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ABSTRACT 

Maximising the cost-effectiveness of noise mitigation treatments for industrial facilities is usually a prime considera-
tion. Accordingly, the selection of noise control treatments for individual noise sources can be optimised to maximise 
the total value-for-money of the overall noise mitigation treatment program. Additionally, it may also be desirable to 
stage the implementation of the plant’s noise reduction program into several phases, for instance if the noise mitiga-
tion funding is only available as an annual budget allowance. A method is proposed to achieve these goals using Ge-
netic Algorithms. An example case study is provided to illustrate the procedure. A hypothetical industrial plant with 
100 noise sources is investigated, and the procedure is demonstrated with an example scenario of a target total noise 
level reduction, and a fixed annual budget allowance for noise mitigation treatments.  

INTRODUCTION 

Most engineering design problems are required to achieve the 
desired outcome for an efficient overall cost.  

In the case of designing a noise control treatment program for 
an industrial plant with many individual noise sources, it may 
be prohibitively expensive to install all of the required noise 
control treatments en masse. Consequently it may be neces-
sary to implement the plant noise mitigation program in 
stages, by implementing whatever noise control treatments 
are affordable according to a staged program, for example 
within an annual budget allowance.  

In this case, it is likely to be desirable to achieve the greatest 
possible overall noise reduction at each of the stages within 
the budgetary constraints, but particularly so for the first 
stage, in order to manage the perceptions of the program’s 
initial success and expectations of the final outcome.  

It would be advantageous to achieve a significant reduction 
of the overall site’s noise emissions in the first stage of the 
noise reduction program, in which only a few noise sources 
are treated, even though the overall criteria will not be met 
until later stage(s). This can be achieved by the careful selec-
tion of noise treatments to be implemented in the first stage, 
which can maximise the noise reduction achievable within 
the first term’s budget.  

Thus the implementation of a site’s noise mitigation treat-
ment program can be optimised not only in terms of overall  
cost-effectiveness, but also in terms of maximising the total 
noise reduction achieved in each stage of the program. 

Design by engineering optimisation 

Although nonlinear optimisation techniques can be used in 
some applications of noise analysis (Waly & Sarker 1998), 
linear or non-linear optimisation techniques are too simplistic 
to deal with complex engineering problems (Sato et al 2004). 

However, discrete numerical optimisation techniques are 
useful for complex acoustic design tasks entailing many noise 
sources, since ‘off-the-shelf’ noise control treatment devices 
are often available in a range of various models and sizes, 
which gives several different available values of Insertion 

Loss (and corresponding item cost) from which to choose for 
each of the noise sources.  

Discrete optimisation methods are well suited to problems in 
which the solution being sought is one of a number of objects 
in a finite set (Nocedal & Wright 1999). 

In particular, Genetic Algorithms are well suited for solving 
discrete optimisation problems, especially in combinatorial 
situations, because of their ability to handle large numbers of 
variables, and they can usually find the global optimum solu-
tion with a high probability (Rao 1996).  

Furthermore, the Genetic Algorithm method is particularly 
useful for this current example application since it can be 
used to optimise the design in both of the required directions: 
firstly to achieve the final target overall noise level while 
minimising the overall total cost, and then to maximise the 
incremental noise level reduction achievable with a fixed 
budget for each stage of the noise management program. 

Furthermore, if the plant is existing, Genetic Algorithms can 
also be used to help identify the sound power levels of the 
various existing noise sources within a complicated sound 
field (Lan & Chiu 2008). 

Genetic Algorithms 

Genetic Algorithms (GAs) are based on Darwin’s principle of 
natural selection by mimicking the evolution of life.  

The procedure emulates the process of evolution, by using 
suitably sized populations, randomisation, reproduction, 
crossover and mutation.  

A GA allows a population composed of many individuals to 
evolve under specified selection rules to a state that maxi-
mises the overall ‘fitness’ (ie. minimises the cost function) 
(Haupt & Haupt 2004).  

The algorithm therefore attempts to mimick the evolution of 
life by using genetic recombination in a gradual procedure 
which leads to maximisation of the ‘fitness’ of the chromo-
some.  

The Genetic Algorithm proceeds with an initial population of 
individuals. Each individual represents a potential solution to 
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the problem being investigated, and each individual is evalu-
ated in terms of its fitness. Some individuals are modified to 
form new individuals, either by mutation or by crossover, 
which creates new individuals by combining parts from two 
separate individuals. These new individuals (offspring) are 
then evaluated for their fitness, and the next population is 
formed by selecting the fittest individuals from both the par-
ent and the offspring populations (Gen & Cheng 2000). 

The basic procedure is as follows: 

1. Commence with an initial population of trial design 
vectors 

2. Combine some of the ‘fittest’ examples with a limited 
degree of randomisation, introducing crossover of ge-
netic information from the parents to create the next 
generation of design vectors 

3. Introduce some mutation into the chromosomes of the 
offspring, with a controlled degree of randomisation 

4. Go to Step 2 and repeat for a maximum number of gen-
erations.  

Some of the benefits of the method over other optimisation 
techniques, for combinatorial optimisation problems are: 
 It is computationally efficient, because it is not a ‘brute 

force’ or an exhaustive method, meaning that not all 
possible combinations need to be evaluated 

 It is not a gradient based method, which is a significant 
advantage in combinatorial optimisation problems be-
cause of the discrete variables and discontinuities in the 
objective (fitness) function  

In Genetic Algorithms, the design variables are represented 
as strings of binary numbers, usually 0 and 1.  

The ‘chromosome’ is therefore a binary string representing 
the value that each of the variables have taken, which to-
gether forms a binary representation of the overall design 
vector.  

In the current example case of a noise management program, 
the design vector ‘chromosome’ represents which specific 
noise control treatments are to be applied to each noise 
source, so that the entire bit string makes up the complete 
noise management program of the entire plant.  

Inclusion of Constraints  

The Genetic Algorithm method maximises the objective (fit-
ness) function. If the optimisation task is to find the mimi-
mum of the objective function, the function simply needs to 
be negated. However, since the GA method is an uncon-
strained optimisation routine, there is no way to implicitly 
include boundary contraints. Constraints must therefore be 
handled by the exterior penalty function method (Rao 1996).  

A simple penalty function is to sum the squares of the viola-
tion of the constraints and multiply by a constant. The uncon-
strained function ( ) can be transformed to a constrained 
function ( )as follows: 

Minimise 

( ) = ( ) +  max 0, ( ) + ( )  
 [1]

where ( ) are the inequality constraint(s) and ( ) are 
the equality constraint(s).  

 

( ) 0        = 1, …   [2]

 

( ) 0          = 1, …   [3]

 

and  is a constant, known as the penalty parameter. Usually 
 is deliberately forced to be a large number. 

EXAMPLE CASE STUDY 

The example case study is a hypothetical industrial plant with 
100 noise sources.  The sound power levels of the noise 
sources were randomly assigned, varying between 75 and 
120dB re 10-12W as shown in Figure 1. 

 

Figure 1. Sound Power Levels of noise sources (dB re 1pW) 

 
A hypothetical schedule of cost and Insertion Loss [IL] for 
the available noise control treatments was developed as a 
basis for the optimisation exercise, shown numerically in 
Table 2 and graphically in Figure 1. For this example case 
study, three noise control treatment options exist for each 
noise source, the cost of which depends on the noise source’s 
original untreated sound power level.  

 
Table 2. Noise control treatment options 

 

Treat-
ment 

option 
j 

IL 
(dB) Cost ($) depending on PWL  

  Sound Power Level dB re 10-12W 

  75-85 85-95 95-105 105-115 >115 

0 0 0 0 0 0 0 

1 5 2k 3k 4,5k 6,750 10,125 

2 10 4,5k 6,75k 10,125 15,188 22,781 

3 15 10k 15k 22,5k 33,750 50,625 
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Figure 1. Noise control treatment options 

 
The length of the binary string design vector is determined as 
follows: if each design variable  =  1, 2, … ,  is repre-
sented as a binary string of length  bits, then the design 
vector’s total length will be .  

Since there are 4 noise control treatment options available, 
the variable can be represented by a 2-bit string as shown in 
Table 2. 

 
Table 2. Binary representation of noise treatment option  

 
j (decimal) 0 1 2 3 
j (binary) 00 01 10 11 

 
Since all of the variables’ values can be represented by a 
string of 2 bits or less, with a total of 100 noise sources, the 
length of the chromosome (the binary representation of the 
design vector) will be 2*100 = 200 bits. 

An example segment of a chromosome is shown in Table 3. 

 
Table 3. Example chromosome segment  

 
Noise 
source 
number 

i-2 i-1 i i+1 i+2 

variable xi-2 xi-1 xi xi+1 xi+2 
noise 

treatment 
option j 

(decimal) 

0 3 1 0 2 

chromo-
some 

segment 
0 0  1 1  0 1  0 0  1 0  

 
Example scenario 

The above hypothetical industrial plant with its 100 noise 
sources will be investigated for the case of a given overall 
noise reduction target with the aim of minimising the total 
cost. The noise management program will then be further 
investigated to determine the yearly noise reduction achieve-
able with a fixed annual noise mitigation budget allowance. 

Inputs: 

 Target overall noise level reduction: 6.03dB 

 Annual budget: $200,000  

 Number of noise sources = 100 

The optimisation problem is therefore: 

 Objective function to be minimised = overall cost 

 Constraint(s): target noise level must not be exceeded 

In formal notation, the cost function to be minimised is: 

 

( ) =  ( )  
 [4]

 
Where ) is the vector representing the costs of noise 
treatments for each noise source. 

The constraint is introduced with the penalty function as 
follows: 

Minimise: 

( ) = ( ) + max 0,  
 [5]

where  is the total sound power level of the entire plant 
with treated noise sources, for each specific individual within 
the GA population (eq. [6]), and is the total sound power 
level of the entire plant before any noise treatments (eq. [7]).  

= 10 log 10  
 [6]

where  is the sound power level of noise source i with 
treatment j, and 

= 10 log 10  
 [7]

 
where  is the untreated sound power level of all noise 
sources (ie. = 0 for all noise sources ). 
 
Results: 

The evolution of the Fitness function for the optimal calcula-
tion run is shown in Figure 2.  

 

Figure 2. Evolution of the Fitness function  

 

 

0.975

0.98

0.985

0.99

0.995

1

0 20 40 60 80 100

Fi
tn

es
s

Generation

Fitness Chart
Fittest
Average

$0

$10,000

$20,000

$30,000

$40,000

$50,000

$60,000

5 10 15

C
os

t $

Insertion Loss dB

Cost of noise control treatments

PWL 75 to 85 dB

PWL 85 to 95 dB

PWL 95 to 105 dB

PWL 105 to 115 dB

PWL >115 dB



23-25 November 2009, Adelaide, Australia Proceedings of ACOUSTICS 2009 

4 Australian Acoustical Society 

The results of the (assumed to be) successful optimisation 
GA calculation run are:  

 Total cost of noise mitigation program: $442,375 

 Number of noise sources to be treated: 47 

 Resultant overall noise level reduction: 6.04dB 

The top 25 noise sources that will have the highest sound 
power levels after the noise management program is com-
pleted, is shown in Figure 3.  

Figure 3. Top 25 noise sources post-treatment 

 
The optimised noise treatment options for each of the noise 
sources are shown in Table 4.  

 
Table 4. Optimised noise control treatment program  

 
Noise Source i vs. Treatment option j  

i j  i j  i j  i j 
1 0  26 1  51 1  76 1 

2 0  27 0  52 0  77 2 

3 0  28 0  53 2  78 0 
4 0  29 0  54 1  79 0 
5 0  30 1  55 0  80 0 
6 2  31 1  56 0  81 0 
7 1  32 2  57 1  82 2 
8 0  33 0  58 1  83 0 
9 0  34 1  59 2  84 2 
10 2  35 2  60 0  85 1 
11 1  36 2  61 2  86 1 
12 0  37 2  62 0  87 0 
13 1  38 0  63 0  88 1 
14 0  39 0  64 0  89 0 
15 0  40 0  65 2  90 0 
16 0  41 1  66 1  91 0 
17 0  42 0  67 0  92 0 
18 0  43 0  68 2  93 1 
19 1  44 0  69 1  94 0 
20 2  45 0  70 2  95 0 
21 0  46 1  71 0  96 1 
22 0  47 1  72 1  97 2 
23 0  48 0  73 1  98 0 
24 0  49 1  74 1  99 2 
25 0  50 0  75 1  100 1 

 

Once the required noise mitigation schedule has been deter-
mined as shown in Table 4, the second step is to maximise 
the noise reduction achievable in each year of the staged 
program according to the annual budgets. For this step, the 
variable is a single-bit string representing true/false state-
ments in answer to the question: “will this noise source be 
treated in this year’s annual budget?” 

The second optimisation problem is formulated as follows: 

 Objective (Fitness) function to be maximised = yearly 
total noise level reduction 

 Constraint(s) = fixed incremental budget 

The results are shown in Table 5. 

 
Table 5. Summary of incremental noise management pro-

gram  
Year 1 2 3 

Budget $200,000 $200,000 $200,000 
Expenditure $200,000 $198,875 $43,500 
Incremental 
noise level 
reduction 
achieved 

2.11 dB 3.67 dB 0.26dB 

Total noise 
level reduc-

tion achieved 
6.04dB 

The detailed noise management program showing the yearly 
noise treatment schedule is summarised in Table 6.  

 
Table 6. Optimised noise control treatment program  

 
Noise Source i vs. Year of treatment y  

i y  i y  i y  i Y 
1   26 3  51 3  76 2 

2   27   52   77 1 

3   28   53 2  78  
4   29   54 1  79  
5   30 1  55   80  
6 2  31 1  56   81  
7 1  32 2  57 1  82 3 
8   33   58 2  83  
9   34 1  59 2  84 3 
10 1  35 1  60   85 2 
11 2  36 2  61 1  86 2 
12   37 1  62   87  
13 1  38   63   88 3 
14   39   64   89  
15   40   65 1  90  
16   41 2  66 1  91  
17   42   67   92  
18   43   68 2  93 1 
19 3  44   69 3  94  
20 1  45   70 1  95  
21   46 1  71   96 2 
22   47 1  72 1  97 2 
23   48   73 2  98  
24   49 1  74 2  99 2 
25   50   75 1  100 1 
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DISCUSSION 

The probability of a Genetic Algorithm finding a global op-
timum depends on several factors including the ‘smoothness’ 
of the cost function’s ‘surface’. When a Genetic Algorithm is 
used, the procedure must be repeated numerous times with 
different initial guesses, to improve the likelihood of finding 
a global optimum.  

In the current example, the optimisation routine needed to be 
run approximately 10 times before confidence was gained 
that a global optimimum had been achieved. The process 
sometimes converged to a local sub-optimal minima and 
failed to emerge within the pre-set maximum number of it-
erations, and on a few other occasions it did not converge at 
all. It is therefore expected that the ‘surface’ of the cost func-
tion is likely to have multiple local minima, and may not 
have a well-definied globally optimal minima.  

The evolution of the Fitness function for two of the sub-
optimal runs are shown in Figures 4a and 4b. 

 

Figure 4a. Non-optimal convergence example (a). Total 
noise treatment cost = $510,218.75 

 

 

Figure 4b. Non-optimal convergence example (b). Total 
noise treatment cost = $564,468.75 

 

CONCLUSIONS 

The Genetic Algorithms method has been clearly demon-
strated to be a very useful method of achieving a complicated 
acoustic design optimisation task.  

The method is found to be a versatile and valuable tool for 
the purposes of optimising a staged noise management pro-
gram, firstly in terms of overall cost effectiveness of the en-
tire program, and also for maximising the noise reduction 
benfit of the intermediate implementation stages.  

These two design goals are subtly different, whereby in fact 
their objective functions and constraints are reversed relative 
to each other, and the Genetic Algorithms method is shown 
to be readily adaptable to be useable in both cases.  

LIMITATIONS OF THE STUDY AND FURTHER 
RESEARCH 

The example case study given has been presented without 
overly complicated acoustic parameters, in order to demon-
strate the method as clearly as possible. Most notably, the 
noise sources’ sound power levels and the noise mitigation 
treatments’ Insertion Losses were assigned a single numerical 
value without any sound frequency information. Also, the 
case study investigates only the total sound power level of the 
plant, and does not consider the added complexity of possible 
variability in noise source spatial locations relative to noise 
sensitive receiver(s).  

Nevertheless, the method can be readily utilised in a real-
world situation, with spatially distributed noise-sensitive 
receivers and noise sources, spectral information of noise 
sources and mitigation, as well as incorporating the propaga-
tion attenuation by shielding, ground & air absorption and so 
on.  
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