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ABSTRACT 
In the sport of archery, recent developments in materials technology have seen the introduction of carbon-fibre alu-
minium composite arrows. Archery performance has been shown to be dependent on the vibrational behaviour of ar-
rows (including the natural frequencies and mode shapes). This paper investigates the vibration of composite archery 
arrows through analytical and finite element modelling. Computer models used in this paper employ modal analysis 
to identify the significant modes of vibration. Results from the numerical simulations are also compared to experi-
mental measurements using a Polytec scanning laser Doppler vibrometer (PSV-400). Experiments use both mechani-
cally and acoustically coupled vibration actuators to vibrate the composite arrow structure. Evaluation of the modal 
behaviour shows good agreement between the theoretical models and the experiments.  

INTRODUCTION 

Using composite materials in the design of archery arrows 
offers the advantage of high strength and stiffness combined 
with low weight. The composite arrow material comprises of 
unidirectional carbon fibre and epoxy resin matrix fused to a 
high tensile aluminium alloy core tube. Composite arrows 
have been designed to minimise the aerodynamic drag by a 
using a smaller diameter shaft when compared to arrows 
made entirely of aluminium alloy. The use of composite ma-
terials has allowed this optimisation while still retaining the 
required stiffness for archery performance. However, the low 
transverse strength of the orthotropic composite material has 
the disadvantage of delamination or subsurface cracks when 
exposed to fatigue and impact loads.  

Archery performance depends on the proper matching of 
arrow to bow. The flexural rigidity of the arrow, also called 
the arrow spine, should allow one full cycle of oscillation by 
the time it leaves the bow (Klopsteg, 1943). For best perfor-
mance the arrow must bend around the bow and avoid any 
contact that may deflect the arrow from its desired trajectory. 
One problem that archers face is the identification of dam-
aged arrows that have lost structural integrity, and will exhib-
it changed dynamic performance when shot from a bow.  

After the arrow leaves the bow, the free-flight of the arrow 
has been shown to have bending modes of vibration (Za-
nevskyy, 2001). This affects the aerodynamic performance 
since the lowest aerodynamic drag will be achieved when the 
arrow’s path is approximately straight with a zero angle of 
attack.  

The motivation for this paper is to perform a preliminary 
investigation into the composite archery arrows to gain a base 
line for comparison to damaged arrows in future studies. 
Vibration prediction and modelling is important for monitor-
ing the structural health of composite materials and under-
standing their performance in-service.  

VIBRATION OF ARCHERY ARROWS 

Composite archery arrow shafts are long thin cylindrical 
shells with a multi-layer wall of variable thickness. A com-
plete assembled arrow will have a nock on one end, a point 
weight on the other, and vanes or fletches as shown in Figure 
1. The vibration analysis of archery arrows should take into 
account this physical composite structure. In this paper the 
focus will be on evaluation of the modal behaviour of archery 
arrow shafts without considering the point masses of the 
nock, point and fletches.  

 

 
Figure 1. Complete assembled arrow 

The vibration behaviour of archery arrows is highly complex. 
The long slender geometry leads to beam-like behaviour, 
while the hollow tubular cross-section also gives rise to shell 
modes of vibration. The large thickness to radius ratio means 
that thin-shell theory does not perfectly capture the dynamics 
and the varying thickness along the length further compli-
cates the modal response. The different behaviours may be 
analysed using known theories of beam and shell vibrations 
to determine natural frequencies and mode shapes. Relevant 
literature for the range of vibrational behaviours is reviewed 
in this section to determine the most appropriate approaches 
for modelling a composite archery arrow. 

Vibration of a beam in bending considers the displacements 
perpendicular to its length. These vibrations are often called 
transverse or flexural vibrations. Transverse vibration analy-
sis of a beam usually employs simple beam theory, which 
assumes that the beam has uniform cross-section. It is also 
assumed that the plane of symmetry of the beam is the plane 
of vibration. The vibration of a bar can be considered when 
displacements are axially aligned along the length of the 
object. The beam and bar approximations are considered 
suitable for long shells with the length to radius ratio > 20 
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(Forsberg, 1966). The different modes of vibration are  
dependent on the boundary constraints. In this study, the 
primary interest is of free-free boundary conditions for a 
cylindrical beam. 

While beam theory may be most suited to the long slender 
structure of the arrow, shell theories are required to capture 
the cross-sectional modes. There are many shell theories that 
can be applied to cylindrical shells, including both thin and 
thick-walled shells. These theories are derived from strain-
displacement equations, force and moment resultants, and 
equations of motion (Leissa, 1993). Differing assumptions 
for which terms can be neglected in the derivation produce 
approximate solution shell theories with varying complexity. 
For example, rotary inertia and shear deformation is general-
ly neglected unless the shells become relatively thick, with 
the thickness to radius ratio < 1/10 (Leissa, 1993). The main 
factor to consider is if membrane forces dominate or bending 
effects dominate the vibrational behaviour. Physical parame-
ters such as the thickness to radius ratio, the length to radius 
ratio, and the boundary conditions will determine the most 
appropriate analytical theory for a given application. 

Typical vibration modes of cylindrical shells are shown in 
Figure 2. The circumferential modal indices n=0,1,2,3… 
indicate the number of waves around the circumference of 
the cylinder. The axial modal indices m=0,1,2,3… indicate 
the waves along the length of the cylinder. The number of 
axial nodes will depend on the end boundary conditions. For 
the free-free boundary conditions and axial modal index of 
m=1, there will be one axial node line of minimum vibration. 
The axial nodal patterns shown in Figure 2 are the out-of-
plane motion for opposite sides of the cylinder. This motion 
will be in phase when the circumferential mode index n is 
even and out of phase when the circumferential mode index n 
is odd.  In a cylinder, displacements in the circumferential, 
axial and radial directions must be considered to accurately 
capture the dynamic behaviour (Fahy and Gardonio, 2007). 
Independent modes occur in the circumferential, axial and 
radial directions. 

 
Figure 2. Cylindrical shells modes of vibration, adapted from 

(Forsberg, 1966) and (Egle and Sewall, 1968). 

The multi-layered composite cylinder of archery arrows may 
be considered as thick-walled and as such, thin-shell theory 
for cylindrical structures may not always be valid (Hamidza-

deh and Jazar, 2010). Analytical solutions become increas-
ingly complex as the wall thickness increases and when the 
different layer properties (often orthotropic) are included. 
Furthermore, archery arrows can have variable thickness 
carbon fibre layer, which is tapered for aerodynamic perfor-
mance. The derivation of a closed-form solution for shells 
having continuously variable wall thickness is essentially 
intractable (Leissa, 1993). Cylinders of variable thickness are 
sometimes modelled in the form of a step discontinuity in the 
thickness at some point along the length of the cylinder in 
order to reduce the complexity (Leissa, 1993).  

 

The review of relevant literature presented here covers a 
small portion of the large range of studies into cylindrical 
shells. The constraints that limit the analytical solution will 
be the physical parameters of the structure, which determine 
when membrane effects dominate or when the bending ef-
fects will dominate the vibrational behaviour. The relevance 
of each shell theory to a particular cylindrical structure will 
depend on the length to radius ratio and the thickness to radi-
us ratio. For a composite archery arrow that is a long and thin 
cylindrical shape with relatively thick walls, it is clear that 
the bending effects will dominate and beam theory is most 
appropriate to calculate the dominant natural frequencies. 

Archery arrow specimens 

The arrow specimens used in the experiments included an all 
aluminium arrow, as well as two different composite arrows. 
The aluminium arrow is a Superlite1713 shaft and the com-
posite arrows are Protour570 and Protour380 shafts that 
where donated by Easton Technical Products (see Figure 3).  

 

 
Figure 3. Archery arrow specimens, pictured from left to 

right the ProTour570, Superlite1713 and ProTour380. 

The physical dimensions of the arrow specimens where taken 
from the manufacturers specifications (Easton, 2011) as well 
as measurements. The outer diameter of the tested arrows 
was measured using a micrometer and the average radius 
profiles are shown in Figure 4. These dimensions where used 
to create the FE models of the composite arrows. Two speci-
mens of the aluminium arrow, and three specimens of each 
composite arrow were tested to provide a good statistical 
average for each vibrational experiment. The arrow speci-
mens used in the experiment include whole stock length 
shafts without the nock and point installed. It is expected that 
future work will be performed on fully assembled arrows 
with nocks and points. 
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Figure 4. Profiles of archery arrow specimens 

The size of the composite arrow shaft is defined as the static 
spine of the arrow, that is the deflection of the arrow in thou-
sandths of an inch, when a 880gram (1.94 lbs.) is suspended 
from the centre of the arrow that is supported at two points 
711mm (28 inches) apart (Park, 2011). For example, the Pro-
Tour570 will have a deflection of 14.578mm (570/1000 inch) 
when tested for static spine (Easton, 2011). The static spine 
test is useful for estimating unknown material properties of 
the composite arrow such as the Young’s modulus.   

ANALYTICAL CALCULATIONS 

Typical analytical approaches to estimate the natural fre-
quencies of the arrow specimens use beam theory for the low 
frequency modes of vibration, and thin shell theory for high 
frequency modes. 

Beam and Bar theory 

In the case of a beam type vibration of a circular cylindrical 
shell, it can be justified theoretically that basic equations of 
vibration of a thin shell cylinder can be reduced to the trans-
verse vibrations of a beam provided that the length to radius 
ratio is much greater than unity (Kornecki, 1971). The slen-
der beam theory, often refereed to as Euler-Bernoulli beam 
equation, is based on the assumption that shear deformation 
is much smaller than the transverse or bending deformation. 
For boundary conditions of a free-free beam the weighted 
frequencies βal are listed in Table 1. To keep consistent sub-
scripts, the bending mode number a is used, where a=1 is the 
first bending mode of the beam with frequency of ωa. This 
first bending mode is equivalent to the cylindrical mode of 
vibration with circumferential mode of n=1, and axial mode 
of m=2. The formula for the natural frequency ω is given in 
Table 1.  

Table 1. Weighted natural frequencies for free-free boundary 
conditions (Inman, 2001) 

a βal 
0 0 (rigid-body mode) 
1 4.73004074 
2 7.85320462 
3 10.9956078 
4 14.1371655 
5 17.2787597 

> 5 (2a + 1) π/2  
ω(n=1, m=a+1) = ωa = (βal)2  √(E I / (ρ A l4) )  

where a is the bending mode number,  
E is Young’s modulus, I  is the moment of inertia, 

ρ is the density, A is the cross section area,  
and l is the length of the beam. 

For the bar type vibrations of a cylinder the natural frequency 
ωb where b is the bar (or extension) mode number, may be 
found using (Inman, 2001). 

 
ωb = (b π √( E / ρ) ) / L (1) 

where b is the bar (or extension) mode number, E is Young’s 
modulus, ρ is the density of the shell material, and L is the 
length of the cylinder. 

Thin shell theory 

Free-free boundary conditions will be used for the arrow 
shafts. For this configuration some examples of vibrational 
modes are shown in Figure 5. In this current work, the two 
theories used to find the circumferential modes of vibration 
of the cylinder were the Love-Timoshenko theory for cylin-
drical shells of infinite length (Leissa, 1993), and Rayleigh’s 
inextensional theory of shells (Leissa, 1993). These theories 
result in the non-dimensional frequency parameter Ω given in 
Equation (2). 

 
Figure 5. Examples of vibrational modes of a cylinder, 

adapted from (Hamidzadeh and Jazar, 2010). 
 
Ω2 = (ρ (1 – ν2) R2 ω2) / E (2) 

where ρ is the density of the shell material, ν is Poisson’s 
ratio, R is the radius of the cylinder, ω is the natural frequen-
cy, and E is Young’s modulus.  

The radial and circumferential modes of vibration in the 
Love-Timoshenko theory are calculated using Equation (3). 
The lowest values found from this formula will be the cir-
cumferential modes of vibration for n >= 2. 

 
Ω2 = ½( (1 + n2)(1 + kn2)                            
               ± √((1 + n2)2 – 2kn2(1 – 6n2 + n4)) ) (3) 

where n is the circumferential mode index and k is the non-
dimensional thickness parameter given in Equation (5). 

Natural frequencies and mode shapes for a cylinder with free-
free boundary conditions may be obtained using the inexten-
sional theory formulated by Rayleigh (Leissa, 1993). The 
inextensional theory of shells, that requires middle surface 
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deformation without stretching, is calculated using Equation 
(4) and correlates well with the Love-Timoshenko circumfer-
ential modes of vibration.  

 
Ω2 = k n2 (n2 – 1)2 / (1 + n2) (4) 

In the previous equation k is the nondimensional thickness 
parameter given in Equation (5) and n is the circumferential 
mode index.   

 
k = h2 / 12R2 (5) 

where h is the thickness of the shell and R is the radius. 

The thin shell theories were used to calculate the circumfer-
ential modes when n=2 and n=3. These approximate thin 
shell theories have good agreement and will converge to the 
exact theory for the higher circumferential modes, but are not 
suitable for calculating modes where n < 2 (Leissa, 1993).  

FINITE ELEMENT MODELLING 

Finite element (FE) analysis was conducted to investigate all 
of the modes of vibration (beam and shell) of the composite 
archery arrow. The FE models were developed in ANSYS 
Workbench 12.1 using multi-layered quadratic shell elements 
(SHELL281). A single shell element represented the full 
thickness of the arrow wall with 12 elements around the cir-
cumference (see Figure 6). The shell body was mapped 
meshed (typical element aspect ratio 1:1) to give around 600 
element divisions along the arrow length, which ranged from 
700-900mm. A total of 5000-9500 elements were used, de-
pending on the length of the model. Three FE models were 
developed, the first for an all aluminium arrow, and another 
two for the composite arrows. The aim of the aluminium 
isotropic model is for validation of the FE procedure against 
isotropic analytical models. The composite FE models build 
on the isotropic model by adding a layer of orthotropic mate-
rial for the carbon epoxy material. Eigenvalue modal anal-
yses were conducted using ANSYS to obtain the natural fre-
quencies and mode shapes.  

 

 
Figure 6. Meshed Arrow 

Aluminium cylindrical shell model 

A FE model of an aluminium cylindrical shell was created to 
match the physical properties of an aluminium arrow shaft 
with length of 700mm, nominal diameter of 6.747mm (17/64 
inch), and wall thickness of 0.33mm (13/1000 inch). These 
dimensions correspond to a Superlight1713 arrow, which is 
made of AL7075-T9 aluminium and has a density of 
ρ=2800kg/m3, Poisson ratio of ν=0.33, and Young’s modu-
lus of E=72GPa (Gere, 2001). The shell surface body of the 
arrow was mapped with face meshing to give a total of 5208 
elements. 

The natural frequencies for the cylindrical and bending 
modes were obtained and are compared against the analytical 
calculations from the beam and bar theory using Table 1 and 
Equation (1), and the thin shell theory using Equations (2) 
through (5). The results for the natural frequencies are given 
in Table 2 along with the mode indices.  

Table 2. Comparison of natural frequencies for an aluminium 
cylindrical arrow using analytical expressions and FEA 

Analytical 
fA (Hz) 

FEA  
fFE (Hz) 

%err 
Δf/fA 

Mode indices 

 0  Translation modes 
84a 84 0 n=1, m=2 bending 

231a 230 0 n=1, m=3 
453a 451 0 n=1, m=4 
748a 743 -1 n=1, m=5 
1118a 1107 -1 n=1, m=6 
1561a 1541 -1 n=1, m=7 
2078a 2044 -2 n=1, m=8 

 2222  n=0, m=1 breathing 
2669a 2613 -2 n=1, m=9 
3334a 3248 -3 n=1, m=10 
3622b 3622 0 n=0, m=0 extension 
4073a 3947 -3 n=1, m=11 

 4443  n=0, m=2 breathing 
4886a 4706 -4 n=1, m=12 

    
21210c 21260  n=2, m=1 
59990c 62310  n=3, m=1 

where Δf = fFE - fA 
Vibrational modes above 5kHz have been omitted, except 
for higher order circumferential modes for n=2 and n=3. 
a Beam theory calculated from Table 1. 
b Bar theory calculated from Equation (1). 
c Shell theories calculated from Equations (2) through (5). 

As seen in the analytical and FE model simulations, bending 
dominates the first modes of vibration. The circumferential 
modes of n=2 and n=3 predicted by the thin-shell theories 
occur above 20kHz. The beam theory and FE results have 
good agreement for the first six natural frequencies, and are 
within 4% for all frequencies below 5kHz. This divergence is 
consistent with the beam theory where the assumptions will 
not be appropriate when the wavelength of a bending mode is 
less than 20 times the radius (Forsberg, 1966). In this case, 
for the Superlite1713 arrow, this occurs for axial mode indi-
cies of m>20. The results show that the simple model of an 
isotropic cylinder validates the FE process and provides con-
fidence in building upon the isotropic models for the compo-
site cylinder models. The first and second bending mode 
shapes, and the first breathing mode shape are shown in Fig-
ures 7, 8, and 9 respectively. 

 

 
Figure 7. FE first bending mode of aluminium cylinder, 

 modal indices n=1, m=2 
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Figure 8. FE second bending mode of aluminium cylinder, 

 modal indices n=1, m=3 

 

 
Figure 9. FE first breathing mode of aluminium cylinder, 

 modal indices n=0, m=1 

Composite archery arrow models 

A FE model of the two composite arrows was defined to 
match the physical properties of ProTour570 and ProTour380 
arrows. These arrows have a core of AL7075-T9 aluminium 
with an outer diameter of 3.572mm (9/64 inch) and a thick-
ness of 0.1524mm (6/1000 inch) with the same material 
properties as previously stated. The properties of the outer 
layer of carbon and epoxy resin (a closely held trade secret) 
were estimated from physical measurements along with and a 
static spine test. A density of ρ=1590kg/m3 was used, with 
orthotropic elastic properties. The fibre direction is along the 
arrow shaft with a Young’s modulus of E1=222GPa. Orthog-
onal to the fibre direction the Young’s modulus 
E2=E3=9.2GPa was used. The shear moduli where estimated 
to be G12=G13=6.1GPa, and Poisson’s ratios of ν12=ν13=0.2 
and ν23=0.4 were used. These properties make up the re-
quired five independent constants to define the orthotropic 
elastic material. Finally the shear modulus G23 = 3.28GPa 
was calculated from formula E2/(2(1+ν23)). It is noted that 
errors in these estimated material properties are expected to 
cause some errors in the results of the FE model.  

The ProTour570 arrow had a length of 787.4mm giving a 
total of 9240 elements when the FE model was meshed. The 
ProTour380 had a length of 863.6mm giving a total of 9528 
elements in the FE model. The ProTour570 had an outer 
diameter of 4.844mm and a maximum shell thickness of 
0.822mm, while the ProTour380 had an outer diameter of 
5.24mm and a maximum shell thickness of 1.02mm. The 
tapered section of the arrow was defined by dividing the shaft 
length into 50mm sections each of constant thickness. It is 
noted that these step discontinuities in the thickness may 
cause minor discrepancies in the results.  

The FEA results for the natural frequencies are listed in Ta-
bles 3 and 4. Compared to the all aluminium arrow the com-
posite arrows exhibit stiffer in-plane characteristics in the 
axial direction since the n=0, m=0 extension mode is not 
evident below 5kHz. Also, the composite arrow has many 
more breathing modes below 5kHz, indicating the lower 
modulus of elasticity in the material orthogonal to the carbon 
fibre direction.  

This FE modelling provided insight into the vibrational be-
haviour of the different arrows and identified the pertinent 

frequencies for conducting experimental measurements using 
the Polytec scanning laser vibrometer.  

EXPERIMENTS 

The experimental apparatus and procedures for testing com-
posite archery arrows are detailed in the following sections. 
Design and development of test apparatus was required to 
enable the measurement of resonant frequencies and mode 
shapes of arrows with the scanning laser Doppler vibrometer 
(SLDV). The procedure for testing an archery arrow is de-
tailed and the results of the experiments are presented.  

Experimental apparatus 

The experimental apparatus included a 1D laser vibrometer, a 
vibration actuator (mechanically or acoustically coupled), 
and a suitable frame to support the composite arrow speci-
men. The Polytec PSV-400 3D SLDV was used in the exper-
iments in a 1D configuration. Only one laser head was used 
to measure the velocity of the vibrations in the specimen (see 
Figure 10). The velocity decoder (VD-07) provides a voltage 
proportional to the vibration in the direction of the laser to a 
maximum sensitivity of 1 (mm/s)/V.  

 
Figure 10. Experimental apparatus 

The vibration actuators used include a mechanical shaker, a 
compression driver and a speaker. The mechanical shaker 
was model LDS201/3 that has a velocity sine peak of 1.49 
m/s with a moving mass of 0.020kg. The compression driver 
was a TU-50 unit from a TOA Electronic horn speaker power 
rated to 50W. The horn attachment was replaced by a cylin-
der with inner diameter of 25mm. The speaker used was a 
80mm diameter diaphragm power rated to 3W. A speaker 
attachment was manufactured to direct the sound field into 
the long thin arrow specimens (see Figure 11). The support 
frame design included a base optical breadboard along with 
adjustable components to provide mounting points. The spec-
imen can be positioned horizontally in the test rig by thin 
elastic threads. Adjustable mounting supports for the arrow 
specimen and the mechanical shaker were designed and man-
ufactured fit for the purpose of experiments.  
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Figure 11. Experimental rig, with vibration actuators 

The measurement of the vibrational behaviour of an object 
required an excitation source that vibrated the object which 
was measured by the laser scanning head. The Polytec PSV 
computer was used to generate the selected reference vibra-
tion excitation through a junction box. An amplifier with a 
gain of unity connected the reference signal to the selected 
vibration actuator. The mechanically or acoustically coupled 
vibration source was attached or positioned close to the ob-
ject to be vibrated. Laser light from the scanning head is then 
directed at the object and a photo-detector within the scan-
ning head will record the interference of the reflected light 
with a reference of the original laser light (Polytec, 2009). 
The controller decodes the signal to provide a voltage that is 
proportional to the velocity of the vibrating object. The volt-
age signal is digitised in the junction box and recorded by the 
computer. A video camera is positioned close to the scanning 
head to give live video feedback. Figure 12 shows a flow 
chart of control and measurement signals a diagram of the 
experimental apparatus. 

 
Figure 12. Experimental apparatus flow chart of control and 

measurement signals 

The Polytec software presents the recorded information in 
either the time domain or frequency domain. The time do-
main signal of velocity is transformed to the frequency do-
main using a Fast Fourier Transform (FFT). The frequency 
response function and coherence can be monitored while the 
laser scanning process is taking place. After the scan is com-
plete the software can process the data to display mode 
shapes for selected frequency bands. The measured data may 
also be exported and analysed in other software applications 
such as MATLAB.  

Experimental procedure 

The procedure for the experiments using the SLDV covers 
the set-up of the hardware and software. The following de-
scription provides a guide to the settings that were used for 
this research project.  

Preparation of the arrow specimens required that the surface 
of the object have suitable reflective properties for reflecting 
the laser light. The surface of the specimen was sprayed with 
ARDROX 9D1B, a reflective and non-aqueous wet develop-
er. The specimen was suspended horizontally in a suitable 
position in the test rig by thin elastic threads. The selected 
vibration actuator, either the mechanical shaker, acoustic 
compression driver or speaker was positioned at a non-
symmetrical point along the length of the specimen. 

The position of the laser scanning head was set perpendicular 
to and at the centre of the specimen to be scanned. For opti-
mum vibrometer signals the recommended deflection angle 
of 10° was used for a specimen of 700mm length. The opti-
mum distance for signal level is achieved when the object is 
in a maximum of the laser intensity. It was determined that 
the optimal standoff distance was 1935mm. The video cam-
era was positioned close to the laser scanning head and ad-
justed to capture the area of object to be scanned. 

The PSV 8.7 computer application settings control the input 
and output signals of the experiment. The input signals in-
clude a reference signal from the generated vibration signal 
and the signals from the scanning head. The output signal 
was generated for the selected waveform and frequency. The 
following data acquisition parameters were used: 

 
• General: FFT measurement mode with complex averag-

ing of 75 with the remeasure option on.  
• Frequency: Bandwidth selected for these experiments 

have been 1kHz, 4kHz, or 8kHz. The FFT lines of 1600 
where used for most experiments. Overlapping of 75% 
is used to reduce the measurement time. 

• Window: The rectangle window function is used for 
pseudo random generated waveform. The pseudo ran-
dom signal is periodic in the time window and therefore 
will generate no leakage effects in the spectrum calcu-
lated by the FFT.  

• SE: Signal Enhancement is used for the vibrometer 
channel, with the speckle tracking turned to a standard 
level to enhance the signal.   

• Vibrometer: The velocity is set to 10mm/s/V for the 
mechanical shaker, or 1mm/s/V for the acoustic actua-
tors. The tracking filter is off and the low pass filter set 
to suit the bandwidth. No high pass filter is used. 

• Generator: Select pseudo random waveform recom-
mended for simulated stochastic excitation. The wait for 
steady state was not required for these experiments. 

A full scan of each test specimen was performed that meas-
ured a predefined single line of points on the object. Forty 
scan points were used for a bandwidth of greater than 4kHz 
to capture the higher frequency shapes, while twenty scan 
points were sufficient for experiments in the lower frequen-
cies when there were less than six bending waves along the 
length of the specimen. The time required for the scan de-
pended on the data acquisition parameters selected (typical 
time was 15 minutes). The scan was monitored to ensure 
good coherence between the generated vibration signal and 
the measured velocity signal.  
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Experimental results 

The experiments on the all aluminium Superlite1712 arrow 
shaft were conducted to test the experimental procedures. 
The results were compared to the analytical calculations and 
FE results. The results of the experimental tests are presented 
as in Table 4. The mode indicies of each resonance frequency 
was determined through observation of the operational de-
flection shapes. The first two bending modes measured while 
using the speaker actuator are shown in Figures 13 and 14. 

Table 4. Comparison of FEA natural frequencies to  
measured resonance frequencies for the Superlite1713 (Hz). 

Results are an average of tests on two sample arrows. 
FEA Shaker Driver Speaker Mode indices 
84 57 82 81 n=1, m=2  

230 190 227 226 n=1, m=3 
451 394 442 444 n=1, m=4 
743 678 732 729 n=1, m=5 

1107 1032 1090 1090 n=1, m=6 
1541 1451 1518 1519 n=1, m=7 
2044 1933 2013 2014 n=1, m=8 
2222 2226   n=0, m=1 
2613 2512 2575 2570 n=1, m=9 
3248 3089 3203 3203 n=1, m=10 
3622 3460   n=0, m=0 
3947 3883 3892  n=1, m=11 
4443    n=0, m=2 
4706 4603   n=1, m=12 

The results with the mechanical shaker did not correlate well 
with the resonant frequencies predicted by the FEA for the 
first six modes of vibration. It was determined that the physi-
cal connection of the mechanical shaker reduced resonance 
frequencies significantly and altered the mode shapes from 
the desired free-free boundary conditions. The moving mass 
of the shaker and the stinger attachment connection to the 
specimen increased the mass of the vibrating structure to 
cause these errors. 

 
Figure 13. Experimental first bending mode of aluminium 

cylinder, modal indices n=1, m=2 

 
Figure 14. Experimental second bending mode of aluminium 

cylinder, modal indices n=1, m=3 

For the first six modes of vibration, experiments using both 
acoustic vibration actuators showed good correlation to ana-
lytical and FE modelling. Neither of the acoustic vibration 
actuators coupled well with the specimens, although they 
showed a coherence of close to unity at the resonant frequen-
cies. The mechanical shaker had excellent coherence, with 
the best correlation to the FE models for modes at high fre-
quencies above 4kHz. The compression driver vibration 
method produced the best coherence and correlation in the 
range of 1kHz to 4kHz. The speaker vibration actuator pro-

duced the best coherence and correlation at the low frequency 
range below 1kHz. The following coherence graphs show the 
mechanical shaker (see Figure 15), the compression driver 
(see Figure 16), and the speaker actuator (see Figure 17). 

 
Figure 15. Coherence for mechanical shaker for 8kHz  

 
Figure 16. Coherence for compression driver for 4kHz  

 
Figure 17. Coherence for speaker actuator for 1kHz  

The experiments on the composite arrows where conducted 
using the mechanical shaker for the higher frequencies, and 
the compression driver and speaker for the lower frequencies. 
The results of the experimental tests are presented in Table 5. 
Each actuator was used in two tests on every arrow specimen, 
making a total of six experiments for each ProTour570 arrow 
tested.  

Table 5. Comparison of FEA natural frequencies to  
measured resonance frequencies for the ProTour570 (Hz). 

Results are presented as mean±standard deviation. 
FEA Shaker Driver Speaker Mode  

indices 
91.9 63±2 91±0 91±1 n=1, m=2 
250 206±2 247±2 247±1 n=1, m=3 
486 423±5 480±3 479±3 n=1, m=4 
794 714±9 788±3 787±5 n=1, m=5 
1173 1082±15 1169±8 1172±8 n=1, m=6 
1201    n=0, m=1 
1617 1520±20 1624±8 1624±10 n=1, m=7 
2122 2084±23 2145±12 2146±13 n=1, m=8 
2390    n=0, m=2 
2684 2620±28 2735±9 2729±17 n=1, m=9 
3300 3219±32 3382±10  n=1, m=10 
3578    n=0, m=3 
3964 3784±44   n=1, m=11 
4672 4748±51   n=1, m=12 
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The same experiments were conducted on the ProTour380 
arrows. The results of the experimental tests are presented in 
Table 6.  

Table 6. Comparison of FEA natural frequencies to  
measured resonance frequencies for the ProTour380 (Hz). 

Results are presented as mean±standard deviation 
FEA Shaker Driver Speaker Mode  

indices 
83.0 59±1 84±1 83±2 n=1, m=2 
221 181±3 218±1 217±1 n=1, m=3 
426 372±2 422±2 422±1 n=1, m=4 
697 633±2 698±2 697±3 n=1, m=5 

1032 958±4 1034±5 1034±1 n=1, m=6 
1147    n=0, m=1 
1429 1345±6 1436±3 1434±4 n=1, m=7 
1883 1775±13 1896±4 1897±8 n=1, m=8 
2201    n=0, m=2 
2385 2346±10 2415±3 2413±5 n=1, m=9 
2932 2878±4 2991±8  n=1, m=10 
3343    n=0, m=3 
3523 3425±17 3612±7  n=1, m=11 
4160 3757±64   n=1, m=12 

In compiling the results for the mechanical shaker it was 
difficult to determine which resonance frequencies were 
bending modes and which were breathing modes of vibration. 
This difficulty is due to the fact that the bending modes of 
vibration have a greater deflection and velocity than the 
breathing modes. Using the 1D configuration on the SLDV 
also limited the identification of these modes, which could be 
improved by using the 3D configuration for experiments. 
There is less confidence in the accuracy of the resonant fre-
quencies found with the mechanical shaker than those found 
with both the acoustic actuators.  

The first resonance frequency from both composite arrows 
was used to calculate the damping ratio and to determine the 
difference between the calculated natural frequency and the 
measured resonance frequency. This used Equations (6) and 
(7) (Inman, 2001).  

 
ζ = Δf  / (2 f)   (6) 
 
ωr = ωn √(1 - 2 ζ2 )   (7) 

where ζ is the damping ratio, Δf is the modal bandwidth of 
the frequency response function at a point 3dB down from 
the peak, f  is the mode centre frequency, ωr is the resonance 
frequency, and ωn is the natural frequency.  

The damping ratio for the composite arrows was less than 
0.01. Thus, for these composite archery arrows the measured 
resonance frequency is approximately equal to the natural 
frequency. 

Comparing the results of both acoustic actuators to the FEA 
results for both the ProTour570 and ProTour380 as listed in 
Tables 3 and 4 respectively, the bending modes have an error 
of < 3%. Although the limitations in the material properties 
of the FE model are noted, the results show good correlation 
with the experimental results from both acoustic vibration 
actuators. 

CONCLUSION 

This paper has documented the preliminary work into model-
ling a composite archery arrow. As seen in the analytical and 
FE simulations, bending dominates the first modes of vibra-

tion. Experimental measurements have shown good correla-
tion to the FEA results. The experiments conducted to date 
indicate the viability of the experimental procedures for fu-
ture testing of composite archery arrows. The data gathered 
will provide a good base for comparison to damaged compo-
site arrows. 

While using composite materials offers the advantage of high 
strength and stiffness combined with low weight, the disad-
vantage of using this material is that damage may occur by 
fatigue and impact loads. Future work will be conducted to 
identify the vibrational behaviour of damaged composite 
arrows. Vibration prediction and modelling is important for 
monitoring the structural health of composite materials and 
understanding their performance in-service. The ideal out-
come of future studies is to recommend a structural health 
monitoring procedure that could predict the decrease in per-
formance of a composite arrow by measuring the vibrational 
behaviour. 
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