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ABSTRACT 

The aim of the paper is to develop a robust virtual sensing method where dynamic variations in the actual acoustic 
system would not degrade the sensing performance. The approach here is to consider the possible uncertainties in the 
systems and to take into account this information to develop a virtual sensing method that is robust against these 
uncertainties. A certain sensing performance can be enforced and the task is formulated as an optimal robust control 
problem that includes uncertainty modelling.  Numerical studies are performed on an acoustic duct system with 
varying properties, which show a satisfactory performance of virtual sensing when the system varies within a 
particular range. The proposed approach guarantees a certain level of performance robustness for virtual sensing 
when the systems are expected to vary during operations. Therefore, the approach can be used for practical 
implementation in actual acoustic systems where it is possible that the systems might vary during the sensing and 
control operation. 

INTRODUCTION 

Active noise control generally requires the use of acoustic 
sensors to improve its control performance since such sensors 
can detect the actual acoustic parameters that are of interest. 
For instance, microphones can be used in an acoustic 
enclosure to detect the sound pressure level at a number of 
particular locations. Signals from the microphones are then 
fedback to a controller/compensator, whose purpose is to 
generate control actuation to the acoustic enclosure to 
minimise these ‘error’ signals that consequently minimises 
the sound pressure level at those locations. The microphones, 
therefore, as any other acoustic sensors, generally need to be 
placed at the locations in which acoustic parameters such as 
sound pressures are to be controlled.  

The previous requirement for sensor placement may not be 
easy to implement since in some instances, it is not practical 
to place the sensors directly at locations where the sound 
pressure needs to be minimised. A virtual acoustic sensing 
method can be used for predicting sound pressure at a 
‘virtual’ location away from the actual microphone or a set of 
microphones (Elliot and David 1992; Roure and Albarrazin 
1999; Munn 2003). This type of sensing is useful for active 
noise control purposes where it is not possible to place a 
microphone directly at the location where the sound pressure 
needs to be controlled. The current approach in virtual 
sensing is to obtain measurements that relate the sound 
pressure at a virtual location to that at the actual 
microphone(s) (Munn 2003; Munn et al. 2002; Roure and 
Albarrazin 1999; Garcia-Bonito et al. 1996). The general 
acoustic systems, where the measurements are obtained, are 
assumed to experience no significant variations during the 
virtual sensing operations. However, when the actual systems 
experience some changes, it may reduce the performance 
effectiveness of the active noise control strategy. The changes 
in the system may even cause the system to be unstable 
which is obviously not desirable for practical applications. 

Motivated by the problem in improving the virtual sensing 
and control performance, this work considers determining a 
control design method for the virtual sensing strategy to 
guarantee a certain level of performance. 

ACOUSTIC VIRTUAL SENSING METHOD 

The general approach of acoustic virtual sensing method is to 
estimate the acoustic parameters, such as sound pressure, at a 
virtual location based on the acoustic parameters measured 
by sensors at other locations. There are several virtual 
sensing methods that have been discussed by previous 
researchers. One of the methods requires the use of a set of 
microphones with forward projection method (Cazzolato 
2002). The other method is based on measuring the transfer 
function from the pressure at the actual microphone to the 
pressure at the virtual microphone, i.e. the virtual sensing 
path (Yuan 2004). Both methods require off-line 
identification to estimate the virtual sensing path. 

Estimating the virtual sensing path 

In this work, the virtual sensing using the transfer function 
method is utilised for control design. The virtual sensing path 
can be estimated by performing system identification or using 
an adaptive algorithm to find the estimated transfer function 
that is ‘optimally close’ to the actual transfer function. 
Alternatively, finding the virtual sensing path can be shown 
to resemble to a feedforward compensator configuration as 
shown in the virtual sensor arrangement in Figure 1. Let Pv 
and Pa respectively to be the transfer functions from input h 
to the output sound pressures at the locations of virtual 
microphones pv and actual microphones pa. It can be simply 
shown that the estimated pressure at the virtual microphone 
is: 

hWPp av =~  (1) 

where W is the virtual sensing path. 

From the figure, h is the disturbance or control input signals, 
depending whether the primary or secondary sound field is 
under consideration. Pv and Pa are the transfer functions from 
the input to the pressure at the virtual and actual microphone 
locations that can be obtained from system identification by 
placing a microphone at the virtual location.  In this case, the 
task is to find an optimal filter W that minimise the error 
signal e described as: 

hWPhPppe avvv −=−= ~ .                 (2) 
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This corresponds to the optimal Wiener filter problem, where 
the optimal filter W is the required virtual sensing path. The 
problem can be solved using the H2 optimal control 
framework with feedforward configuration.  Note that a small 
weight c from the input h shown in Figure 1 is necessary to 
avoid a numerical problem in the formulation. 

 
 

Figure 1. Estimating the transfer function from the actual 
microphone pressure signal to the virtual microphone 

pressure signal. 

Let the state-space realisations of transfer functions Pv and Pa 
as: 
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The two transfer functions share the same poles since the 
same acoustic system is considered, so they share the same 
state matrix A. Thus, the optimal feedforward control 
problem in Figure 1 can be described by the following state-
space system that relates input h, u with the states x and 
outputs e and z: 
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The H2 optimal control problem is to find an optimal filter W 
such that: 
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∞

∞−

∗= ωωω djGjGG )()(trace2
2    (5) 

is minimised where G is the transfer matrix of the generalised 
plant system in Equation (4), augmented with the optimal 
filter W. Here, G* is the Hermitian transpose of a complex 
matrix G. 

An acoustic duct system 

In this work, an acoustic duct with closed ends is considered 
for the analysis of the virtual sensing design as shown in 
Figure 2. The dimensions of the duct are 4.2m x 0.205m x 
0.205 m, similar to the model mentioned in (Cazzolato 2002) 
that has a cut-on frequency of 836 Hz. An acoustic model of 
the duct is obtained from modal analysis (Nelson and Elliot 
1992) using a quality factor of 20, by taking into account the 
first 6 modes below the cut-on frequency. Table 1 describes 

the natural frequencies of the modes 1 to 5, recognising that 
there is a fundamental mode at 0 Hz. To avoid excessive gain 
at low frequency due to the fundamental mode, the pole of 
that mode is moved to s=-80, which corresponds to a 
frequency below the next lowest frequency mode at 40.8 Hz. 
Point disturbance and control sources are respectively located 
at x=0.5m and x=4.0m from one end of the duct. The 
microphone location is at x=2.0m, while the virtual location 
is at x=2.3m. 

 
 

Figure 2. An acoustic duct with the locations for disturbance 
and control sources, and virtual and actual sensors. 

Table 1. Natural frequencies of modes 1-5. 

Mode Frequency [Hz] 

1 40.8 

2 81.7 

3 122.5 

4 163.3 

5 204.2 

Virtual sensing path estimation for an acoustic duct 

Matlab Robust Control Toolbox is used to solve for the 
optimal control problem based on Equations (4) and (5) for 
the acoustic duct system. Figure 3 illustrates the estimated 
virtual sensing path W1 based on the ‘primary’ transfer 
functions from the disturbance source. The two transfer 
functions plotted are Pv and WPa  described in Equation (2). 

Similar to the Figure 3, Figure 4 illustrates the estimated 
virtual sensing path W2 based on the ‘secondary’ transfer 
functions from the control source. It can be seen that the 
estimated transfer functions are relatively close to the actual 
transfer functions, particularly at the resonances. Deviations 
from the actual transfer function are expected at some 
frequencies, especially at lower and higher frequency regions 
because of the lower energy contribution.  In this work, 
however, an accurate virtual sensing path is only needed for 
frequencies up to around 220 Hz to capture up to the fifth 
acoustic mode of a duct system.  
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Figure 3. The primary transfer function Pv and its estimate 

WPa. 

 
Figure 4. The secondary transfer function Pv with its estimate 
WPa. 

The difficulty in obtaining an accurate virtual sensing path 
generally arises because the accuracy depends on the non-
minimum phase properties of transfer functions Pv and Pa. It 
can be seen from Equation (2) that the ideal virtual sensing 
path W can be found from (Yuan 2004): 

 
1−= av PPW .  (6) 

Since both transfer functions share the same poles, the ideal 
path W depends on the zeros of both transfer functions. In 
practice, the transfer functions are always non-minimum 
phase to some degree, where some zeros are ‘unstable’, hence 
the ideal virtual sensing path is generally unstable. Estimation 
of this ideal path may require a transfer function with a very 
high order, which is not practical. It is possible to judiciously 
place the locations of microphones to achieve better 
performance (Yuan 2004), but in some cases, the freedom of 
placing the microphones may be limited. 

However, for the rest of the work here, it is assumed that the 
estimated pressure at virtual location is sufficiently accurate 
so vv pp ~≈ . 

ROBUST VIRTUAL SENSING AND CONTROL 
DESIGN 

In this section, it is considered that the model of the plant 
may not be accurate to some degree. Consider the virtual 
sensing and control configuration shown in Figure 5. The 
estimated virtual sensing paths from the disturbance input d 
and control input u are described by W1 and W2 respectively. 

The pressure pv at the virtual location can thus be expressed 
as: 

uPWdPWp auadv 21 +=            (7) 

where Pad and Pau  are respectively the transfer functions from 
disturbance input d and control input u to the pressure at the 
actual microphone location. The controller K utilises the 
pressure pv at the virtual location to generate the necessary 
control input u for minimising the pressure. A filter Wp is 
used for setting up the performance criterion for robust 
performance control design that will be explained later.  

 

 
Figure 5. Virtual sensing and control diagram. 

Uncertainty modelling of the virtual sensing system 

It is noted that transfer functions Pad and Pau  in Equation (7) 
are assumed to be sufficiently accurate. However, in the case 
where there are changes in the actual plant, the control 
performance and control stability could suffer.  

To deal with the above issues, this work considers modelling 
the uncertainties that may arise in the virtual sensing system 
with the objective to design a controller that has satisfactory 
control stability and performance. Figure 6 describes a 
particular multiplicative uncertainty modelling for a general 
plant denoted as P. The input multiplicative uncertainty is 
modelled by frequency dependent normalisation weight W1 
and the uncertainty model ∆ that could be real or complex.   

 

 
Figure 6. Description of the multiplicative input uncertainty 

in the plant. 

Thus, based on the general virtual sensing problem in 
Equation (7), each of the transfer function can be modelled as 
a perturbed transfer function as follows: 

)1(~
)1(~

auauauau

adadadad

WPP

WPP

∆+=

∆+=
  (8) 

where the uncertainty ‘size’ is 1=∆=∆
∞∞ adau and  

auad PP ~,~
are the estimated or nominal transfer functions 

based on the off-line system identification used in virtual 
sensing approaches.  



9-11 November 2005, Busselton, Western Australia Proceedings of ACOUSTICS 2005 

70 Australian Acoustical Society 

Equation (8) can be substituted into Equation (7), so the 
following can be obtained based on the control configuration 
in Figure 5: 

vp
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The robust control design is then can be constructed based on 
the generalised system in Figure 7. There are 3 system 
blocks, i.e. the generalised plant P block, the uncertainty 
block, and the controller K block to be designed. 

 

 
Figure 7. Robust control design for virtual sensing system. 

The initial robust performance control design can be 
approximated by an optimal H∞ control problem whose 
objective function J is the minimisation of the mixed 
sensitivity H∞ conditions (Skogestad and Postlethwaite 1996):  

∞

=
I

p

F
SW

J               (11) 

where WpS is the transfer function from disturbance d to 
performance output z, and S is the sensitivity function. Also,  
FI  is the transfer function from uncertainty output [w1 w2]T  
to uncertainty input [y1 y2]T. 

The optimal control results from the H∞ norm minimisation in 
Equation (11) is then tested to check if it satisfies 3 criteria 
for nominal performance (NP), robust stability (RS) and 
robust performance (RP). NP criterion is based on the 
performance of the nominal plant without model uncertainty, 
while RS and RP criteria take into account the uncertainty 
that can occur in the plant. The measures for the criteria 
incorporate the use of a structured singular value µ that 
relates to the smallest perturbation that makes the associated 

closed-loop system singular (Skogestad and Postlethwaite 
1996).  

It is desired to achieve µ’s for NP, RS, RP to be less than one. 
A smaller µ indicates that the closed-loop system can deal 
with a larger size perturbation/uncertainty while still 
satisfying the stability and performance requirements. If the 
controller does not satisfy all 3 criteria, a D-K iteration 
procedure can be done to obtain an updated controller for 
achieving µ-optimal control. Interested readers can find the 
detailed discussion about the control criteria, the structured 
singular value µ and the D-K iteration procedure in 
(Skogestad and Postlethwaite 1996). 

Choice of performance and uncertainty weights 

The weights used for control design is chosen to be first-
order transfer functions as shown in Figure 8. The normalised 
weighting Wad and Wau in Equation (8) relates to the expected 
uncertainty/perturbation for the actual virtual sensing transfer 
functions Pad and Pau. The weights are chosen to be similar, 
i.e. Wad= Wau=Wi as shown in Figure 8. In this case, the 
‘worst’ perturbation in the virtual sensing system is expected 
to vary from 20% at low frequencies to larger than 200% at 
high frequencies. The robust controller is then to be designed 
to be stable under this type of perturbation in the system. 

The performance requirement for µ-optimal control is to 
ensure that the magnitude of the perturbed sensitivity 
function S is bounded by the inverse of performance 
weighting Wp . More specifically, it can be shown that: 

( ) ( )pW
S

σ
σ 1

<   (12) 

where ( )Gσ  denotes the largest singular value of G. 

This performance requirement essentially defines the 
guaranteed reduction of sound pressure at the virtual location 
in the case where the plant experiences changes in its 
dynamics. The inverse of performance weighting Wp is 
shown in Figure 8. In this work, the performance criteria is 
defined such that it varies from 10% at low frequencies to 
about 60% at the highest frequency of interest of about 220 
Hz, i.e. the variation of between 10% to 60% of controlled 
sound pressure at the virtual location with respect to the size 
of primary disturbance input.  

 
Figure 8. Frequency-dependent weights used for robust 

virtual sensing and control design. 

The controller is designed by loop shaping the sensitivity and 
complementary sensitivity functions according to the 
prescribed weights. Matlab Mu-Analysis and Synthesis 
Toolbox is used to compute the optimal controller, initially 
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based on the  H∞ control criterion in Equation (11). To 
improve the performance, a single D-K iteration for 
optimising the control performance is performed. 

Results from the robust virtual sensing design 

Figure 9 shows the results for the µ-optimal controller for 
frequencies of 60-1400 rad/sec (9.5-222 Hz). It can be seen 
that µ’s for NP, RS and RP criteria are all well below 1 as 
desired. The results indicate that in the case where the virtual 
sensing system experiences changes within the uncertainty 
range, the closed-loop system can be guaranteed to be stable 
and the performance requirement is satisfied. 

 
Figure 9. µ-plot for robust virtual sensing design. RP: Robust 

Performance criterion. RS: Robust Stability criterion. NP: 
Nominal Performance criterion. 

The controller K is shown in Figure 10 where it can be seen 
that the control gain is high at low frequencies since it is 
required to compensate the low gain of the plant for 
achieving better disturbance rejection and control 
performance. The control gain rolls off at higher frequency to 
minimise the sensitivity to the higher frequency noise and 
uncertainties. 

Figure 11 describes the sensitivity function of the plant that 
relates the disturbance input with the sound pressure at virtual 
location, which is the main objective of the virtual sensing 
approach. Note that the frequency range of interest is 
between 15 to 220 Hz where 5 acoustic modes in the acoustic 
duct system lie. The sensitivity function for 3 systems are 
shown: the open-loop system, the closed-loop system with 
the nominal plant and the closed-loop system with the worst-
case perturbed plant, representing one of the possible worst-
case scenarios for the control performance. Here, the 
performance specification plotted is defined by the inverse of 
weighting performance Wp , which is also shown in Figure 8. 
The inverse weighting function provides the permitted upper 
bound for the sensitivity function. It is clear that the 
controller manages to shape the sensitivity function such that 
it satisfies the upper bound provided by the performance 
specification, even in the case for the worst-case perturbed 
plant.  

It can be observed that the controller manages to reduce the 
resonance responses of the duct system although responses at 
some other frequencies have actually increased. However, the 
responses still satisfy the performance criteria provided, so 
the results are still acceptable since the responses at these 
frequencies are smaller relative to the resonance responses 
that contribute mostly to the overall sound pressure at the 
virtual location. 

 
Figure 10. Frequency response of the controller K from the 

robust virtual sensing design. 

 
Figure 11. Sensitivity plot for open-loop and closed-loop 

systems. The closed-loop results based on the nominal plant 
and the worst-case perturbed plant are also shown. 

Time response of pressure at virtual location 

Finally, a low-pass filtered white noise disturbance input is 
added into the system and the estimated pressure at the 
virtual location is plotted in Figure 12. It can be seen that the 
controller manages to reduce broadband noise at the virtual 
location, even when the worst-case perturbed plant is 
considered. The results indicate that the robust virtual sensing 
and control strategy can be used to provide a guaranteed level 
of control stability and performance.  

 
Figure 12. Time responses due to filtered white noise 

disturbance input. The results are for the open-loop system, 
and closed-loop for the case of the nominal plant and the 

worst-case perturbed plant.  
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CONCLUSIONS 

The design and analysis of robust virtual acoustic sensing has 
been introduced. It is observed that the control stability and 
performance of the acoustic sensing strategy can be made 
robust against the possible perturbation in the virtual sensing 
system. Numerical analysis on the acoustic duct system 
showed that the control performance can be guaranteed to a 
certain level. The proposed approach can be used to make the 
virtual sensing and control system more robust against the 
expected changes in the system’s dynamics.  
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