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ABSTRACT 

A low probability of intercept (LPI) underwater acoustic telemetry system (UATS) is proposed to transmit sonar 
products from seabed arrays to submarines and surface relay buoys. A UATS simulator has been developed to 
implement all the steps in the processing chain. Underwater LPI systems have low transmitter power and hence low 
data rates. Techniques have been developed in DSTO to compress sonar products (2D images) to enable transmission 
at lower data rates without significant degradation. This paper studies bit error rates (BERs) and achievable bit rates 
for transmitting random messages and compressed sonar products (CSPs) from the standard UATS, with no channel 
coding, through Gaussian and fading channels. It also assesses the quality of the received and uncompressed CSP 
images. The effects of applying two types of forward error correction (FEC) - convolutional and turbo coding - in 
Gaussian and fading channels are then evaluated.  A significant improvement in performance for both random 
messages and CSPs and hence data rates arises from using convolutional coding in Gaussian channels, but this 
improvement is lost in some fading channels. A greater improvement arises from using turbo coding in Gaussian 
channels. For fading channels, this improvement is less but still significant. 

INTRODUCTION 

An underwater acoustic telemetry system (UATS) is 
proposed to transmit sonar products from seabed arrays to 
submarines and surface relay buoys. A requirement of the 
system is to have a low probability of intercept (LPI). 
Underwater LPI systems have low transmitter power and 
hence low data rates, typically 100 bits/s (bps). Techniques 
have been developed in DSTO (Wang and Cox 2003) to 
compress sonar products - LOFARgrams and bearing-time 
records (BTRs) - to enable transmission at lower data rates 
without significant degradation. This paper studies bit error 
rates (BERs) and achievable bit rates for transmitting random 
messages and compressed sonar products (CSPs) from the 
standard UATS through Gaussian and fading channels. BERs 
are measured using a UATS simulator and compared with 
theoretical ones. The quality of the received and 
uncompressed CSPs (2D images) is also assessed.  

The effect of applying two forward error correction (FEC) 
techniques - convolutional and turbo coding - in Gaussian 
and fading channels is then evaluated by simulation. 
Improvements (or otherwise) in BERs and available data 
rates are estimated. The quality of the received and 
uncompressed CSP images is also assessed. Some techniques 
are suggested which may mitigate the effect of fading 
channels. 

The structure of the paper is as follows. In the next section, 
the UATS simulator used for estimating BERs is described. 
In the following section, the DSTO compression technique is 
introduced. Theoretical results are then presented for BERs 
and data rates in Gaussian and fading channels. In the section 
after, BER estimates and available data rates from UATS 
simulations are presented for uncoded transmission, 
convolutional coding and turbo coding, for Gaussian and 
fading channels. Finally, some conclusions are drawn and 
suggestions for future work presented. 

UATS & SIMULATOR STRUCTURE 

We have written a “virtual” underwater communications 
simulator which implements the UATS processing chain 
from the input message through channel encoding, 
modulation and transmission, channel simulation, reception 
and demodulation, and channel decoding. Details of the main 
simulator components are as follows. 

Channel encoding 

The simulator allows three options for FEC or channel 
coding: (1) no coding (the standard UATS),  (2) convol-
utional coding and (3) turbo coding.  

Convolutional coding. 

In any FEC method, redundant parity or error-correction bits 
are added to the data stream to produce codewords. When the 
codewords are transmitted through the channel, some bits 
may be corrupted by noise. However, the decoder corrects 
these errors by finding the nearest valid codeword sequence 
according to some “distance” criterion. In a simple 
convolutional encoder, the input bit stream is passed through 
a shift register. The number of stages in the shift register is 
called the constraint length. The shift register has two or 
more sets of taps to combine the data passing through the 
shift register by modulo-2 addition, and the output of the 
adders is combined into codewords. Having more than one 
set of taps provides the codeword redundancy. 

Turbo coding. 

A comprehensive description of turbo coding is given by 
Barbulescu (Barbulescu 2004). The performance of turbo-
coded systems can be significantly better than that of 
conventionally-coded systems, and can allow data rates close 
to the Shannon limit. In a typical turbo-coded system, the 
input data stream is sent to two parallel branches. In the first 
branch, the data stream is encoded by a conventional code 
such as a block code or a convolutional code. In the second 
branch, the data are first interleaved in a buffer, and then 
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encoded by another conventional code (which can be the 
same as in the first branch) – the codes in each branch are 
called constituent codes. The data streams are multiplexed 
and sent through the channel. In the turbo code used by the 
UATS simulator, an identical convolutional code is used in 
each branch. 

UATS modulator and transmitter 

The data in the system is encoded using differential phase-
shift keying (DPSK) modulation. DPSK imparts tolerance to 
Doppler-induced phase drifts.  The signal is then multiplied 
by the pseudonoise spreading code, which is a pseudorandom 
sequence of chips (-1s and 1s), with a chip rate much higher 
than the data rate. The modulated, spectrally-spread signal is 
then transmitted through the channel. 

UATS simulator channel model 

The current UATS simulator implements two simple channel 
models – direct path with Gaussian noise, and Rician fading 
with Gaussian noise. Future versions of the simulator will 
implement more sophisticated channel models, including 
multipath, variable sound speed profiles, reverberation and 
temporal channel variability. 

Direct path with Gaussian noise 

In this model, the received signal is simulated by two 
components – the transmitted signal with power scaled down 
by the transmission loss from the transmitter to the receiver, 
and ocean acoustic noise. Thus the received signal is 

)()()()( 1 tntsrltr T += −   (1) 

where s(t) is the transmitted signal, lT(r) is the transmission 
loss at range r, and n(t) is the ocean acoustic noise. Straight-
line transmission loss has two components – spherical 
spreading and absorption. Let TL(r) = 10 log10lT(r) be the 
transmission loss expressed in decibels. Then  

rrrTL α+= 10log20)(   (2) 

where α is the attenuation coefficient. The UATS simulator 
implements the Thorp (Thorp 1965) absorption formula. The 
noise at each time sample t is generated by 

)randn()( 2 ttn σ=  

where randn(t) is a normal random number generator with 
unity variance; and σ2  is the noise power, given by 

BlN=2σ where lN is the Cato (Cato 2000) noise power 
spectral level and B is the system bandwidth.  

Rician fading with Gaussian noise 

In a typical underwater acoustic channel, the received signal 
can be considered to be made up of a direct-path (nonfading) 
component plus multiple rays reflected from the bottom 
and/or the surface. Let pM be the power of the multipath 
components relative to the power of the direct-path 
component. Then Rician fading can be simulated by 
multiplying the amplitude of the direct path signal by a factor 
fR , the amplitude of the sum of two phasors, one of unity 
amplitude and fixed phase (representing the direct-path 
component), and one random amplitude and phase with 
average power 2/Mp and random phase. The probability 
density function (PDF) of fR can be derived from the Rician 
PDF (Greenwood & Hanzo 1994) and is given by 

Error! Objects cannot be created from editing field codes.
 (3) 

To simulate the fade period typical of the underwater 
channel, a low-pass filter is applied to the sequence fR(t) with 
cutoff frequency the inverse of the fade period, yielding a 
fading envelope )(ˆ tf R .  Hence from (1), the received signal 
is simulated by 

)()()()(ˆ)( 1 tntsrltftr TR += −   .              (4) 

UATS receiver and demodulator 

The receiver maintains synchronization with the incoming 
data frames, and also tracks the Doppler arising from 
platform motions. Various algorithms are available for these 
operations. The carrier is then removed by demodulation, 
then the pseudonoise spreading is removed (despread) by a 
correlation process, leaving a phase sequence which is the 
transmitted sequence corrupted by noise. The phase 
difference between adjacent data frames is passed to the 
channel decoder.  

Channel decoding 

The UATS simulator implements decoding corresponding to 
the encoding scheme – no coding, convolutional coding or 
turbo coding. 

No coding. 

In this case, the phase difference between the adjacent frames 
is simply used to make a decision on the symbol. For 
example, for differential binary phase shift keying (DBPSK), 
the bit is set to 1 (0) if the phase difference is less than 
(greater than or equal to) π/2. 

Convolutional decoding. 

Most convolutional decoders use the Viterbi algorithm 
(Viterbi 1971) to find the nearest valid codeword sequence to 
that received using the maximum likelihood criterion. There 
are two variants of the Viterbi decoder – hard decoding, 
where received bits are quantized to two levels (0 or 1) before 
decoding, and soft decoding, where received bits are not 
quantized, or quantized to more than two levels between 0 
and 1 before decoding. The latter decoder has a better 
performance than the former. The UATS simulator can use 
either hard or soft Viterbi decoding. 

Turbo decoding. 

At the receiver, the data streams are demultiplexed, and 
decoding is carried out by an iterative soft decoding 
technique. Details of the decoding algorithm are given in 
(Berrou et el 1993). 

COMPRESSION FOR SONAR PRODUCTS 

Typical sonar products which are transmitted from seabed 
arrays include LOFARgrams and bearing-time records 
(BTRs). A LOFARgram is a 2D display of power spectral 
density as a function of time, with frequency varying along 
the x-axis and time along the y-axis. A BTR is a time-history 
of integrated power versus bearing in a selected frequency 
band. It is a 2D display of power in the selected band, with 
bearing varying along the x-axis, and time varying along the 
y-axis. Target detections from LOFARgrams and BTRs are 
passed to trackers and classifiers to identify and track targets 
of interest. 
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These 2D displays contain a large amount of information – 
for example, a LOFARgram of 1 hour’s duration, with an 
integration time of 61s and 600 frequency bins for each 
horizontal line of the display, typically requires about 73 KB. 
This cannot be transmitted in real time at typical LPI data 
transmission rates (~100 bps, see next section). Compression 
techniques have been developed in DSTO (Wang and Cox, 
2003), which greatly reduce the data requirements of the 
images (a typical reduction factor is 50) without noticeably 
degrading the quality of the images. The user can select a 
“quality” factor (QF), which tunes the tradeoff between 
image quality and required data transmission rate. A low QF 
has a low data rate requirement, but the image may be 
noticeably degraded. A high QF has a higher data rate 
requirement, but it is still much lower than that required for 
raw, uncompressed data, and there is no noticeable difference 
between the reconstituted, decompressed image and the 
original image. Use of these compression techniques is 
expected to allow real-time transmission of several types of 
sonar products. 

THEORETICAL LPI BER AND DATA RATES 

We first give an analysis of the performance of the standard 
UATS in a Gaussian channel and for the system with 
convolutional and turbo coding. We then extend that to the 
case of a Rician fading channel with Gaussian noise. 

Gaussian Channel – no FEC 

The following analysis is a review of that given in (Sweet, 
2005), with more detail in the development here. For the 
standard UATS operating in a Gaussian channel, the 
following well-known formulae relate bit error probability Pb 
(also termed the bit error rate, BER), to bit energy to noise 
spectral density ratio Eb/No for k bits per symbol DPSK : 

Pb ≅ Fk (Eb /N0)   , with  (5) 
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For example, k=1 for binary phase shift keying (BPSK). Note 
that eq.(5) is exact for BPSK. In a spread-spectrum 
pseudonoise system, the ratio Es/N0, where Es = kEb is the 
symbol energy, can be shown to be 

bchinschinins RkfRfLNE /// 0 ρρρ ===                (6) 

where ρin is the input signal-to-noise ratio (SNR) at the 
receiver (i.e. the ratio of maximum signal to noise power 
spectral density – PSD); L is the length of the pseudonoise 
sequence, fch is the pseudonoise chip rate, Rs is the symbol 
rate and Rb is the bit rate. Using (6) in (5), we obtain 

)/10( 10/
bch

SNR
kb RfFP in=   (7) 

where SNRin ≡ 10 log10ρin is the input SNR in decibels. The 
dashed curves of Figure 1 plot Pb against bit rate in a 
Gaussian channel for various values of SNRin . 

CRITICAL AND MAXIMUM RANGES 

In a LPI UATS, the transmitter power is limited by the 
requirement to keep SNRin at the minimum presumed 
intercept range, at or below some intercept detection 
threshold, typically 0 dB. The range at which the input SNR 
equals this level is defined as the critical range rcrit . At 
ranges r>rcrit , SNRin is less than 0 dB, and is given by SNRin  
= TL(rcrit) – TL(r), where TL(r) is the transmission loss at 

range r. For a Gaussian channel, this is given by eq.(2). We 
define the maximum range rmax as the range at which the BER 
reaches some maximum acceptable level Pb,max, typically 104. 

 
Figure 1. Bit error rate versus bit rate for uncoded and 

convolutionally coded UATS for various values of input SNR 

Estimation of achievable bit rate at maximum range 

If rcrit , rmax and Pb,max are given, we can compute the 
achievable bit rate at rmax as follows: 

1. Find TL(rcrit) and TL(rmax) from eq.(2) 
2. Compute input SNR at maximum range by SNRin  = 

TL(rcrit) – TL(rmax) 
3. Solve (7) for Rb 

As an example, for rcrit = 20 km and rmax = 27 km, we find 
from steps 1 and 2 of the above procedure that SNRin =  
-7.5dB at rmax. If the maximum acceptable BER, Pb,max is  
10-4 , then from the dashed Pb versus Rb curves of figure 1, 
we find that the achievable bit rate is 100 bps.  

Gaussian Channel with FEC 

This analysis is a review of that given in (Sweet, 2005). The 
effect of FEC is to reduce the required ratio Eb/N0 necessary 
to produce a given BER, and this reduction factor gc is called 
the coding gain. It can be shown that for a coded system, 
eq. (7) can be replaced with 

)/10( 10/
bchc

SNR
kb RfgFP in=  .           (8) 

Convolutional coding 

The value of gc depends on the modulation, the code and  
Eb/N0 – for a convolutional code with constraint length 7, gc 
ranges from 1 to 4.5 dB. Note that these estimates have been 
derived from published curves using coherent PSK and are 
only approximate. The solid curves of figure 1 plot Pb against 
bit rate for convolutional coding in a Gaussian channel for 
various values of SNRin using these estimates of gc . 

The achievable bit rate at the maximum range can be 
calculated as above, with eq.(8) replacing eq.(7).  For 
example, for rcrit = 20 km and rmax = 27 km, we find from 
steps 1 and 2 above that SNRin = -7.5dB at rmax as above. If 
the maximum acceptable BER, Pb,max is 10-4 , then from the 
solid Pb versus Rb curves of figure 1, we find that the 
estimated bit rate is about 200 bps, compared to 100 bps for 
the uncoded system. 
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Turbo coding 

In a turbo coded system, coding gains can be considerably 
greater than for conventionally coded systems. For a typical 
turbo code with convolutional codes in each branch of the 
encoder and an interleaver buffer size of 512, the coding gain 
gc varies from 2.5 dB to 6.7 dB. Note that these estimates 
have been derived from published curves using coherent PSK 
and are only approximate. The solid curves of figure 2 plot Pb 
against bit rate for turbo coding in a Gaussian channel for 
various values of SNRin using these estimates of gc . For rcrit = 
20 km and rmax = 27 km, SNRin = -7.5dB at rmax , as above. If 
the maximum acceptable BER, Pb,max is 10-4 , then from the 
solid Pb versus Rb curve in figure 2 we see that the bit rate is 
predicted to be about 350 bps. 

 
Figure 2. Bit error rate vs bit rate for uncoded and turbo 

coded UATS for various values of input SNR 

Fading channel with Gaussian noise – no FEC 

Consider the BER of the standard UATS at any fixed time in 
a channel with Rician fading. The actual value of Eb/No, say 
Eb’/No is related to the direct-path value of Eb/No by 

0
2

0 //' NEfNE bRb =  

where fR is the fading factor as defined above, and the BER is 
given by  

)/()( 0
2 NEfFfP bRkRB =    (9) 

where the function Fk is as defined in (5). The ensemble 
average of PB(fR) over the distribution of fR in the Rician 
distribution is 

∫
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with p(fR) as in (3). Putting (9) and (3) into (10) yields, for 
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For a long message sequence or for multiple shorter 
messages, eq.(11) gives an average BER for a Rician fading 
channel. The solid curve of figure 3 gives the BER curve for 
 pM = 2, corresponding to a ratio σ / A of 1, where σ is the 

square root of the multipath power and A is the direct path 
amplitude. The dashed curve of Figure 3 gives the BER curve 
for σ / A = ½ . For comparison, the dash-dotted curve gives 
the BER curve for the non-fading channel. Note that for low 
Eb/N0 ,  fading and non-fading BERs are similar. However, as      
Eb/N0 increases, the gap between fading and non-fading BERs 
increases – at higher Eb/N0 , there is a “error floor” effect in 
that BER is dominated by the deeper fading periods. 

 
Figure 3. Theoretical BER curves for standard UATS: 

non-fading and Rician fading channels 

Fading channel with Gaussian noise, FEC 

There are no general theoretical results for the performance 
of the UATS with FEC in fading channels. Theoretical results 
are available for some cases, various bounds on BER are 
presented in the literature, and simulation results are 
presented for particular modulation and coding schemes. Our 
results on the performance of the UATS with convolutional 
and turbo coding are presented in the simulations below. 

SIMULATION RESULTS 

We first present BER estimates for random signals and CSPs 
transmitted through Gaussian and fading channels for the 
standard UATS (no coding), then repeat the simulations for 
convolutional and turbo coding. We have found that the CSP 
BER curves are very similar for LOFARgrams and BTRs for 
a range of QFs, except that there is a small scatter of about 
0.5 dB at low BERs for coded transmissions in fading 
channels. This scatter can be attributed to the burstiness of 
errors from the decoders in a fading channel. For clarity, 
therefore, we present BER curves for a representative CSP – 
a LOFARgram with low QF. We also present representative 
displays of the transmitted images, and discuss their quality. 

Standard UATS – no coding 

The lower dashed curve of figure 4 shows the theoretical 
BER for the standard UATS. The simulated BER curve for 
random messages matches the theoretical curve, and is not 
presented here. Hence, the above analysis for available LPI 
bit rates applies, and the system can support a bit rate of 100 
bps at BER 10-4.  

The lower dash-dotted curve shows the corresponding BER 
curve for the representative CSP, and it follows that for 
random messages closely. Hence the available data rates are 
the same as for random messages. 
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The solid curve shows the simulated BER for random 
messages sent through a Rician fading channel with a 
multipath power twice the direct path power. At higher 
values of Eb/N0 , performance in a fading channel is much 
worse than that in a Gaussian channel. The corresponding 
theoretical curve is the “sigma/A = 1” curve of figure 3. The 
simulated curve is a little above this curve, and is closer to 
the “sigma/A = 0.5” curve of figure 3. This could be 
explained by the fact that the UATS simulator actually 
applies a low-pass filter to the Rician fading envelope to 
simulate the specified fade period, hence the fading variation 
from the multipath is reduced. 

 
Figure 4. Simulated BERs for Gaussian (lower curves) and 

fading (upper curves) channel, no coding 

The upper dash-dotted curve shows the corresponding BER 
curve for the representative CSP, and it follows that for 
random messages closely. 

Figure 5 gives a typical low QF LOFARgram display for 
error-free transmission. Figure 6 displays the same data 
transmitted through the UATS at a bit error rate of 10-4. 
There is some “noise” in the upper third of the picture; 
however, the major features are still clearly visible. This data 
was also transmitted at BER 10-2, however, the received data 
could not be displayed. We assume that this was caused by 
corruption of vital header data at the higher BER. We 
therefore conclude that in the current UATS implementation, 
data rates available for BER = 10-4 (viz. 100 bps), but not 
those for BER = 10-2, can be achieved for transmitting CSPs 
in an uncoded system in a Gaussian channel. We observe, 
however, that in a fading channel, required values of Eb/N0 
are much greater for a given BER (see figure 4), hence 
available data rates are much lower. 

UATS with convolutional coding (soft decoding) 

The middle dashed curve of figure 7 shows the theoretical 
BER for the standard UATS. The simulated BER curve for 
convolutional coding of random messages in a Gaussian 
channel is given by the lower solid curve. From this curve, 
the coding gain (reduction in required Eb/N0) for BER = 10-4 
is 2.2 dB. From eq.(8), this will allow an increase of 
100.22 = 1.7 in data rate to 170 bps, a little less than that 
estimated in the section on  theoretical BER and bit rate.  
However, the latter estimates are only approximate, and 
convolutional coding with soft decoding still allows a 
significant improvement in data rate. The coding gain 
increases as Eb/N0 increases. 

 
Figure 5.  Error-free transmission of CSP  

(low QF LOFARgram) 

 
Figure 6. Uncoded transmission of CSP, standard UATS, 

Gaussian channel, BER = 10-4 

The simulated BERs for CSP transmission are very similar to 
those for random messages, so a similar improvement in data 
rate can be expected. 

The upper curves show the simulated BER curves for random 
messages and CSPs in a fading channel. Clearly, fading 
greatly degrades the performance of convolutional coding. 
This could be mitigated by interleaving and decision-
feedback equalization (DFE). 
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Figure 7. Simulated BERs for Gaussian (lower curves) and 

fading (upper curves) channel, convolutional coding 

 
Figure 8. Convolutionally-coded transmission of CSP, 

standard UATS, Gaussian channel, BER = 10-4 

Figure 8 displays low QF LOFARgram data transmitted 
through the UATS with convolutional coding at BER 10-4. 
This display is indistinguishable from that of figure 5 (error-
free transmission), except for some very minor detail near the 
top of the image. However for BER 10-2, the received data 
could not be displayed, as was the case for uncoded 
transmission – as above we attribute this problem to the 
corruption of vital header data at the higher BER. We 
therefore conclude that in the current UATS implementation, 
data rates available for BER = 10-4 (viz. 170 bps), but not 
those for BER = 10-2, can be achieved for transmitting CSPs 
in a convolutionally-coded system in a Gaussian channel. We 
note, however, that transmission of data using convolutional 
coding in fading channels breaks down at all but the highest 
values of Eb/N0, probably due to burst errors that were not 
handled well by the decoder. Techniques such as interleaving 
and DFE are required to overcome this problem. 

UATS with turbo coding 

The upper dashed curve (for Eb/N0 > 6 dB) of figure 9 shows 
the theoretical BER for the standard UATS. The simulated 
BER curve for turbo coding of random messages in a 
Gaussian channel is given in the lower solid curve. From this 
curve, the coding gain for BER = 10-4 is 4 dB. From eq.(8), 
this will allow an increase of 100.4 = 2.5 in data rate to 
250 bps, a little less than that estimated in the section on 
theoretical BER and bit rate. However, the latter estimates are 
only approximate, and turbo coding still allows a significant 
improvement in data rate, and is better than that available 
with conventional (convolutional) FEC.  Figure 9 shows that 
the improvement factor increases as Eb/N0 increases, to 5 dB 
(a factor of 3.2) for a BER of 10-5. 

The simulated BERs for CSP transmission are very similar to 
those for random messages, so a similar improvement in data 
rate can be expected. 

The middle curves (for Eb/N0 > 5.7 dB) show the simulated 
BER curves for random messages and CSPs in a fading 
channel. The fading degrades the performance of turbo 
coding, but not by a large factor – typically 1 dB. This could 
also be mitigated if necessary by interleaving and decision-
feedback equalization (DFE). 

 
Figure 9. Simulated BERs for Gaussian (lower curves) and 

fading (upper curves) channel, turbo coding 

Figure 10 displays low QF LOFARgram data transmitted 
through the UATS at a bit error rate of 10-4. (Recall that 
figure 5 shows the corresponding display for error-free 
transmission). There is some “noise” in the lower half of the 
picture; however, the major features are still clearly visible. 
However, as above for BER 10-2, the received data could not 
be displayed, and we attribute this problem to the corruption 
of vital header data at the higher BER. We therefore conclude 
that in the current UATS implementation, data rates available 
for BER = 10-4 (viz. 250 bps), but not those for BER = 10-2, 
can be achieved for transmitting CSPs in a turbo-coded 
system in a Gaussian channel. In the fading channel 
examined here, coding gains and hence data rates are 
somewhat less than for a Gaussian channel. 
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Figure 10. Turbo-coded transmission of CSP, standard 

UATS, Gaussian channel, BER = 10-4 

CONCLUSIONS AND FUTURE WORK 

A simulator has been built to study the performance of a 
UATS in transmitting random messages and CSPs through 
Gaussian and fading channels. Three channel coding options 
are available – no coding, convolutional coding (hard and 
soft decoding) and turbo coding. A theoretical study of the 
performance of the UATS in a Gaussian channel for the three 
channel coding options has been reviewed, and extended to 
the consideration of Rician fading channels. Simulations 
show that for any coding and channel option, UATS 
performance in transmitting CSPs is close to that for 
transmitting random messages. Significant improvements are 
available in using convolutional coding, and further 
improvements arise from the use of turbo coding, though they 
are somewhat less than those estimated from published 
curves using coherent PSK modulation. Fading channels 
greatly degrade the performance of the uncoded system and 
the convolutional system, but the degradation is less for a 
turbo system. When the transmission of CSP data by any 
means results in a BER of 10-4 or less, satisfactory images are 
obtained. The quality of images decreases as BER increases 
beyond 10-4, and for BER 10-2 and above, images cannot be 
transmitted because vital header data is generally corrupted. 

It is intended to try interleaving and DFE to improve the 
robustness of the UATS to fading channels. Other turbo 
coding configurations, including increasing the interleaver 
size and using different constituent codes in the branches of 
the encoder, will be tried to improve its performance. 
Coherent PSK will be added to the UATS, as this is known to 
give very good performance with turbo coding. In this case, 
carrier synchronization will be required. It is also intended to 
implement stronger coding schemes for the header 
information of compressed images, so that higher error rates 
could be tolerated in the main compressed data information, 
allowing higher data rates. 
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