
Proceedings of ACOUSTICS 2005  9-11 November 2005, Busselton, Western Australia 

Australian Acoustical Society 73 

Active broadband control of vibrating panel structures 
with multiple structural sensors 

Halim, D. (1) and Cazzolato, B. S. (1) 
(1) School of Mechanical Engineering, the University of Adelaide, SA 5005, Australia  

ABSTRACT 

The aim of the research presented in this paper is to actively control broadband vibration on panel structures using 
multiple sensors. The broadband vibration profile of a panel structure is estimated by using spatial interpolation 
functions and vibration measurements from the surface mounted sensors. The control objective is then achieved by 
deriving ‘spatial’ error signals whose energy represents the spatially-weighted vibration energy over the structure. An 
optimal H-2 control design using this spatial control approach is discussed to demonstrate the effectiveness of the 
broadband spatial control on a panel. Numerical results show that the broadband vibration profile can be spatially 
controlled, not just by minimising the strength of each vibration mode, but also by controlling the relative strength of 
each mode. 

INTRODUCTION 

In many industrial acoustic applications, it is often beneficial 
to minimise vibration of panel-type structures such as to 
reduce the noise level radiated by the structures or to satisfy a 
particular structural performance criterion.  In some cases, 
certain structural regions may be more prone to generating 
noise radiation than others. Control efforts, therefore, can be 
concentrated to control vibration in these regions, instead of 
trying to control the overall structure.  

Some researchers have used multiple structural sensors for 
controlling vibration of structures (Meirovitch and Baruh 
1982; Meirovitch 1987; Pajunen et al. 1994), although most 
of the research concentrated in controlling the vibration of the 
entire structure. Halim and Cazzolato (2005) used multiple 
structural sensors attached over an arbitrary panel structure to 
spatially control the structural vibration by employing spatial 
interpolation functions.  Spatial vibration control can be 
utilised to control vibration only at particular spatial regions 
of a structure. The effectiveness of the control for tonal 
vibration control is analysed by Halim and Cazzolato (2005). 

In the work presented in this paper, the work by Halim and 
Cazzolato (2005) is extended for active spatial broadband 
control using multiple structural sensors. The spatial 
broadband control is attractive since it can be used to 
spatially control vibration of an arbitrary structure without 
the need to obtain the material and modal properties from the 
structure. Only geometrical properties of the structure and the 
structural boundaries are needed to achieve spatial vibration 
control, which makes the active control method practical. 

SENSING THE VIBRATION PROFILE OF A 
PANEL 

In this section, the vibration profile of a panel structure is 
estimated using multiple structural sensors distributed over 
the panel. For instance, a set of accelerometers attached on 
the panel can be used to achieve the purpose. The panel’s 
vibration profile is estimated as this information is necessary 
for spatially controlling its structural vibration.  

Here, the approach used to estimate the vibration profile is 
described. Consider a panel structure of an arbitrary shape in 
Figure 1, where there are multiple discrete structural sensors 

distributed over the panel. Each sensor measures vibration wi 
at location (xi,yi), representing a ‘node’. An ‘element’ can be 
constructed from the adjacent sensors acting as nodes as 
shown in Figure 1. The purpose of creating these elements is 
so that the vibration profile can be interpolated spatially, 
using an implementation similar to finite element analysis 
(Bathe and Wilson 1976; Cheung and Leung 1991; 
Meirovitch 1975). In the case where the structural boundaries 
are known, additional nodes may be included to improve the 
vibration profile estimation since the vibration at the 
boundaries may be known to be minimal such as for rigidly 
clamped boundaries (Halim and Cazzolato 2005). 

 
Figure 1. A structure with multiple discrete structural sensors 

used for vibration profile estimation. 

Suppose there are M elements constructed from structural 
sensors and nodes at the boundaries, the vibration profile 
over the structure wxy(x,y,t) can then be estimated by (Halim 
and Cazzolato 2005): 

)(),(),,( twyxMtyxw xyxy =   (1) 

where w(t) is a vector containing the vibration measurements 
from all sensors, and Mxy(x,y) is a spatial interpolation matrix 
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that relates the sensor measurements to the vibration output at 
any point over the structure. 

This vibration profile estimate wxy (x,y,t) can then be used for 
obtaining a spatial broadband control as discussed in the 
following section. 

BROADBAND SPATIAL CONTROL 

Based on the vibration profile information from the sensors, a 
performance/objective function to be minimised by active 
control means can then be defined. The objective function E 
is defined as: 

∫=
S

xy
T

xy dStyxwyxQtyxwtE ),,(),(),,()(  (2) 

where S is the region of the panel and Q(x,y) represents the 
non-negative continuous spatial weighting to be used. The 
above objective function is determined based on the vibration 
profile estimation in Equation (1). The purpose of the spatial 
weighting is to emphasise the panel region whose vibration 
level needs to be suppressed more than others. It will be 
shown in the latter sections of this paper that this objective 
function corresponds to modifying the relative strength of the 
panel’s vibration modes. 

Substituting Equation (1) into Equation (2), the objective 
function can be simply re-stated as: 

)()()( tAwtwtE T=   (3) 

where 

∫=
S

xy
T

xy dSyxMyxQyxMA ),(),(),(  (4) 

Spatial signals 

Matrix A can be decomposed into its eigenvalue and 
eigenvector matrices as  

 TUVUA =   (5) 

where V is a diagonal eigenvalue matrix and U is a unitary 
eigenvector matrix. The spatial signals v(t) can then be 
defined by substituting Equation (5) into Equation (3) (Halim 
and Cazzolato 2005): 

)()()( 2/1 tWwtwUVtv T ==   (6) 

where W is the spatial filter defined as above and the 
objective function is now: 

)()()( tvtvtE T= .  (7) 

Here, v(t) are ‘spatial’ signals that represent the spatially-
weighted vibration energy of the structure. A reduced 
dimension of spatial signals v(t) can also be achieved by 
using only using several most dominant eigenvalues and 
eigenvectors as described by Halim and Cazzolato (2005). 
This dimensional reduction would be practical for control 
implementation since the dimension of the spatial signals 
could be made much less than the number of sensors used. 

General approach for broadband spatial control 

The significance of the above formulation can be explained 
from the general approach for broadband spatial control 
shown in Figure 2. Suppose a disturbance causes structure P 
to vibrate and the vibration information from the sensors are 
filtered by the spatial filter W to generate a reduced spatial 
signals v(t) as described by Equation (6). For broadband 
control purposes, a frequency filter can be incorporated to 
emphasise a particular bandwidth of interest. The frequency-
filtered spatial signals can then be used as error signals to the 
controller K for generating the required control actuation.  

 
Figure 2. General approach for broadband spatial control of 

structures using vibration information from multiple 
structural sensors. 

Broadband spatial feedforward control 

In this section, the performance of broadband spatial control 
is analysed based on the optimal broadband feedforward 
control framework. An optimal controller that minimises the 
energy transfer from the disturbance input to the error signal 
(spatial signal) output is to be considered for control 
performance analysis. Figure 3 illustrates the feedforward 
control design where the primary P1 and secondary P2 path 
transfer functions, from the disturbance d and control u input 
to sensor outputs, can be represented as follows, together 
with their state-space representations: 

).0,,,(
)0,,,(
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  (8) 

In Figure 3, W is again the spatial filter, K is the desired 
optimal controller and a control weight matrix, c, is added to 
limit the amount of control gain that can be obtained for 
practical purposes. Note that the performance output z is now 
a combination of the spatial signal and the weighted control 
input signal. 

 
Figure 3. Optimal broadband feedforward control problem. 
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The task is to find an optimal broadband controller K that 
minimises the energy transfer from the disturbance signal d to 
the performance output signal z. To do this, an optimal H2 
control design is considered where the H2 norm cost function 
is defined as: 

{ }∫
∞

∞−

∗= ωωω djTjTtracesT )()()( 2
2  (9) 

where T is the transfer matrix from disturbance d to the 
performance output z, after the controller K has been 
augmented to the plant. Here, T* is the complex conjugate of 
matrix T and the frequency is denoted by ω, indicating the 
averaging process across the entire frequency range. The 
generalised plant shown in Figure 3, represents the transfer 
function from disturbance d to the performance output z, 
which can be described as: 

)ˆ,ˆ,ˆ,(ˆ DCBAP s≡   (10) 

where As is the original state matrix of the plant as shown in 
Equation (8) and 
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Standard optimal H2 control design method can be used to 
solve for the optimal H2 controller. Here, the Matlab Robust 
Control Toolbox has been used for this purpose. The 
following section will discuss the control performance of 
spatial broadband control of a panel structure. 

BROADBAND SPATIAL CONTROL OF A 
PANEL STRUCTURE 

A numerical analysis of a simply-supported rectangular 
aluminium panel has been performed to demonstrate the 
technique developed in the previous sections. Here, 25 
discrete structural velocity sensors are distributed over the 
panel as shown in Figure 4. The dimensions of the panel are 
500mm x 400mm x 4mm. Point sources are used as 
disturbance and control sources, which are located at (x,y) = 
(312.5mm,121.2mm) and (156.3mm,121.2mm) respectively, 
based on coordinates in Figure 4.  

Modal analysis (de Silva 2000) is used to obtain the panel 
model, and the first 7 vibration modes are considered in this 
analysis. The natural frequencies of the modes are shown in 
Table 1 and the interpolation function used is a linear 
function as described by Halim and Cazzolato (2005). The 
spatial signals are reduced from 25 to just 4 signals for 
control purposes after consideration of the eigenvalues of 
matrix A given by Equation (5). 

 
Figure 4. A rectangular plate with locations of sensors, 

disturbance and control sources. 

Table 1. Natural frequencies of the panel. 

Mode Frequency [Hz] 

(1,1) 98.3 

(2,1) 213.4 

(1,2) 278.2 

(2,2) 393.3 

(3,1) 405.3 

(1,3) 578.0 

(3,2) 585.2 

Control analysis: Spatial weighting 1 

The first analysis of broadband spatial control performance 
considers a particular spatial weighting function Q(x,y) which 
is shown in Figure 5. The region on the panel that is of 
interest is near one of the corners of the panel as reflected by 
the large weighting function in the figure.  

 
Figure 5. Spatial weighting function for the first control 

analysis. 

To analyse the effectiveness of spatial control strategy in 
reducing the spatial broadband vibration energy, the 
following analysis is performed. The broadband vibration 
energy over the entire panel is analysed by plotting the 
broadband vibration level at any point (x,y) on the panel. This 
can be done by obtaining the H2 norm that reflects the overall 
broadband energy output due to a white noise disturbance 
input d. Figures 6 and 7 show the broadband vibration profile 
over the panel for the uncontrolled and controlled systems, 
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where the vibration level is measured by the H2 norm of the 
systems.  It can be seen that the spatial control attempts to 
minimise broadband vibration level more at the region that 
has larger weighting. It is observed that other regions over the 
panel also experience vibration reduction. 

 
Figure 6. Broadband vibration level over the entire panel 

without control. 

 
Figure 7. Broadband vibration level over the panel with 

control for the first spatial weighting. 

The effect of spatial control to the overall broadband 
vibration responses can be analysed from Figure 8. The 
figure shows the transfer function from the disturbance to the 
velocity at a location of (x,y)=(83.3mm,333.3mm). It is 
shown that the spatial controller attempts to minimise 
vibration contributed by most of vibration modes. At some 
frequencies, however, the vibration level is amplified, 
although from the results it can be seen that the overall 
broadband energy, reflected by the area under the transfer 
function, is still being minimised.  

 
Figure 8. Two transfer functions from the disturbance to the 
velocity output at a location (x,y)=(83.3mm,333.3mm): with 

and without control. 

The previous results lead to the question of how the spatial 
controller attempts to reduce the strength of each vibration 
mode to achieve its spatial broadband vibration profile. To 
answer the question, the relative strength of each vibration 
mode is plotted in Figure 9. The percentage is calculated 
relative to the strength of the most dominant mode for easy 
comparison between the uncontrolled and controlled systems. 
Here, the lightly-coloured bar graph is for the uncontrolled 
system, while the dark-coloured graph is for the controlled 
system.  Note that the results shown are the relative strength 
of the modes, where the absolute strength of the controlled 
modes is in fact much less than that for the uncontrolled ones 
as expected.  

 
Figure 9. Relative strength of vibration modes for systems 
without control (lightly coloured graph) and with control 

(dark coloured graph). 

It is shown that for the uncontrolled system, the first vibration 
mode (1,1) contributes most to the vibration compared to 
other higher wavenumber modes. However, for the controlled 
system, the first mode (1,1) is no longer dominant as shown 
from the dark coloured bar graph in Figure 9. The relative 
strength of modes 1-3 and 5 is now comparable, and the 
control makes more effort to reduce higher wavenumber 
modes (particularly modes 4, 6 and 7) than lower 
wavenumber modes. This is expected since the region that is 
emphasised by the spatial weighting corresponds to the 
corner region of the panel, where higher wavenumber modes 
tend to contribute more than lower wavenumber ones. 
However, the first mode has also been heavily controlled 
since the relative strength of this mode for the uncontrolled 
system is much larger than other modes. 

Control analysis: Spatial weighting 2 

The second control analysis considers the spatial weighting 
function shown in Figure 10 where the region close to the 
middle of the panel is emphasised. The broadband vibration 
level over the panel is illustrated in Figure 11 where the 
region around the centre is being minimised more than other 
regions on the panel as expected.  

The relative strength of vibration modes is plotted in Figure 
12. It can be seen that for this spatial weighting, the spatial 
control is expected to more heavily control the modes that 
contribute dominantly to the region near the centre of the 
panel such as mode 1.  As most of the modes contributes to 
the broadband vibration near the centre of the panel, the 
results are more difficult to predict based on the relative 
strength of the modes, apart from the dominant first mode 
(1,1). This illustrates the convenience of using the spatial 
control approach as the judgement on how much control each 
mode is required, can be achieved by the spatial control 
algorithm itself.  
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It should be noted that only a single control source has been 
used in the previous 2 examples. When more control sources 
used, the attenuation of the targeted regions can be improved.  

 
Figure 10. Spatial weighting function for the second control 

analysis. 

 
Figure 11. Broadband vibration level over the panel with 

control for the second spatial weighting. 

 
Figure 12. Relative strength of vibration modes for systems 

without control (lightly coloured graph) and with control 
(dark coloured graph). 

CONCLUSIONS 

The analysis of active broadband spatial control of panel 
structures using multiple structural sensors has been 
presented. It is shown that it is possible to achieve broadband 
vibration control where particular spatial regions of the panel 
receive more importance than other regions. It is also 
observed that the spatial control attempts not just to minimise 
the strength of each vibration modes, but also to consider the 
relative strength of each mode for achieving the spatially-
weighted objective optimally. 
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