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ABSTRACT 

Numerical optimisations were conducted to reduce the noise levels inside the payload bay of a rocket by using 
vibration and acoustic absorbers attached to the fairing walls. The vibration absorbers act in both translational and 
rotational axes. The acoustic absorbers were modelled as simplified Helmholtz resonators. A Finite Element model of 
the vibro-acoustic system was created in ANSYS and the uncoupled structural and acoustic modal responses were 
calculated. The combined response of the acoustic and vibration absorbers, the acoustic cavity and structural modal 
responses were coupled using modal coupling theory in Matlab. The optimisation of the parameters and locations of 
the absorbers were conducted using a semi-synchronous parallel genetic algorithm and a large number of networked 
desktop computers. 

INTRODUCTION 

The work described here is part of a multi-stage project with 
the US Airforce to investigate passive means of improving 
the noise reduction of rocket vehicle fairings that are used to 
launch satellites into space. The noise levels during launch 
can reach 140dB re 20µPa on the exterior of a payload bay. 
Developments in materials technology have enabled the use 
of composite materials for fairings that reduces the weight of 
fairing, but also decreases the noise reduction qualities of the 
fairing compared to the use of heavier aluminium fairings. 
The cost to launch payloads into space is estimated to be 
between $US20,000 and $US40,000 per kilogram (Futron, 
2002). Excessive noise levels inside the payload bays of 
launch vehicles are blamed for as many as 60% of first day 
satellite failures (Griffin et al., 2000). It is estimated that 40% 
of the weight of a satellite is required just to survive the 
launch environment (Henderson et al., 2003). Hence, there 
are significant benefits in reducing the weight of the rocket 
and satellite, both in terms of reducing the cost to launch 
satellites, and also reducing the risk of damage to the satellite 
caused by excessive noise and vibration during launch. 

Howard et al. (2005) describe a computational tool for 
predicting the noise levels inside the cavity of a vibro-
acoustic system, which includes optimising the parameters of 
passive acoustic absorbers and passive vibration dampers 
attached to the walls of the structure. The tool makes use of a 
semi-synchronous parallel genetic algorithm (Goldberg, 
1999), which operates on a distributed computing network, to 
calculate the optimum locations and parameters of the 
absorbers that result in the minimisaton of the acoustic 
potential energy within the acoustic cavity. The acoustic 
potential energy within the cavity is calculated by using 
modal-coupling theory that was implemented using Matlab 
software. Finite element analysis is used to calculate the 
uncoupled vibration modes of the structure and the acoustic 
modes of the cavity, and these modal data are used with the 
Matlab modal coupling software to calculate the coupled 
vibro-acoustic response of the system. The advantage of 
using finite element analysis is that it enables complex 
shaped objects to be analysed, such as the composite payload 
fairing examined here. 

The Representative Scaled Launch Vehicle Fairing (RSLVF), 
shown in Figure 1, is an example of a payload fairing that is 
made from light-weight composite materials. The fairing is 
about 2m in diameter and 5m long. Passive tuned dampers 
(TMDs) and passive Helmholtz resonators (HRs) can be 
combined into a single device to form a Passive Vibro-
Acoustic Device (PVAD). These PVADs can be placed on 
the walls of the fairing to improve its noise reduction. 

 
Figure 1: Finite element model of the RSLVF. 

The work presented here begins with a description of a 
mathematical model for the coupling of a multi-degree-of-
freedom TMD that includes both translational and rotational 
degrees of freedom to an underlying structure. The 
optimisation of the parameters for the PVADs requires the 
use of extensive computational resources. It demonstrated 
that extensive computational resources can be created by 
networking desktop computers to solve complex optimisation 
problems relatively easily. 

MODELLING 

The equations for the coupled vibro-acoustic response of a 
system are described by Fahy (1994) and have been 
implemented in Matlab software described in Howard et al. 
(2005). 
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Equations of Motion for Moment Loading on Shells 

Most vibrational analyses ignore the contribution due to 
rotational degrees of freedom as it is frequently considered to 
be less important than the contribution from translational 
degrees of freedom. However, recent work has shown that the 
contribution of rotational degrees of freedom on shell 
structures often plays a significant part in vibrational power 
transmission and cannot be ignored (Howard, 1999).  

As multiple degree of freedom vibration dampers transmit 
both forces and moments on the structure, the equations of 
motion of the structure must include these loads. This section 
contains the derivation of the equations of motion of thin 
shelled structures excited by both translational forces and 
rotational moments. The theory is developed using Soedel 
(1993) and Howard (1999).  

The theoretical development of the application of multiple 
degree of freedom PVADs to the structure is very similar to 
existing theoretical models of vibration isolated platforms 
attached to flexible structures. It is useful to start the 
development of this framework with a numerical model of 
the flexible structure, similar to the existing theoretical 
models, and then in the final stages of the development, the 
modal results from the finite element analysis can be 
substituted for the theoretical modal results. 

Multiple PVADs are attached to the fairing and each PVAD 
applies a force to it that can be described in a cylindrical 
coordinate system as 

[ ]TrJJxJrJJxJJ MMMFFF θθ=Q  (1) 

where J = 1…L1, and there are L1 PVADs attached to the 
fairing. Forces are transmitted into the structure along the 
axis of the fairing FxJ, tangential to the surface Fθ J, and 
radially FrJ. Moments are transmitted into the structure and 
are described using the right-hand-rule about the axis of the 
fairing MxJ, tangential to the surface of the fairing MθJ, and a 
drilling moment normal to the fairing MrJ. 

The force and moment components in QJ are assumed to be 
concentrated point actions at the joint between the fairing at 
PVAD location σJ on the thin shell, so that Dirac Delta 
functions δ and their partial derivatives can be used to 
describe the external force distribution on the fairing. 

The motion of the fairing can be described by the Donnell-
Mushtari thin-shell theory (Leissa, 1973) which uses eighth 
order differential equations. These equations can be 
simplified if the radius R of the shell is significantly large 
compared to the shell thickness h. In this case the vibration of 
the fairing is primarily radial, with the axial x and tangential 
θ displacements being small enough to allow the 
corresponding inertia terms in the axial and tangential 
directions in the equation of motion of the fairing to be 
neglected. Forces acting in the axial x and tangential θ 
directions excite vibration in these directions which in turn 
couple with the radial vibration to produce vibration in the 
radial w direction but at a much smaller amplitude.  The 
radial vibration amplitude produced in this way is considered 
small compared to the radial vibration produced directly by 
moments and radial forces. 

Note that the axial and tangential forces produced on the 
inside surface of the fairing produce moments about the mid-
surface of the shell which result in direct excitation of radial 
motion. This is taken into account in the following analysis. 

The response of the fairing can be described as (Soedel, 
1993) 

kkkkkkk F=ηω+ηωξ+η 22 &&&  (2) 

where ηk is the kth
 modal participation factor, ξk is the viscous 

damping coefficient of the shell at the kth mode, ωk is the 
resonance frequency of the kth mode, and Fk is the kth modal 
force which is applied to the shell for and is defined as 
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where L is the length of the shell, qi and Ti represent the 
forces and moments applied along each of the three axes, 
defined as 

( ) ( ) tjeJJss
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iJq ωθ−θδ−δ= 2  (4) 
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where Fi and Mi are the forces and moments applied to the 
shell at location σJ in the directions i = s, θ, w, Uik is the 
modal response in the ith direction, δ is the Dirac delta 
function and  
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Equation (3) is not the same as printed in Soedel (1996). It 
was found by Howard (1999) that terms were missing which 
account for the moment loading on the shell. This has been 
corrected in Eq. (3) shown here. A detailed description of the 
correction is given in Howard (1999). 

The terms on the left hand side of the integral in Eq. (3) 
equate to the inverse of the modal mass of the fairing, and 
have units of 1/kg. The integral terms account for the 
translational force and rotational moment loads on the fairing. 

We shall assume that the in-plane displacement of the fairing 
is not significant and does not contribute to its overall 
vibration response (Howard, 1999, Howard et al 1997). Only 
the out-of-plane vibration shall be considered in this analysis. 
Theoretically, there is a small degree of coupling from the in-
plane vibration to the out-of-plane vibration; however the 
magnitude is small and can be ignored (Howard, 1999). 
Hence the following relationships can be used to describe the 
displacement of the fairing 

pwkksk UUU w][00 ψ=== θ  (7) 
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The mode shapes [ψ] of the structure are calculated using the 
ANSYS finite element software, and wp is the vector of 
modal participation factors. The force and moment loads on 
the fairing are assumed to be point loads, which can be 
described with Dirac delta functions. Making use of the 
relationship 
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the integral in Eq. (3) can be evaluated as 













∂
ψ∂

+
∂

ψ∂
−ψ

Λ
= Jy

J
Jx

J
JJ

k
k M

x
M

y
FF

TT
T ][][][1  (9) 

where the modal mass is defined as 

kk hNρ=Λ  (10) 

The rotations of the fairing about σJ are given by (Leissa, 
1973, Soedel, 1993) 
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The partial differentials of the mode shapes [ψ] with respect 
to the spatial co-ordinates are the mode shapes in the 
rotational directions. The ANSYS software calculates these 
rotational mode shapes, which can be extracted for use with 
the modal coupling software implemented in Matlab. Eq. (9) 
can be written as 
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where [ψJθx] and [ψJθy] are the rotational mode shapes about 
the θx and θy axes, respectively. These rotational mode shapes 
are calculated in ANSYS and are extracted and converted 
into units that are consistent with the translational mode 
shapes.  

The rotational mode shapes from ANSYS are described using 
the global Cartesian coordinate system. The theoretical 
development in this section assumes that the rotational mode 
shapes are in an orthogonal coordinate system that has an 
axis normal to the surface of the structure.  

Equations of Motion for Cantilevered Tuned 
Vibration Damper 

One concept for a tuned vibration damper, which can 
transmit both translational forces and rotational moments, is a 
device that consists of point masses which are cantilevered 
from a central shaft (Ting-Kong, 1999, Hill et al., 2002a, Hill 
et al., 2002b). The resonance frequencies of the damper are 
adjusted by changing the lengths of the cantilever arms. This 
section contains the equations of motion of a dual cantilever 
vibration damper and the integration of these equations into 
the equations of motion of the structure developed later in 
this paper. 

Figure 2 shows a mathematical model of the two mass 
cantilevered tuned vibration damper. 
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Figure 2: Mathematical model of the two mass cantilevered 

tuned vibration dampers.  

It is assumed that: 
• Point masses are located on the ends of the 

cantilever arms.  
• The rotation of the masses is negligible so the 

rotational inertia of the masses is ignored. 
• The masses of the arms are negligible compared to 

the point masses and hence can be ignored from the 
point of view of the system dynamics. 

• The central column has very high axial stiffness 
compared to the bending stiffness of the arms, so 
that the axial stiffness of the column can be 
assumed infinite. 

• The central column has bending flexibility. 

The tuned vibration damper has two masses m1 and m2 on the 
ends of cantilever arms that have lengths L1 and L2, 
respectively. The transverse stiffnesses of these arms, k1 and 
k2, are given by 

3
2111 /3 LIEk =  (15) 

3
2222 /3 LIEk =  (16) 

where E and I are the Young's modulus and moment of 
inertia, respectively. The rotational stiffness of the upright 
central column is given by 

3333 / LIEk =  (17) 

Without going into the lengthy algebraic derivation of the 
equations of motion, it can be shown that the equations for 
the motion of the cantilever can be reduced into a matrix 
formulation as 
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where the terms A11 to A33 are described in the Appendix. 

Fully Coupled Vibro-Acoustic Model 

This section describes the integration of the vibration 
response of the structure, which includes the effects of the 
cantilever vibration dampers, with the acoustic response of 
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the cavity, which includes the effects of the HRs, to result in 
equations that describe the coupled vibro-acoustic system. 

The previous section described the equations of motion for 
the cantilevered vibration damper. The design proposed here 
involves using two of these devices orientated at 90 degrees 
to each other, as shown in Figure 3. 

 
Figure 3: Picture of a four-armed cantilever TMD modelled 
in ANSYS. The masses on the end of the arms are indicated 

by the un-filled squares. 

Hence the equations of motion for the structural system will 
contain two sets of the A matrices described in Eq. (18). The 
matrices for the structural equations will be 
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where wp are the modal participation factors for the response 
of the structure, x1 and x2 are the displacements of the point 
masses attached to the ends of the cantilever arms and the 
superscript A and B refers to one pair of cantilevers as shown 
in Figure 2. The FJ term refers to the force applied to the 
structure, and the MJx and MJy terms refer to the moments 
applied to the structure. 

It can be seen that the format of this matrix equation is 
similar to the A matrices in Howard et al. (2005). Hence it is 
possible to incorporate this matrix equation into the fully-
coupled vibro-acoustic theory developed previously where 
the A sub-matrices can be replaced by  
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METHOD OF OPTIMISATION 

As described in Howard et al. (2005), a semi-synchronous 
parallel genetic algorithm and a distributed computing 
network were used to optimise the locations and the 
parameters of the PVADs attached to the fairing. The 
distributed computing network is formed by the networking 
of about 280 desktop computers using the free software 
called Condor. The Condor software makes the resources of 
unused computers available to a pool. An attractive feature of 
this software is that if a person uses the computers in the 
pool, the Condor software immediately removes the job from 
the computer and re-starts the job on an unused computer. 

The optimisations were conducted for 10 and 20 PVADs 
attached to the fairing. It was assumed that there was an 
identical mass on the end of each of the four arms on each 
PVAD, which together make up the total mass of the PVAD. 
The added mass to the fairing was set at 10% of the total 
mass of the fairing. The mass of the fairing is about 67kg. 
Hence the allowable added mass is about 6.7kg. If this is 
evenly divided into 20 PVADs, then each PVAD will weigh 
335 grams, and the mass on the end of each of the four 
cantilever arms will be 84 grams. This is probably near the 
practical limits of a real cantilevered vibration damper. Hence 
the optimisation of 20 PVADs is the maximum number of 
dampers that was investigated. 

The parameters were allowed to vary as listed in Table 1. In 
order to reduce the number of parameters to be optimised, the 
geometry of some of the components of the TMDs were 
fixed, as listed in Table 2. 

Table 1: Parameter ranges for the PVADs used during the 
optimisation of the composite cylinder. 
PVAD parameter Min Max No. Values 
PVAD position 1 5184 5184 
Cantilever arm lengths (m) 0.01 0.1 500 
Mass-spring damping (η) 0.01 0.25 10 
Acoustic resonator  
frequency (Hz) 

11 510 500 

Acoustic resonator 
damping (η) 

0.01 0.25 10 
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Table 2: Values for the cantiliever vibration dampers. 
Parameter Value Units Comment 
Young’s modulus of arm 70.9 GPa Aluminium 
Moment of inertia of arm 52.08e-12 m4 5mm diameter 

rod 
Young’s modulus of 
upright column 130 GPa 

Stiff light-
weight material

Moment of iertia of 
upright column 32.55e-9 m4 

25mm diameter 
rod 

The acoustic loading on the fairing was assumed to be a plane 
harmonic wave incident at 90 degrees to the axis of the 
fairing as shown in Figure 4. The acoustic load has a cosine 
distribution around the circumference of the fairing (Potter, 
1966). 

y

xR
θ

 
Figure 4: Mathematical model of the acoustic loads on the 

fairing. 

The optimisations were conducted over 40,000 cost function 
evaluations of the acoustic potential energy inside the fairing. 
Each evaluation takes approximately 3 minutes on a single 
3.0GHz desktop computer, which would total 83 days of 
computation time. By using the distributed computing 
network, the optimisations were completed in less than 4 
days, with constant interruptions by people using computers 
in the Condor pool. 

Figure 5 shows the gradual reduction in the total acoustic 
potential energy as the genetic algorithm determines the 
optimum parameters for the PVADs. The value of the total 
acoustic potential energy at the end of the optimisation 
process is approximately -23dB. 

0 0.5 1 1.5 2
x 104

−25

−20

−15

−10

−5

Generation Number

Ac
ou

st
ic

 P
ot

en
tia

l E
ne

rg
y 

(d
B)

GA Evolution for 20 PVADs

 
Figure 5: Evolution of the cost function during the 

optimisation using the genetic algorithm. Note that the 
number of cost functions evaluated is twice the generation 

number. 

Figure 6 shows the corresponding acoustic potential energy 
versus frequency for the optimal configuration of the PVADs. 
Superimposed on these results is the acoustic potential energy 
inside the fairing when no PVADs were attached to the 
structure. Also shown on the graph are the equivalent 
resonance frequencies of the HRs and the TMDs. Note that as 
the TMDs have four resonance frequencies per PVAD, there 
are four times as many markers for the TMDs as the HRs. 
The results show that the use of the TMDs that has both 

translational and rotational degrees of freedom has improved 
the transmission loss of the fairing. 
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Figure 6: Acoustic potential energy versus frequency for the 

case of no PVADs; 20 PVADs comprising 20 four-armed 
cantilever TMDs and 20 HRs.  

Figure 7 shows the distribution of the equivalent resonance 
frequencies of the TMDs and the HRs. These results show 
that even though the frequency range of interest was between 
0 to 300 Hz, numerous resonance frequencies of the 
cantilevered TMDs which were outside the analysis range, 
still had an effect within the analysis range. 
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Figure 7: The equivalent resonance frequencies for the 

TMDs and the HRs. 

Figure 8 shows the location of the PVADs on the fairing, 
displayed as if the fairing had been unwrapped. The 0 degrees 
marker is aligned with the incident sound wave. 
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Figure 8: Locations of the 20 PVADs on the fairing shown 
by the circles. The dots indicate the potential location of the 

PVADs. 

Figure 9 shows a comparison of the acoustic potential 
energies inside the fairing for the optimisation of the 20 
PVADs comprising 20 four-armed cantilever TMDs and 20 
HRs, and for 500 PVADs comprising 500 single-degree-of-
freedom TMDs and 500 HRs. The 500 PVADs have the same 
total added mass budget as was used here for the analysis of 
the 20 PVADs with cantilever TMDs. The results show that 
the use of the 500 PVADs had the effect of ‘smearing’ the 
acoustic energy across the frequency range. The figure shows 
a reduction of energy at all frequencies and also shows that 
the 20 PVADs with the cantilever arms perform much better 
than 500 single-degree of freedom PVADs at low frequencies 
and equally or almost as well at high frequencies. 
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Figure 9: Acoustic potential energy versus frequency for the 

case where 500 PVADs comprising 500 single-degree-of-
freedom TMDs, and 20 PVADs with four armed cantilever 

TMDs and 20 HRs. 

Figure 10 shows the comparison of the total acoustic 
potential energy for 10, 100, and 500 PVADs with single 
degree of freedom TMDs, and 10 and 20 PVADs with four-
armed cantilever TMDs. The results show that the 20 PVADs 
with cantilever TMDs provided the greatest noise control 
treatment for all the analyses considered, and resulted in the 
total acoustic potential energy inside the fairing of 
approximately   -23dB. 
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Figure 10: Comparison of the total acoustic potential energy 
for 10, 100, and 500 PVADs with single degree of freedom 
TMDs, and 10 and 20 PVADs with four-armed cantilever 

TMDs. 

CONCLUSIONS 

A mathematical model has been described for the coupling of 
a vibro-acoustic system to passive vibration absorbers, each  
comprising a passive acoustic absorbers and a four-armed 
cantilevered tuned-mass-damper that has both translational 
and rotational degrees of freedom. Analyses were conducted 
to determine the effectiveness of these passive vibration and 
acoustic absorbers as a noise control treatment for improving 
the transmission loss of a light-weight composite rocket 
payload fairing. The parameters for the PVADs were 
optimised by using a genetic algorithm and a distributed 
computing network. The results indicate that the use of the 
small number of multiple degree of freedom PVADs 
provided the greater noise reduction than many single degree 
of freedom PVADs. However, additional analyses are 
required to ensure that re-distribution of the acoustic energy 
does not create problems in other frequency bands, and that 
the noise control treatment is insensitive to variations in the 
acoustic loading of the fairing. 
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