acoustic sources. 
In case 1 on the other hand, another pair of local maximas 
exists on the upstream surface of the cylinder. These local 
maxima also form a dipole type acoustic source. They in fact 
have larger fluctuations than those behind the cylinder, 
making them the dominant acoustic source in case 1. 

CONCLUSION 

In conclusion, the effects of three different configurations of 
freestream disturbance on the wake and acoustic radiation are 
investigated. The lower frequency disturbance (case 1) 
produces a slow oscillation in the wake and acoustic waves 
with peak intensities at angles of   ± 97o. The higher 
frequency disturbance (case 2) on the other hand causes the 
shear layers to break and form discrete vortices. This results 
in acoustic waves with peak intensities at angles of  ± 70o. 
Finally, increasing the disturbance intensity from 6.3% in 
case 2 to 10% in case 3 intensifies the sound radiation, but 
the directivity remains the same as in case 2. Furthermore, 
the dominant acoustic sources in case 1 are found on the 
upstream surface of the cylinder while those in case 2 and 3 
are located at 3d  and 2.5d  from the downstream surface of 
the cylinder.  
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