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ABSTRACT 

One source of structural vibration in a submarine is the fluctuating axial thrust force applied to the thrust block by the 
propeller shaft.  This paper describes the initial stages of experimental work being undertaken to validate an existing 
mathematical model for the sound radiation from a submarine excited by this mechanism.  A thin cylindrical shell 
1500mm long and 400mm in diameter made of 2mm thick steel with its ends capped by 20mm thick steel discs is 
examined.  The shell was suspended from eyelets welded at either end and was excited axially by a modal shaker 
mounted inside the cylinder on one of the end caps.  The first few modes with significant axial content were extracted 
from frequency-response functions measured at a number of points on the surface of the cylinder and the end caps 
and are described.  This work will lead into the development of a sound radiation model suitable for use in the active 
vibration control of the cylinder. 

INTRODUCTION 

The prediction and control of sound radiated from 
submarines is a subject of perennial interest to navies around 
the world.  Minimisation of radiated sound is essential to 
reduce the detectability of a submarine and thereby maximise 
its effectiveness.  A common approach is to base 
investigations on relatively simple cylindrical shell structures.  
Much early work on shells and cylindrical shells in particular 
is summarised by Leissa (1993).  Hodges et al. (1985a) 
present a detailed model for vibration transmission in a 
ribbed cylinder that also models the internal degrees of 
freedom and resonances of the ribs; they compare this model 
to a range of measurements on a ribbed cylinder (Hodges et 
al. 1985b).  The wave propagation in periodically stiffened 
shells, with its pass and stop bands, is modelled using a 
finite-element approach by Solaroli et al. (2003) and by an 
analytical technique by Lee and Kim (2002).  It is an 
interesting fact that there is no single agreed upon theory for 
the vibration of thin shells.  Ruotolo (2002) investigates the 
effect of using the slightly differing theories of Love, 
Donnell, Flügge and Sanders to calculate the interior noise 
level of ring-stiffened cylinders representing aircraft 
fuselages. 

Heavy fluid loading, such as that presented by water 
surrounding a submerged vessel, markedly alters the response 
of a structure.  Rumerman (2002) investigates the effect of 
fluid loading on the radiation efficiency of flat panels.  
Sandman (1976) determines the fluid-loading influence 
coefficients for a finite submerged plain cylindrical shell to 
account for this effect.  Scott (1988) presents a 
comprehensive analysis of the free modes of propagation for 
an infinitely long thin cylindrical shell with fluid loading, 
developing individual expressions for the higher order terms 
in the shell equations to better suit the analysis approach.   
Another analytical study that looks into the acoustic radiation 
from the shell as well is given by Harari and Sandman 
(1990).  Choi et al. (1995) use a modal-based method to 
model the vibration and acoustic radiation of submerged 
cylindrical shells that include internal substructures.   

Finite-element (FE) approaches can model more general 
structures than can be treated by analytical means.  Marcus 

and Houston (2002) use an FE model to show that the 
addition of point masses to the internal frames of a 
submerged cylindrical shell increase its acoustic radiation by 
coupling high and low order circumferential resonances.  
Homm et al. (2003a) use both FE analysis alone and FE 
combined with the boundary-element (BE) method to model 
the structural and acoustic response of a complicated 
structure consisting of two hemispherically capped cylinders 
with different radii joined together and containing some 
internal structure.  Comparison to underwater measurements 
of the structure (Homm et al. 2003b) shows that the 
combined FE-BE approach is superior.  At higher 
frequencies, FE methods become impracticable, and methods 
such as statistical energy analysis (SEA) can be used.  
Blakemore et al. (1999) model a fluid-loaded ribbed 
cylindrical shell with an extended form of SEA that can deal 
with the periodicity of the structure. 

Various techniques for the active control of vibration, 
including active structural acoustic control (ASAC), are 
given in Fuller et al. (1996).  Ideally, active control seeks to 
minimise a measured error signal.  However, in the case of a 
submarine, the quantity to be minimised is the far-field 
radiated sound, while the quantity that can be measured is the 
hull vibration.  Thus a cost function is required, that relates 
the hull vibration to the radiated sound, and it is this function 
that must be minimised by the control system.  Such a cost 
function must be computationally efficient to be implemented 
in a real-time control system.  This rules out directly using 
numerically intensive radiation models such as those based 
on FE methods.  A simplified analytical radiation model is 
described in Pan et al. (2005), based on a formulation given 
by Junger and Feit (1972) for a thin cylindrical shell.  It 
considers low-frequency axial excitation, as might be induced 
by the propeller shaft on the thrust block of a submarine, such 
that the hull stiffeners can be taken to be a smeared effect of 
increasing the stiffness and mass of a uniform shell.  Only 
axisymmetric motion is considered (i.e. 0n = , see the next 
section).  This paper presents the first stages of an 
experimental investigation that seeks to test the validity of 
this model.  It is expected that the cylindrical shell 
investigated will eventually act as the test bed for various 
active vibration control techniques, including the use of piezo 
stacks to provide a controlling moment to a rib stiffener as 
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described in the theoretical study of Pan et al. (2005), and the 
use of inertial actuators to provide controlling forces. 

THEORETICAL BACKGROUND 

Figure 1 shows a uniform thin cylindrical shell of radius a, 
thickness h and length L.  Also shown is the coordinate 
system x (longitudinal), y (tangential) and z (radial) centred 
on an element of the shell surface which is at angular position 
θ. 
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L 

 
Figure 1. A thin cylindrical shell of radius a and thickness h 
showing the local coordinate system x, y and z used for (1). 

The equations of motion for the free vibration of the thin 
cylindrical shell of Figure 1, according to the Donnell-
Mushtari theory, are (Leissa, 1993) 

2 2 2(1 ) 2 (1 ) (1 ) 2 0xx x xa a E a aθθ θν ρ ν ν ν+ − − − + + + =&&u u u v w
2 2 2(1 ) 2 (1 ) 2 (1 ) 0x xxa a a Eθ θθ θν ν ρ ν+ + − + − − + =&&u v v v w

2 4 2 2 212 (1 ) 0xa h a a Eθν ρ ν+ + + ∇ + − =&&u v w w w  (1) 

where u, v and w are the displacements in the x, y and z 
directions respectively; ρ is the density, E the Young’s 
modulus and ν the Poisson’s ratio of the shell material; and 
subscripts x and θ denote differentiation with respect to those 
variables, while dot denotes differentiation with respect to 
time.  While other thin-shell theories such as those of Flügge 
and Sanders include more terms than in equations (1) to 
better model the bending effects in shells with higher 
thickness-to-radius ratios, even these simplest equations 
illustrate the high degree of coupling between the three 
displacements u, v and w.  Thus radial displacement, which is 
the main source of sound radiated from the shell, can be 
excited even when the only excitation is axial. 

For a finite shell with shear diaphragm end conditions, which 
equate to “simple support”, the longitudinal variation of the 
radial displacement would be assumed to be described by 
sin( )m x Lπ  terms, where the positive integer m is the 
number of half waves that fit along the length L.  Although 
the cylinder to be considered has shell end conditions that fall 
somewhere between shear diaphragm and fully clamped so 
that this simple term is no longer strictly valid, the number of 
half waves is still a useful way to think of the mode shapes.  
Likewise, the circumferential variation of the three 
displacement components can be described by sin nθ  and 
cosnθ  terms, where n is the number of full waves developed 
around the circumference.  Therefore, the modes of the 
cylinder can be described in terms of m and n values to 
succinctly describe the deformed shape of the shell.  The 

0n =  case represents an expansion or “breathing” mode of 
the cylindrical cross-section.  For a simple ring, formulas in 
Blevins (1995) indicate that the 0n =  ring mode is higher in 

frequency than the first few 1, 2, 3n = K  modes.  Blevins 
(1995) also notes that for a given m, the 1n =  cylindrical 
shell modes are not generally the lowest in frequency.  These 
latter modes represent a translation of the cylinder cross-
section undistorted, i.e. they are beam bending modes. 

Following the results presented in Leissa (1993), the solution 
for the natural frequencies of a finite shell with shear-
diaphragm support at each end is as follows.  Assume that the 
displacements take the form 

cos( )cos cos
sin( )sin cos
sin( )cos cos

A m x L n t
B m x L n t
C m x L n t

π θ ω
π θ ω
π θ ω

=
=
=

u
v
w

 (2) 

where A, B and C are arbitrary constants for a given set of m, 
n and the angular frequency ω (which is the natural frequency 
here).  These displacements automatically fulfil the shear-
diaphragm boundary conditions of zero tangential and radial 
displacement and zero bending moment and longitudinal 
membrane force at the cylinder ends.  Substitution of 
solutions (2) into the equations of motion (1) gives a 
characteristic equation of the form 

6 4 2
2 1 0 0K K KΩ − Ω + Ω − =  (3) 

where 2 2 2 2(1 )a Eρ ν ωΩ ≡ − .  This is a cubic in 2Ω  and so 
is easily solvable.  The coefficients are given by the 
expressions 

1 2 2 2 2 2
2 21 (3 )( ) ( )K n k nν λ λ= + − + + +

1 2 2 2 2 2 2 2 3
1 2

(3 )(1 ) (3 2 ) ( ) ( )
(1 )

K n n k nνν ν λ λ λ
ν

 −
= − + + + + + + − 

1 2 4 2 2 4
0 2 (1 ) (1 ) ( )K k nν ν λ λ = − − + +   (4) 

where m a Lλ π≡  and 2 212k h a≡ .   

Since equation (3) is cubic in 2Ω , there are three distinct 
solutions for the natural frequency for each combination of m 
and n.  The nature of the corresponding modes can be 
determined by substituting the three natural frequencies in 
turn back into the matrix equations that stem from using 
solutions (2) in the equations of motion (1), to calculate the 
mode shapes.  As is normal in eigenvalue problems, this 
results in linear dependence between the three equations, and 
one must be discarded, the final results being relative ratios 
between the amplitudes of the displacements.  One possible 
expression is 

2 2 2

2 2 2

(1 ) (1 )
2 2

(1 ) (1 )
2 2

An n
C
B nn n
C

ν νλ λ νλ
ν νλ λ

− +   − − + Ω    − 
=    + −    − − + Ω      

 

 (5) 

If A C  and B C  are both less than one, then the mode is 
predominantly radial (flexural).  If A C  is large and B C  
small, then the mode is predominantly longitudinal (axial), 
while a small A C  and large B C  implies a predominantly 
circumferential (torsional) mode.  The radial mode usually 
has the lowest natural frequency in the group of three. 
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EXPERIMENTAL SETUP 

The cylindrical shell examined in this paper is shown in 
Figure 2.  It is made of 2mm thick mild steel, 1500mm long 
with a 400mm diameter.  End plates 20mm thick are bolted 
with 8 bolts each to annular flanges of the same thickness 
which are welded to the cylinder’s ends.  Two eyelets are 
also welded to the cylinder to suspend it via a roof crane and 
sling as shown.  The shell part has a longitudinal welded 
seam running between the hooks.  The two edges of the seam 
meet at a slightly obtuse angle rather than being tangential, so 
there is some disruption to the circular symmetry of the shell 
in practice.  The cylinder is marked with a grid of 320 points 
with 20 points around the circumference (about 63mm 
circumferential spacing) and a longitudinal spacing of 
100mm.  This gave sufficient spatial resolution to ensure the 
accurate capture of higher-order modes that may have been 
present. 

The cylinder was excited axially by means of a Gearing and 
Watson GWV6 30N modal shaker.  This was mounted inside 
the cylinder on a rod welded to one of the end plates as 
depicted in Figure 3.  The shaker is bolted to its bracket via 
some rubber mounts, to minimise vibration transmission to 
the end plate via that path.  Also mounted on the rod is a 
cooling blower; however, this was only run intermittently 
between measurements, to avoid spurious vibration 
excitation.  The main vibratory input path to the end plate is 
via the stinger shown, which is connected to a PCB 208A02 
11.8mV/N force transducer.  The mass of the driven 
endplate-flange assembly with shaker, blower and bolts is 
approximately 26.3kg and that of the plain endplate and 
flange with its bolts is about 16.6kg.  The mass of the 
cylindrical shell itself is about 29.4kg. 

Normally, a modal shaker would be mounted separately from 
the structure it excites and the only connection would be via 
the stinger.  The shaker was mounted internally in the manner 
described above to avoid having external protuberances 
which could interfere with the sound radiation, and also to 
test a configuration that would be suitable for future 
underwater sound radiation measurements where the shaker 
would necessarily have to be kept dry.  In the mounting 
scheme employed, there must be a reaction force acting along 
the rod in opposition to the shaker force applied to the centre 
of the end plate.  This results in a degree of moment 
excitation in addition to the axial force excitation desired.  
This could be expected to have some effect on the cylinder’s 
motion in spite of the relative rigidity of the end plate and the 
flange it is bolted to.  An alternative to avoid the moment 
excitation would be to use a centrally mounted inertial 
shaker, which could still be placed inside the cylinder.  
However, no inertial shakers were available at the time of the 
measurements described. 

 
Figure 2. The cylinder suspended by the crane sling, showing 

the end plates bolted on and the triaxial accelerometer. 

 
Figure 3. The driven end plate, showing (top to bottom) the 
blower, shaker, stinger and force transducer at the centre of 

the plate. Access for leads is by three extra holes in the plate. 

Also shown inset in Figure 2 is the triaxial accelerometer 
composed of three -210 mV/ms  PCB 352C66 accelerometers 
mounted on an aluminium cube of side length 10mm.  This 
was secured to the cylinder with wax and aligned to measure 
the accelerations in the longitudinal (x), tangential (y) and 
radial (z) directions.  The accelerometer assembly has a total 
mass of only 11.2 gram.  The light rope shown running 
between the two ends of the sling was used as a support for 
the accelerometer cables to be tied to so that their weight did 
not pull the accelerometer block off the shell.  This triaxial 
accelerometer was moved from point to point marked on the 
cylinder to measure the three frequency-response functions 
(FRFs) with a random noise shaker input signal.  The FRFs 
were obtained from the output signals of the accelerometers 
and force transducer using an HP 3566A FFT analyser 
controlled by a notebook PC which also stored the data.  To 
obtain clean FRFs, ten averages were taken for each point 
and a Hanning window was applied to the data. 

MEASUREMENTS AND MODES 

A typical set of three FRFs measured at one point, number 
158, is given in Figure 4.  This point is close to the position 
of the triaxial accelerometer shown in Figure 2.  It is 
interesting to note that the longitudinal (or axial) response has 
just a few large peaks, while the tangential and especially the 
radial responses have much higher modal density.  This is 
despite the excitation being in the axial direction only.  With 
random excitation, the input force was a constant level for the 
entire bandwidth considered.  Thus reasonable amounts of 
energy at radial resonance frequencies were injected into the 
structure, to be converted from non-resonant axial motion to 
resonant radial motion through the inherent coupling of the 
curved shell.  The relative importance of this phenomenon in 
the case where the axial excitation is of a harmonic rather 
than a broadband nature would have to be determined. 
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Figure 4. The magnitudes of the FRFs measured in the x, y 

and z directions at point 158 on the cylindrical surface. 

The FRFs measured over the surface of the cylinder were 
analysed to extract their modal properties using the ICATS 
MODENT suite.  The general principles of modal analysis 
and the various methods available are described by Ewins 
(2000).  The approach chosen was the NLLS-1 method of 
MODENT.  This is a non-linear least squares curve-fitting 
procedure that analyses each FRF individually in turn and 
then collates the results to give one consistent set of natural 
frequencies and damping values, and to calculate the mode 
shapes.  This method also requires initial estimates of the 
modes to be given and this was done using a combination of 
automatic and manual peak picking from the driving-point 
response.  Figure 5 shows this FRF and numbers for the 
peaks analysed.  The group of closely spaced peaks above 
800Hz proved too difficult to separate with this method, the 
analysis failing to converge in this region. 
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Figure 5. The magnitude of the driving-point FRF measured 

in the x direction on the driven end plate. 

The results for the analysed modes are given in Table 1.  
Animation was used to determination the behaviour of the 
mode shapes.  The mode numbers correspond to the numbers 
given on the FRF curve in Figure 5.  The first two 
frequencies turn out to correspond to motions where the 
cylinder acts as a rigid body, in other words, like a rod with 
no deformation.  All the other modes show strong radial 
motion of various orders.  Only mode 7 also shows strong 

axial motion, which follows from its high peak level on the 
axial driving response of Figure 5.  The other modes show 
much greater radial and tangential motion than axial motion, 
which shows up as only small peaks on the driving-point 
FRF.  This confirms the strong effect of the coupling in the 
cylindrical shell which allows axial excitation to result in 
large amplitudes of radial and tangential motion. 

Table 1. Parameters for some axially prominent modes. 

Mode fn (Hz) ηn (%) m, n Notes 
1 23.9 6.9 0,1 rigid body bounce, 

driven end moves most 
2 29.5 9.1 0,1 rigid body combined 

bounce and rotation 
3 163.3 7.1 1,2 little axial motion 
4 202.6 1.8 1,4 little axial motion 
5 416.7 2.0 1,1 

3,5 
combined bending and 
higher order 

6 455.6 2.2 1,1 
2,6 

combined bending and 
higher order  

7 523.5 1.4 2,2 very strong axial 
motion 

Mode 1 manifests motion in the plane containing both the 
cylinder’s centreline and the line joining the two suspension 
eyelets.  This suggests that it is the result of the cylinder as 
rigid body supported by the resilience of the crane sling from 
which the cylinder is suspended.  The driven end of the 
cylinder moves up and down much more than the other end.  
This suggests the two halves of the sling (divided in the 
middle by the crane hook) act as independent springs.  Axial 
motion of the driven end induces a change in tension of the 
half-sling, which being at an angle to the cylinder, also has a 
vertical component of tension which can act to give this 
mode.  Mode 2 is produced similarly, but has equal up and 
down motion of the two ends of the cylinder, and also rotates 
about the attachment points of the eyelets, i.e. it appears to 
rock side to side about its suspension. 

 
Figure 6. An animation snapshot of mode 6. 

Modes 5 and 6 show beam bending ( 1m =  with the cross-
sectional translation of 1n = ) combined with a higher order 
deformation.  The beam bending is in the vertical plane in the 
same way as the vertical up and down bouncing motion of the 
rigid-body modes.  In animation, this makes the cylinder look 
like it is hogging and sagging between its two eyelet 
suspension points, with the higher-order deformation 
superimposed on the bending.  It is possible that this beam 
bending is induced by the moment excitation which derives 
from the way the modal shaker is mounted inside the 
cylinder.  Figure 6 shows an animation snapshot of mode 6.  
The instant of the snapshot is in the middle of the bending 
extrema, so the bending is not very clear, but it does indicate 
the six full waves ( 6n = ) developed around the 
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circumference, and longitudinally the one full wave (two half 
waves, 2m = ) with flattened ends where the cylindrical 
shell’s rotation is constrained by its end caps.  The dot 
indicates the position of measurement point 1, which is next 
to the suspension eyelet at the driven end of the cylinder. 

Mode number 7 with its strong axial motion is illustrated in 
the animation snapshot of Figure 7.  There is no beam 
bending, so the cylinder’s central axis remains straight.  What 
is clear is the second-order longitudinal motion, with the 
second-order circumferential motion, which results in an 
appearance of a “squashed” cross-section.  What is perhaps 
most remarkable is the existence of relatively high orders of 
deformation in these first few noticeable modes of the 
cylinder assembly.  The next step is to determine the 
effectiveness of these modes in radiating acoustic power. 

 
Figure 7. An animation snapshot of mode 7. 

The experimentally determined natural frequencies can be 
compared to the theoretical results determined for a cylinder 
with shear-diaphragm end conditions as set out by equations 
(1) to (5).  Leissa (1993) notes that the difference between the 
natural frequencies for a cylinder with shear-diaphragm 
boundary conditions and one with clamped boundary 
conditions is primarily due to the moment restraint when 

1L a < , but primarily due to the axial restraint when 
1L a > , for the case of 100a h = , 0.3ν =  and 1m = .  For 

the cylinder under consideration, 7.5L a =  and 100a h = , 
and since it is made of steel, 0.3ν = .  Thus the cylinder falls 
into the range where the moment restraint alters the natural 
frequencies from the shear-diaphragm results very little.  The 
thick end plates on the cylinder provide moment restraint, but 
no axial restraint, although the added mass of the plates does 
not leave the cylindrical shell completely free in the axial 
direction.  Therefore, the results for shear-diaphragm 
boundary conditions can give a good estimate for the natural 
frequencies of this cylinder, especially for modes that are not 
predominantly axial in nature. 

Table 2 compares the natural frequencies of the non-trivial 
experimental modes with corresponding theoretical results 
for radial modes calculated from equations (1) to (4), with the 
roots for 2Ω  converted to frequency in Hz.  The frequencies 
for the radial modes were selected according to the mode-
shape parameters A C  and B C  calculated from (5), as 
described earlier.  As an interesting aside, the calculated 
frequencies for the predominantly torsional modes ranged 
from 9.8kHz to 26.6kHz for the combinations of m and n 
values given in the table, while those for the predominantly 
axial modes ranged from 5.3kHz to 15.5kHz.  These 
frequency ranges are obviously well outside the frequency 
range considered in the experimental measurements, and 
illustrate that the radial mode resonances are much more 

significant than the other two types at lower frequencies for 
higher n values. 

Table 2. Comparison of experimental modes to theory. 

Mode fn (Hz) m, n fn (Hz) Percent. 
 expmt  theory diff. 
3 163.3 1,2 161.1 –1.3% 
4 202.6 1,4 200.7 –0.9% 
5 416.7 3,5 404.3 –3.0% 
6 455.6 2,6 458.8 +0.7% 
7 523.5 2,2 547.2 +4.5% 

The results in Table 2 show that the calculated natural 
frequencies are very close to the measured ones.  Thus the 
simple formula for a cylindrical shell with shear-diaphragm 
boundary conditions is sufficiently accurate to predict the 
natural frequencies for the modes observed.  This is despite 
the added mass of the end plates and the slight asymmetry 
introduced by the seam weld along the length of the cylinder. 

CONCLUSIONS 

The results presented in this paper have shown that 
circumferential mode terms of order higher than 0n =  have 
to be considered to give an accurate picture of the dynamics 
of a cylindrical shell even under axial excitation which is 
nominally axisymmetric.  With a uniform distribution of 
input force over the frequency bandwidth, radial 
displacement modes are excited for higher n despite there 
being no strong corresponding axial motion at these 
resonances.  Such radial motion, being normal to the surface, 
is the main source of acoustic radiation from the cylindrical 
shell. 

It was found that the measured radial modes of the cylinder 
could be predicted quite accurately by Donnell-Mushtari shell 
theory for a cylindrical shell with shear-diaphragm boundary 
conditions at both ends.  Given the relative simplicity of these 
theoretical results, they could provide a good alternative to 
more complicated modelling. 

Further work will measure the sound power radiation from 
the cylinder and relate this to the measured FRFs and modes.  
This will allow the development of computationally efficient 
radiation expressions based on existing models.  These can 
then be used in trialling active vibration control techniques 
seeking to minimise the sound radiated in air and eventually 
in water. 
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