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ABSTRACT 

A distributed computing network was created using the software called Condor and a large number of networked 
desktop computers. This computational tool was used to optimise the design and location of passive vibration and 
acoustic absorbers attached to the payload fairing of a rocket launch vehicle. This paper describes a mathematical 
model to calculate the coupled vibro-acoustic response of a system from the uncoupled structural and acoustic modal 
responses obtained from finite element analysis. A genetic algorithm was used in conjunction with the distributed 
computing network to optimise the parameters of the absorbers. The optimisations using the computing network 
could be completed in significantly less time compared to a single desktop computer. 

INTRODUCTION 

Many companies are interested in optimising the designs of 
their products to reduce noise, vibration, weight, cost, etc. 
Unfortunately, most computational methods for complex 
vibro-acoustic systems require significant computational 
resources to evaluate each parameter of a multi-variable cost 
function. Optimisation of the design parameters is often not 
achievable within a reasonable time frame due to the 
complexity of the problem. The work presented here shows 
how a distributed computing network can be established 
relatively easily to conduct an optimisation of a complex 
vibro-acoustic system in a reasonable time.  

In the work conducted here, an optimisation of the 
parameters for tuned mass dampers (TMDs) and Helmholtz 
resonators (HRs) attached to the walls of the payload bay of a 
rocket used to launch satellites was conducted to reduce the 
noise levels inside the payload bay. The combination of a 
TMD and HR into a single device is called a Passive Vibro-
Acoustic Device (PVAD). The cost function was the acoustic 
potential energy within the cavity and each evaluation took 
approximately 6 minutes on a 3.0GHz Pentium desktop 
computer (Pentium 4 with Hyperthreading, 800MHz FSB, 
1Gb RAM PC3200). A Genetic Algorithm (GA) was used to 
optimise the parameters over 18,000 cost function 
evaluations. If the optimisation had been conducted on a 
single 3.0GHz Pentium it would have taken 75 days. By 
using a distributed computing network of about 180 
computers of varying processor speeds from 1.8GHz to 
2.4GHz, the time taken to conduct the optimisation was less 
than 3 days, with constant interruptions handled by the 
Condor system.  

The contribution of the work presented here shows how a 
parallel genetic algorithm and a distributed computing 
network can be implemented relatively easily to solve vibro-
acoustic optimisation problems.  

MODELLING 

Fahy (1994) describes equations for the coupled structural-
acoustic response of a system in terms of the summation of 
structural and acoustic mode shapes. The equation for the 
coupled response of the structure is given by 
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where wp are the structural modal participation factors of the 
pth mode, ωp are the structural resonance frequencies, Λp are 
the modal masses, Fp are the modal forces applied to the 
structure, S is the surface area of the structure, and Cnp is the 
dimensionless coupling coefficient given by the integral of 
the product of the structural (φp) and acoustic (ψn) mode 
shape functions over the surface of the structure, given by 
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The equation for the coupled response of the fluid is given by 
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where pn are the modal participation factors of the nth 
acoustic modal responses, ωn are resonance frequencies of 
the cavity, Λn are the modal volumes, ρ0 is the density of the 
fluid, c is the speed of sound in the fluid, and Qn is the source 
strength with units of volume velocity (hence nQ&  has units 
of volume acceleration).  

Tuned Mass Dampers  
A Tuned Mass Damper (TMD) is a device consisting of a 
spring and mass, the resonance frequency of which is 
adjusted to coincide with the frequency of the forces driving 
the structure, or with a particular resonance frequency of 
structural vibration. The purpose of a TMD is to reduce the 
vibration levels on the structural boundary enclosing the 
cavity with the intention of reducing the sound transmitted 
into the cavity. However, alternative uses for such a device 
include tuning it to an acoustic resonance frequency of a 
cavity, or even attempting to shift the energy of one vibration 
mode into another vibration mode that has a poor acoustic 
radiation efficiency (or radiation ratio or index), as is used in 
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Active Structural Acoustic Control (ASAC) (Fuller et al. 
1997). 

A Tuned-Mass-Damper (TMD) can be modelled as a rigid 
mass connected by a flexible spring to an underlying 
structure whose vibration is to be altered. Figure 1 shows a 
TMD attached to the central node of four structural elements. 
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Figure 1: Model of a tuned mass damper. 

The method used to model the coupling of the TMD to the 
structure is similar to the method described in Howard et al. 
(1997) and Howard (1999). This formulation can be easily 
extended to multiple degree of freedom TMDs to include 
three translational and three rotational degrees of freedom, or 
multi-modal TMDs, and multi-modal acoustic Helmholtz 
resonators.  

Consider multiple single degree of freedom TMDs (J=1… 

NTMD) attached to the structure, that have mass TMD
Jm , 

stiffness TMD
Jk , and are driven by a harmonic force at the 

attachment point of the spring to the structure. Considering 
the case for the structural domain only for the moment, the 
equations for the vibration of the structure and the TMDs can 
be written in matrix form as 
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where [ ]Jψ  is the structural mode shape vector evaluated at 
the Jth connection point of the TMD to the structure and has 
dimensions (1 x Ns) where Ns is the number of structural 
modes, T is the matrix transpose operator, Fp is the vector of 
modal participation factors for the forces that drive the 
structure.  
The equations derived thus far have not included damping 
terms. Damping can be included by using a hysteretic 
structural loss factor, so that the stiffness value for the TMD 
becomes a complex number. Hence the complex stiffness can 

be written as )η+= jJkJk 1(TMDTMD , where η is the 

structural loss factor. 

Helmholtz Resonators 

Helmholtz resonators are passive acoustic devices that are 
used to reduce the sound transmitted in a duct or change the 
acoustic field inside a cavity. Figure 2(a) shows a Helmholtz 
resonator that comprises a volume connected via neck to an 
acoustic system, such as a duct or a cavity, that contains an 
unwanted noise. The Helmholtz resonator acoustic system 
can be modelled as a vibrating mass in the throat of the 
device that is sprung mounted to a rigid support. Figure 2(b) 
shows the equivalent acoustic system where the acoustic 
spring is formed from the compliance of the volume of air in 
the Helmholtz resonator.   
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Figure 2: (a) Helmholtz resonator, (b) the equivalent spring-

mass system. 

In the ANSYS software a Helmholtz resonator can be 
modelled as a spring for the compliant volume, with the 
displacement fixed at one end, and the other end attached to a 
node that is part of four Fluid-Structure-Interaction (FSI) 
elements, as shown in Figure 3. 
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Figure 3: The connection of a model of a Helmholtz 

resonator to the acoustic finite element model. 

The FSI elements have four degrees of freedom: 
displacements along the x, y, and z axes and pressure. The 
displacements for all the nodes on the exterior of the 
elements were fixed and only the central node attached to the 
spring was allowed to move. This effectively creates a piston 
that can move the fluid and generate a volume velocity sound 
source.  

Consider multiple Helmholtz resonators (J=1…NHR) attached 

to the acoustic cavity where HR
Jk  is the equivalent spring 

stiffness of the compliant volume, and HR
Jm is the equivalent 

mass of the volume of fluid inside the neck of the resonator. 
The relationships between these terms and the acoustic 
properties are discussed in Beranek & Ver (1992). Consider 
the case for the acoustic domain only for the moment, by 
omitting the coupling term Cnp. The equation for the coupled 
response of the acoustic cavity and the effect of the 
Helmholtz resonators can be written in matrix form as 
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where HR
Jx is the particle displacement of the equivalent 

mass in the throat of the Helmholtz resonator, HR
JA is the 

area associated with the node attaching the spring to the 
acoustic cavity, and [ ]Jφ is the matrix of the mode shape 
functions for the acoustic cavity. 

Fully Coupled Model with Helmholtz Resonators 
and Tuned Mass Dampers 

The equations for the fully coupled vibro-acoustic system, 
incuding the effects of the TMDs and HRs can be formed into 
a matrix equation as 
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The remaining elements account for the cross coupling 
between the structure and the fluid and are given by 

npS CA −=24  (15) 

[ ]T2
42 npS CB ω−=  (16) 

The solution to the response of the vibro-acoustic system 
(xTMD, wp, xHR, and pn) is found by substituting the values of 
the parameters of the PVADs into Eq. (6), pre-multiplying 
each side of the matrix equation by the inverse of the matrix 
on the left-hand side of the equation.  

Acoustic Potential Energy 

The acoustic potential energy is a measure of the total 
acoustic energy contained within a cavity and is defined as 

pp ΛpE H=  (17) 

where Λ is a diagonal matrix defined as 
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After the solution to the vibro-acoustic system has been 
calculated, the acoustic modal participation factors pn are 
used to calculate the acoustic potential energy at each 
frequency. The total acoustic potential energy for the 
frequency range of interest is calculated by the integral of the 
acoustic potential energy at each frequency within the 
frequency analysis range. The total acoustic potential energy 
is the cost function to be minimised by optimising the 
locations and parameters of the PVADs.  

The mathematical model for the coupled vibro-acoustic 
response including the effects of the TMDs and HRs was 
implemented using the software package Matlab. The 
mathematical optimisation routines were also implemented in 
Matlab and the following section describes the optimisation 
method that was used in this investigation. 

OPTIMISATION METHOD 

Genetic Algorithm 

A GA is a numerical optimisation method based on the 
principles of natural selection and genetics. GAs attempt to 
manipulate a set of possible solutions until an optimum 
solution is found. The set of possible solutions is called the 
population. Each candidate solution in the population is 
represented as a single chromosome. The chromosome is a 
series of numbers that are grouped together into a single 
string. The string can be a series of zeroes and ones, or it 
could be a series of integers or floating point numbers. Each 
one of these numbers represents a feature that is unique to the 
particular problem to be optimised. For example, the numbers 
in the string could represent the stiffness of a spring, or the 
mass of a tuned mass damper. The initial population of 
chromosomes is typically generated randomly. The 
chromosomes are used as input parameters to calculate a cost 
function, such as the acoustic potential energy inside the 
cavity, and are then ranked with the best performers ranked 
the highest (often described as the fittest). The fittest 
individual chromosomes are selected as ‘parents’ for the next 
generation and are combined (crossover) to form a new 
chromosome. This process is similar to asexual 
recombination that occurs in organisms. After the crossover 
operation, the new chromosome is mutated by randomly 
changing parts of the string. The mutation process introduces 
new genetic material into the population and causes some 
diversity in the population. The selection, crossover and 
mutation operations are conducted on the fittest individuals in 
the population and form the next evolution of the population. 
GAs follow the Darwinian evolutionary principle that good 
traits are retained in the population and bad traits are 
eliminated, which is determined by evaluating the cost 
function to find the fittest individuals.  

The GA can be easily adapted for use in a distributed 
computing environment, where a master processor distributes 
jobs to slave processors, as shown in Figure 4. 

 
Figure 4: Organisation of the distributed computing network 

that is managed by the Condor software. 

The master processor takes care of managing the population 
and the synchronisation of the slave processors. The master 
processor handles the selection and mating. The slave 
processors calculate the cost function and return the results. 
In the simplest form, all the cost functions are evaluated at 
the same time, and the master processor waits until all the 
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results are returned from the slave processors. This scheme is 
called a synchronous master-slave GA, which is relatively 
easy to implement but suffers from the drawback that it 
requires all the slave processors to complete their tasks before 
the master processor can update the population. If one of the 
slave processors fails, then the population cannot be updated. 
In addition the GA can only update at the speed of the 
slowest slave processor. A variation of this scheme is the 
semi-synchronous master-slave, where the master process 
does not depend on the completion of all the slave processors, 
and instead selects members ‘on the fly’. 

Distributed Computing Network 

The Condor software package is freely available and can be 
used for distributed computing. It is best suited to 
‘embarrassingly parallel’ problems, where there is no inter-
processor communication. This type of framework is suitable 
for parallel GAs where a master processor is responsible for 
‘managing’ the population, conducting the breeding and 
mutation and distributing the cost function evaluations to 
‘slave’ processors. The slave processors receive the jobs from 
the master processor, and evaluate the cost function, and 
return the value of the cost function, in this case the acoustic 
potential energy within the cavity. 

The Condor system was installed on 180 Pentium computers 
in the Computer Aided Teaching Suite in the Faculty of 
Engineering, Computing and Mathematical Sciences at the 
University of Adelaide, and one computer was assigned as 
the master processor and distributed the jobs to the slave 
computers. 

An attractive feature of the Condor system is that the master 
processor responsible for the distribution of tasks can look at 
the usage of the computer and tell if someone is using the 
machine. If the machine is being used by a student, then that 
computer is marked as unavailable. The system was set up so 
that computers that have been left idle for 15 minutes are 
marked as available to the Condor pool. One limitation of the 
present system, for computers running Microsoft Windows 
XP, is that if the computer is used by a student whilst it is 
processing a job, the computer will halt the task and find 
another computer to run the task, but it will re-start the job 
from the beginning instead of continuing from where the 
interruption occurred. This is not a significant problem 
because the students do not use the computers overnight, 
when they are typically used for the GA calculation. 

The Matlab compiler (Mathworks 2004) was used to create a 
binary executable file for the cost function evaluation. The 
executable file reads in Matlab .mat files and extracts the 
parameters for the PVADs and then uses those parameters to 
calculate the acoustic potential energy, which is then written 
to an output Matlab .mat file. The genetic algorithm reads the 
results from the cost function evaluation and determines if 
there was any improvement in the results. It should be noted 
that compilation of the Matlab code generally does not reduce 
the excution time compared to using the interactive 
environment. 

Finite Element Model 

A finite element model of a vibro-acoustic system was 
developed for use with the computational framework 
described here. The system is a large cylindrical cavity 
enclosed by a composite material that is approximately 2.56m 
long, 2.46m in diameter, and has 2mm thick walls. Figure 
5(a) shows a cross sectional view of the finite element model 
of the structure created using the ANSYS software package, 
and Figure 5(b) shows the corresponding acoustic model that 

is enclosed by the structure, and it has an average mesh 
density of 0.08m. 

The ANSYS software package was used to extract the first 
300 modes of the in-vacuo structural and acoustic mode 
shapes of the cylindrical vibro-acoustic system.  

 
Figure 5: (a) Structural and (b) acoustic finite element 

models of the composite cylinder. 

RESULTS 

The acoustic loading on the cylindrical structure was 
assumed to be a plane wave incident on the cylinder at 90 
degrees to the axis of the cylinder. It is recognised that it is 
important to accurately model the acoustic loading on the 
external of the fairing structure to make accurate predictions 
of the internal noise levels. However the focus of the work 
conducted here was aimed at the development of a powerful 
computational tool, and not to develop accurate acoustic 
loading conditions that are representative of actual launch 
conditions. Potter (1966) describes the mathematical 
derivation of the acoustic pressure on exterior of a cylinder 
from a harmonic plane wave incident on a cylinder at an 
oblique angle. Figure 6 shows a model of the acoustic loads 
on the cylinder. It is assumed that a harmonic plane wave is 
travelling in the –x direction and strikes the cylinder. The 
acoustic pressure distribution on the cylinder will have a 
cosine distribution. The acoustic pressure can be converted to 
an equivalent nodal force that acts normal to the surface of 
the structure and is given by 

))cos(exp()cos(node0node θθ= ikRAPF  (19) 

where P0 is the amplitude of the incident acoustic harmonic 
wave which is assumed to be 200Pa (=140dB re 20µPa), Anode 
is the area associated with each node that is determined 
during the finite element analysis of the system, θ is the angle 
measured to a point on the cylinder measured from the 
direction of the incident sound wave, i the complex number, k 
is the wave-number of the incident sound, and R is the radius 
of the cylinder. It should be noted that for simplicity of the 
model, diffraction of sound around the cylinder and radiation 
damping have not been included in this model of the acoustic 
loading. 

y

xR
θ

 
Figure 6: Mathematical model of the acoustic loads on the 

cylinder. 

Optimisations were conducted to determine the variation of 
the acoustic potential energy within the cavity when varying 
the number and properties of PVADs attached to the walls of 
the cylinder. Optimisations were conducted over 18,000 cost 
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functions. The parameters of the PVADs were permitted to 
vary over the ranges listed in Table 1.  The masses of the 
TMDs and HRs were fixed at 0.45kg and 0.01kg, 
respectively. Hence, the greater number of PVADs, the 
greater the mass attached to the structure.  

Table 1: Parameter ranges for the PVADs used during the 
optimisation of the composite cylinder. 
PVAD parameter Min Max No. Values 
PVAD position 1 4032 4032 
Mass-spring frequency (Hz) 11 510 500 
Mass-spring damping (η) 0.01 0.25 10 
Acoustic resonator  
frequency (Hz) 

11 510 500 

Acoustic resonator  
damping (η) 

0.01 0.25 10 

The semi-synchronous parallel genetic algorithm and the 
distributed computing network were used to optimise the 
locations and the parameters of a varying number of PVADs 
attached to the walls of the composite cylinder, such that the 
total acoustic potential energy over the frequency range from 
50-300Hz was minimised.  

Optimisations were conducted using 10, 20, and 30 PVADs 
and Figure 7 shows the variation in the acoustic potential 
energy versus frequency for the optimisations. Figure 8 
shows the locations of the 30 PVADs on the cylinder, which 
have been displayed as if the cylinder had been unwrapped, 
with 0 degrees aligned with the indicent sound pressure 
wave. Figure 9 shows the total acoustic potential energy 
inside the cylinder from the three optimisations. The results 
show that the lowest acoustic potential energy occurs when 
30 PVADs are attached to the fairing, which resulted in a 
4dB reduction in the acoustic potential energy inside the 
cylinder. This result is not surprising as the use of 30 PVADs 
has the greatest amount of mass added to the structure.  

This computational tool has also been used to conduct 
optimisations to evlaute the effectiveness of the PVADs for a 
constant added mass ‘budget’ and the benefit of spring-
mounting the masses as compared to the blocking-mass effect 
of rigidly attaching the mass to the structure, which was 
considered by Gardonio et al. (2001).  

 
Figure 7: Acoustic potential energy versus frequency for no 

PVADs (Base), 10, 20, and 30 PVADs. 

 
Figure 8: Location of the 30 PVADs after 18,000 cost 
function evaluations, displayed as if the surface of the 

cylinder was unwrapped. 

 
Figure 9: Total acoustic potential energy for no PVADs 

(Base), 10, 20, 30 PVADs. 

CONCLUSIONS 

The work presented in this paper has demonstrated how an 
asynchronous parallel genetic algorithm implemented on a 
distributed computing network can be used to optimise the 
locations and stiffnesses of tuned mass dampers and 
Helmholtz resonators attached to a vibro-acoustic system. 
The use of the large computational resources enabled the 
analysis and optimisation of a complex vibro-acoustic 
system, which would have been infeasible with a standard 
desktop computer.  

A mathematical model was developed that can be used to 
calculate the acoustic potential energy inside a vibro-acoustic 
system. The computational tool uses the results from a finite 
element package, where the in-vacuo mode shapes for the 
structure and the acoustic space are determined, and these 
modal results are coupled using modal-coupling software that 
was implemented in Matlab. The use of the finite element 
software enables vibro-acoustic systems with complex shapes 
to be modelled such as automotive cabins and rocket fairings 
used to launch satellites. The mathematical model also 
includes the effects of passive vibration dampers and passive 
acoustic resonators on the response of the system.  

A semi-synchronous parallel genetic algorithm was 
developed and was used in conjunction with a distributed 
computing environment on about 180 desktop computers. 
The genetic algorithm was used to determine the optimum 
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locations and parameters of passive vibration and acoustic 
absorbers that resulted in the minimisation of the sound levels 
inside a composite cylindrical structure. 
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