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ABSTRACT 

Sandwich beam structures constructed with MR fluids can be implemented as distributed vibration absorbers to 
suppress unwanted vibrations. This paper introduces an analytical model for MR structures based on the Kelvin-
Voigt model and Hamilton principle. The relationship between the magnetic field and the complex shear modulus of 
MR sandwich beam in the pre-yield regime is presented. The governing partial differential equations describing the 
dynamics of MR sandwich beam are derived and a model analysis is performed. An active vibration controller based 
on Lyapunov stability theory is designed. Simulations show the stable response and improved transient performance 
provided by the control system. 

INTRODUCTION 

Flexible beam elements constructed with fabrics, composite, 
polymers, and light metals are increasingly employed in a 
variety of large structures in automotive, marine, aerospace, 
robotics, and machinery industries. On one hand, the advance 
of computer aided design has meant that designers can reduce 
traditional over-design necessary to produce a reliable 
structure. This is often achieved by reducing design safety 
factors to a minimum, while a traditional structure may be 
unnecessarily heavy to give the required stiffness and 
damping to eliminate vibrations. On the other hand, through 
synthetising technique, it is possible to use light materials to 
achieve a high strength-to-weight ratio under stringent 
constraints of energy consumption. The use of smart 
structural components that are able to change their stiffness 
and damping coefficients will enable lighter designs 
realisable. 

These lighter structures, however, are physically 
characterised by low structural damping, low stiffness, and 
low natural frequencies. Consequently, the structures readily 
experience high-amplitude resonant vibrations under external 
disturbances, such as forces produced by unbalanced rotating 
machines, reciprocating machines, or shock impacts. High-
amplitude resonant vibrations will degrade the reliability and 
safety of the structures. Fatigue failure or even collapse of 
structures is an awesome possibility under resonant 
vibrations. Therefore, the development of strategies for 
reducing low-frequency resonant vibrations has been a key 
area of interest of vibration control for flexible structures. 

In the context of low-frequency resonance control of 
structures, there are several challenging Design Questions or 
requirements that are prevalent over different applications, 
namely: 

1. how to design a real-time control system to suppress 
vibrations under a nonstationary excitation, i.e., an 
excitation whose frequency and/or amplitude vary at 
a finite rate with time?  

2. how to integrate sensors/actuators into the structure to 
optimise the interaction between the control system 
and the structure without negating the benefits 
provided by the use of light materials?  

3. how to design a distributed control system that can 
suppress both transient and steady-state multiple 
harmonic resonances and/or multiple-mode free 
vibrations without causing control spillover problem 
(A problem is referring to the interactions between 
the controller and the uncontrolled modes of the 
system)? and 

4. how to implement distributed actuators with high 
control authority to achieve effective vibration 
control? 

For resonance suppression, currently employed techniques 
are based primarily on passive methods such as adding 
dampers and springs between the disturbing source and the 
structure, or attaching to the structure with another spring-
mass-damper system, known as a dynamic vibration absorber 
(DVA) [Den Hartog 1947]. Additional improvement in 
desired performance may be obtained by employing active 
measures by means of external servo like mechanism, such as 
using hydraulic or electro-mechanical actuators [Hansen and 
Snyder 1997].  

Recent developments in the technology of smart structures 
have shown some promising solutions for vibration control of 
structures [Srinivasan 2001]. The use of smart or intelligent 
materials will enable construction of structures whose 
mechanical properties can be altered to avoid anticipated 
resonances. Varied smart materials such as piezoelectric 
ceramics, shape memory alloys, and magnetostrictive 
materials, have been widely used in smart structures 
[Preumont  2002].  

The use of MR fluids, one of the most versatile fluids in 
current range of smart materials, has been suggested and tried 
for the construction of smart structural components by many 
researchers [Sims 1999]. MR fluids, which experience 
reversible changes in rheological properties such as viscosity, 
plasticity, and elasticity when subjected to a magnetic field, 
was first discovered by Jacob Rabinow in the late 1940s 
[Rabinow 1948, 1951]. Since then, publications describing 
the mechanism and applications of MR fluids have abounded. 
The fluids generally consist of micron or submicron 
ferromagnetic particles suspended in hydrocarbon or silicon 
oil. A key to the magnetorheological response of MR fluids 
lies in the fact that the polarisation induced in the suspended 
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particles by application of an external magnetic field. The 
interaction between the resulting induced dipoles causes the 
particles to form columnar structures, parallel to the applied 
field, as shown in Figure 1.  

  
Figure 1. Micro-structures of MR fluids without/with 

external magnetic field. 

These chain-like structures restrict the motion of the fluid 
hence increase the viscous characteristics of the suspension. 
In essence, MR fluid behaviour transforms from that of a 
liquid to that of a solid-like gel when an external magnetic 
field is applied. The dramatic transformation of MR fluids 
can be quite fast, on the order of 10-3 and 10-4 seconds 
[Jansen 2002], therefore, the MR fluids can be used as 
actuators in various damping schemes. The ability to change 
the yield strength of MR fluids according to the magnetic 
field enables MR fluids to alter the structural damping and 
stiffness coefficients under nonstationary excitations as 
described in the above Design Question 1. 

A number of MR fluids and various MR fluid-based systems 
have recently been commercialised, such as a controllable 
MR fluid damper for use in truck seat suspensions [Carlson 
1996], an MR fluid brake for use in the exercise industry 
[Anon 1995], and an MR fluid shock absorber for automobile 
racing track [Lord 1997]. MR fluid dampers can be 
controlled with a low power (e.g., less than 50 W), low 
voltage (e.g., 24V batteries) control source. They are capable 
of generating large control forces for industry applications 
[Dyke 1996a, 1996b]. Compared with other smart materials, 
such as piezoelectric ceramics, shape memory alloys, and 
another famous smart fluid electrorheological (ER) fluid, MR 
fluids can provide much higher control authorities. For 
example, MR fluids usually exhibit dynamic yield strengths 
of 50~100kPa for applied magnetic fields of 150~250 kA/m 
and off-state viscosity of 0.20~0.30 Pa-s at 25°C. Therefore 
they are much desirable as required by the Design Question 
4. 

Currently, all the developments about MR fluids have been 
focused on using them as lumped-parameter mass dampers or 
vibration isolators, which can be only attached to the primary 
structure point-wisely. For flexible structures, in order to 
control the multiple resonances simultaneously, multiple such 
MR dampers are required [Akhiev 2002]. This 
implementation will annihilate the benefits provided by the 
use of light materials, as a result of the attached masses. 
Therefore, it is necessary to develop a technology of 
distributed MR fluid absorbers for flexible structures so that 
this technology will satisfy the Design Question 2 and 3.  

Although there are some existing research and applications 
on the technology of distributed ER fluid absorbers [Rahn 
1994, Berg 1996, Yalcintas 1998, Park 1991], and there are 
some similarities between ER fluids and MR fluids, the 
technology of distributed MR fluid absorber will be quite of 
difference in that of ER fluid one. MR fluids compared with 
ER fluids provide much higher dynamic yield strengths, 
wider temperature range, greater insensitivity to temperature 
variation and contaminants. Another important factor in the 
growing acceptance by industry of MR fluid devices is the 

fact that an MR device is powered by a low voltage source. 
Many industries, notably aerospace and automotive, have all 
but ruled out ER fluid devices owing to a reluctance to 
provide electric fields of up to 4 kV/mm to excite ER fluids. 
However, to many potential users of smart fluids, the need to 
provide an electromagnetic circuit to excite the MR fluid is a 
small price to pay to obviate the requirement for high 
voltages. It is believed that MR fluids will have a significant 
impact on hydraulic and pneumatic equipment, and will be 
utilised in the aerospace, automotive, marine, and robotics 
industries.  

To investigate issues of analytical modelling and control of 
MR structures, a MR sandwith cantilever beam is chosen 
here as the research vehicle for this work because it is a 
convenient structure for exhibiting such complicated 
phenomena in a controlled laboratory setting. This paper 
introduces an analytical model for MR structures based on 
the Kelvin-Voigt model and Hamilton principle. The 
governing partial differential equations describing the 
dynamics of a MR sandwich beam are derived and a model 
analysis is performed. The relationship between the magnetic 
field and the complex shear modulus of MR sandwich beam 
in the pre-yield regime is presented. An active vibration 
controller based on Lyapunov stability theory is designed. 
Simulations of a cantilevered MR beam show the stable 
response and improved transient performance provided by the 
control system. 

The remainder of this paper is organized as follows. First, the 
MR sandwich cantilever beam configuration is introduced. 
Second, the viscoelastic behaviour of the MR fluids in the 
pre-yield regime is analysed. Then, the governing partial 
differential equations describing the dynamics of the MR 
sandwich beam are derived. Based on the derived model, an 
active vibration controller using Lyapunov stability theory is 
designed. The effectiveness of the active control system is 
shown through simulations of beam’s impose response. 
Finally, some concluding remarks are given. 

SYSTEM DYNAMIC MODEL 

Model for pre-yield MR fluids 

The relationship between shear stress and shear strain of MR 
fluids is schematically shown in Figure 2.  

 
Figure 2. MR fluids shear stress versus shear strain under 

different levels of strength of magnetic field. 

In the pre-yield regime, MR fluids can be represented by the 
Kelvin-Voigt model. The relationship between the shear 
stress τ and shear strain γ  is written as,  

γκγτ &+= G ,  (1) 
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where G and κ are the complex shear modulus and viscous 
damping ratio of the MR material, respectively, both of 
which are functions of magnetic flied. 

Dynamic model for MR sandwich beam 

A simple sandwich cantilever beam system is selected as a 
research vehicle to implement the MR fluid technique. The 
cantilever beam system may effectively represent a simple 
model for various transport-vehicle structures, such as an 
aircraft wing, a helicopter blade, a solar panel of a solar 
vehicle, etc. A schematic diagram illustrating the 
configuration of the beam with MR fluids between two 
aluminium plates is shown in Figure 3.  

For simplicity, planar motion and isotropic beams of constant 
cross-section are assumed here. In addition, the case of a long 
slender beam experiencing small strains and moderate 
deformations are considered. Furthermore, it is assumed that: 

1. no extension of the beam's neutral axis occurs; 

2. no slipping occurs between the aluminium layers 
and the MR layer; 

3. all three layers have the same transverse 
displacement; and 

4. no shear strains exist inside the aluminium layers. 

 

h1
h2
h1

external 
force 

x=0 x=L

b 

MR fluid 

aluminium 

f 

 
Figure 3. Configuration of the MR sandwich beam. 

When the beam is subject to external disturbance, the 
displacements, rotation, and shear strain of the beam are 
shown in Figure 4.  

 

b 
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x

 
Figure 4. Variables of the MR sandwich beam. 

The longitudinal extension of the midsurface of the top 
plates, transverse displacement, cross section rotation, and 
shear strain of the MR layer are represented by u(x,t), w(x,t), 
φ(x,t), and γ(x,t), respectively.  

To find out the governing partial differential equations of the 
sandwich beam, the Hamilton principle is applied and the 
form can be expressed as [Meirovitch 1990] 

( ) 0
0

=++−−−∫ dtWWVVVT
t

vfsbeδ , (2) 

where T is the kinetic energy of the beam; Ve, Vb, and Vs are 
the potential energies owing to extensional, bending, and 
shear motions, respectively; Wf and Wv are work energies of 

the applied external force and viscous damping work, 
respectively. 

The kinetic energy owing to transverse and rotational 
motions can be written as: 
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where ρ and J are transverse and rotary inertia of the beam, 
respectively. L is the length of the beam. The extension 
energy in the two face plates is 
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where h1 and b are the thickness of each face plates and the 
width, respectively. Ep is the Young’s modulus of the face 
plates.  

The bending energy in the face plates can be written as 
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where Ip is the centroidal moment of inertia in the face plates. 
The shear energy in the MR layer is 
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The work energy owing to the external force f can be written 
as: 
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The work energy owing to the viscous damping can be 
written as: 
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The boundary conditions of the cantilever beam can be 
arranged as: 
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Substitution of Eqs. (3-7) into Hamiliton’s equation (2) yields 
the governing partial differential equations of the beam: 
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In order to simplify Eq. (8), a set of nondimensional variables 
is defined as 
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Substitution of these variables into (8) yields the 
nondimensionalised equations of motion 
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where all the superscript asterisks are omitted for notational 
simplicity and the subscript letters mean the partial 
differentiations.  

For the case of cantilever beam, the rotary dynamics has 
much higher resonant frequency than the transverse vibration 
dynamics. Hence, the second equation of (9) can be further 
simplified by neglecting its first term 
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From the principle of modal analysis [Inman 2001], it is 
known that the complete dynamic behaviour of the cantilever 
beam can be discretised as a set of individual modes of 
vibration, each having a characteristic natural frequency, 
damping factor, and mode shape. By using these modal 
parameters to represent the system model, the governing 
equations at specific resonances can be examined and 
subsequently solved. The solutions for (11) can be expressed 
as 
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where, Wn(x) and Φn(x) are the mode shape functions for the 
nth transverse and rotational modes, respectively, and qn (t) is 
the nth generalised coordinate. Then, the modal dynamic 
equations in nondimensional form can be obtained 
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where λ is the solution from the characteristic equation 

0)1( 22246 =+−+− GIIGI npnpp ωλωλλ .  (15) 

Here ωn is the beam’s nth mode angular frequency. 

ACTIVE CONTROLLER DESIGN 

In this section, an active vibration control law is developed 
for the MR sandwich beam described in Equation (11). The 
purpose of the controller design is to suppress all the mode’s 
vibration energy from the beam upon which external forces 
are imposed. To achieve this objective, the Lyapunov 
stability theory for distributed systems [Leipholz, 1980] is 
used. The design methodology is summarised below. 

The total energy of the MR sandwich beam can be chosen as 
a Lyapunov function candidate: 
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. (16) 

The Lyapunov function is positive definite and bounded with 
respect to the norm 
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The Lyapunov function’s first derivative of time can be found 
as  
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where the shear modulus Gs(B)=G(1+β(B)) with |β|⌠1. Here 
B is the magnetic induction. 

According to the Lyapunov theory, system (11) is asymptotic 
stabile if the first time derivative of the Lyapunov function is 
negative, i.e., 

0≤L& .  (19) 

The first term in (18) is always negative as the viscous 
damping ratio κ(B)>0. The second term in (18) is also 
negative if  

)(yg−=β , (20) 
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and g(.) can be designed as a continuous function with 
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The control law (20) can be rewritten in terms of the 
magnetic induction. As explained in equation (1), the MR 
fluids can be modelled as the Kelvin- Voigt material. The 
functional dependence of G and κ can be approximated as: 
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where α1, α2, ε1, and ε2 are experimentally determined 
parameters. The control law is then designed as 
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SIMULATION FOR THE MR CANTILVER BEAM 

To demonstrate the effectiveness of the control law derived 
above, a MR cantilever beam is simulated and the 
corresponding experimental study is currently under way. 
Table 1 shows all the parameters used for the simulation. 

Table 1. MR sandwich beam parameters 

Beam dimensions 

L=254mm b=25.4mm 

h1=1mm h2=1mm 

Aluminium layer 

ρ=2710kg/m3 Ep=70 GPa 

MR layer (Lord MRX-336) 

G=1.75kPa/T κ=0.75 Pa-s 

α1=3.56 Ξ 10-4 ε1=3.85 Ξ 10-6 

α2=5.78Ξ 10-1 ε2=6.31Ξ 10-3 

The control law (24) is implemented with a saturation 
feedback function: 
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where k is a controller design gain. 

The schematic diagram of the active vibration control system 
is shown in Figure 5. Here a single point sensor is used to 
measure the longitudinal motion of the beam. The output of 
the controller is used to change the magnitude of the 
magnetic field or the magnetic induction. 

 

STRUCTURE SENSOR ACTUATOR 

Excitation 

Sensor ResponseActuator Response

Digital Controller 

COMPUTER A/D D/A Control Signal 

 
Figure 5. Schematic diagram of the active vibration control 

system. 

Figure 6 and 7 show the simulated time responses of three 
modes of the MR sandwich beam to a unit impulse applied at 
the free end. The case without control, i.e., no external 
magnetic field is applied, is shown in Figure 6. A long decay 
time can be observed. This case shows that the MR fluid has 
litter effect on the system’s damping when no magnetic field 
present.  

The case under control is shown in Figure 7. It can be seen 
that the response decays exponentially. This case shows the 
effectiveness of increased system damping owing to the 
controlled MR fluid. 
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Figure 6.  Simulated response of the MR sandwich beam to a 

tip impluse when no control is applied. 
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Figure 7. se of the MR sandwich beam  to a tip impulse 

when control is applied. 

CONCLUSIONS 

The use of magnetorheological (MR) fluids, one of the most 
versatile fluids in current range of smart materials, has been 
suggested and tried for construction of smart structural 
components by many researchers. In essence, MR fluid 
behaviour transforms from that of a liquid to that of a solid-
like gel when an external magnetic field is applied, therefore, 
the MR fluids can be used as actuators in various damping 
schemes. In this paper, a sandwich beam structure 
constructed with MR fluids is studied and implemented as 
distributed vibration absorbers to adapt to a changing 
environment, such as variable loadings or uncertain 
disturbances. 

In this paper, an analytic model for the MR sandwich beam is 
derived. The MR fluids can be modelled as Kelvin-Voigt 
material in the pre-yield regime. The governing differential 
equation of motion is developed using Halmilton’s equation. 
Based on the derived model, an active vibration controller is 
designed using Lyapunov stability theory which enures 
stability for all modes of the beam. The controller will change 
the magnitude of the magnetic field, therefore, alter the 
damping ratio of the MR fluids and damp out the vibrations 
in the beam. Simulated responses of the MR cantilever beam 
show the effectiveness of the proposed MR structure and 
controller. 
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