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ABSTRACT 
Plates and shells with beam stiffeners are common structural elements in ships, aircraft and land vehicles.  Several 
approaches can be used to model the dynamics of these elements.  One is to smear the mass and stiffness of the beam 
stiffeners to give an orthotropic plate or shell which models the low-frequency response well.  Another is the use of 
periodic structure theory to give a compact result for the vibration transmission with evenly spaced stiffeners consid-
ered discretely.  This paper considers a cylindrical shell with ring stiffeners as an example problem and compares the 
performance of the smeared model with that of the discrete-stiffener approach.  A method that could be used to inves-
tigate the effect of some randomisation in stiffener spacing is also described. 

INTRODUCTION 

Plates and shells are basic structural building blocks and their 
dynamics have been of interest since the earliest investiga-
tions in mechanics.  Stiffeners in the form of beams of vari-
ous cross-sections are used in many plate and shell structures 
to increase stiffness and strength with a minimal increase in 
weight.  Earlier work on stiffened plates and stiffened cylin-
drical shells is described by Leissa (1993a, 1993b).  These 
approaches treat the stiffened structure as an equivalent or-
thotropic one, i.e. the stiffeners’ mass and  stiffness is effec-
tively smeared over the continuous plate or shell.  As noted 
by Leissa (1993b) and compared by Ruotolo (2002), there are 
a number of thin-shell theories, which differ in the terms 
included to account for shell bending. 

The advantage of smearing the stiffener properties is that it 
makes the solution of the plate or shell dynamics only a little 
more complicated than the uniform isotropic case.  Gan et al. 
(2009) apply the smeared approach in a wave propagation 
method to solve the natural frequencies of a ring-stiffened 
cylindrical shell.  Luan et al. (2011) propose improvements 
to the smeared approximation for cross-stiffened rectangular 
plates.  Beyond simple smearing, Junger and Feit (1993) 
consider reaction forces on a plate due to just the translational 
and rotary inertia of regularly spaced stiffeners. 

Large structures with evenly spaced stiffeners can be ana-
lysed as infinite periodic structures.  Consideration of struc-
tural periodicity results in pass and stop bands of vibration 
transmission which are not accounted for in smeared-stiffener 
analysis.  Mace (1980) considers infinite fluid-loaded stiff-
ened plates excited by line and point forces, giving general 
expressions for the stiffener reaction forces and moments and 
specific values for beam-like stiffeners. Langley (1989) ap-
plies the periodic method to a chain of plates joined end to 
end, each with two sides simply supported and a stiffener at 
the joins.  He also discusses the use of the dynamic-stiffness 
matrix for a single plate unit in assembling a structure with 
varied stiffener spacing from a finite number of plate units. 
Hodges et al. (1985) model an infinitely long ring-stiffened 
cylindrical shell using Fourier decomposition and space-
harmonic analysis, with the cross-section of the symmetric 
stiffeners allowed to distort.  Mead and Bardell (1986) inves-

tigate wave propagation in a cylinder with axial stiffeners 
(stringers), and, in Mead and Bardell (1987), in a cylinder 
with circumferential (ring) stiffeners.  They allow for stiffen-
ers of arbitrary cross-section.  The approach assumes perio-
dicity in the circumferential or axial direction respectively, 
and seeks propagation constants that are related to the wave 
types in the cylinder.  They note that either axial or circum-
ferential stiffeners can be considered with this method, but 
not both together.  Lee and Kim (2002) apply a similar meth-
od for sound transmission through a ring-stiffened aircraft 
fuselage, but treat each stiffener as a lumped mass, transla-
tional spring and rotational spring.  Efimtsov and Lazarev 
(2009) demonstrate a solution for periodically stiffened plates 
and shells using space-harmonic expansions which is more 
amenable at high frequencies than the propagation constant 
method.  Solaroli et al. (2003) analyse periodically stiffened 
shells numerically using the finite-element method. 

A cylindrical shell with ring stiffeners will be considered in 
this paper.  Such shells are of practical interest in many ap-
plications.  A cylindrical shell is equivalent to a plate rolled 
up, but the introduction of the curvature couples all three 
displacement components together.  This makes its dynamics 
more interesting than a flat plate, where the bending vibration 
is decoupled from the two in-plane components.  The natural 
frequencies of a finite shell with and without smeared stiffen-
ers will be compared.  Periodic structure theory will be ap-
plied to compare the wave propagation in the plain cylindri-
cal shell, the shell with smeared stiffener properties, and the 
shell with discrete stiffeners.  Approaches to calculate the 
natural frequencies of the shell with discrete stiffeners, and to 
investigate the effect of some randomisation of stiffener spac-
ing, will also be discussed. 

MODELLING APPROACHES 

The equations of motion for a thin cylindrical shell including 
the option of smeared ring stiffeners will be presented.  These 
can then be used to calculate the natural frequencies of a 
cylinder of finite length, or to calculate wavenumbers for 
vibration propagation in an infinite periodic cylinder made up 
of uniform-length units of shell with or without discrete ring 
stiffeners at their ends. 
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Equations of motion 

Figure 1 shows a thin cylindrical shell of radius R, thickness 
h and length L.  Also shown is the coordinate system x (lon-
gitudinal), y (tangential) and z (radial) centred on an element 
of the shell surface which is at angular position θ. 

 
Figure 1. A thin cylindrical shell of radius R and thickness h 

showing the local coordinate system x, y and z used. 

A cylindrical shell with ring stiffeners will be considered 
here.  Leissa (1993b) gives results for a number of ortho-
tropic shell formulations.  When these are applied to shells 
with discrete stiffeners, the stiffener properties are effectively 
smeared over the whole shell.  If the approach of Mikulas and 
McElman quoted in Leissa (1993b) is simplified to consider 
only ring stiffeners and ignore longitudinal stringers, and 
inertia terms and general distributed forces are also added in, 
the following three equations of motion for equilibrium along 
each coordinate result: 
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where u, v and w are the displacements and 1q , 2q  and 3q  
are the external forces per unit area in the x, y and z directions 
respectively.  These forces are set to zero to calculate natural 
frequencies, or free waves in the shell.  They can be set to 
Dirac delta functions to represent point forces in the middle 
of the shell, but this will not be used in the following anal-
yses.  The shell and ring stiffeners are assumed to be of the 
same material with a Young’s modulus E and Poisson’s ratio 
ν.  The ring stiffeners are placed along the cylinder with axial 
spacing a and the stiffener cross-section has area A, second 
moment of area xxI , torsion constant J and its centroid is a 
distance of z  from the shell middle surface.  The subscripts 
x and θ on u, v and w denote differentiation with respect to 
those variables, while dot denotes differentiation with respect 
to time.   

If the stiffener properties in equations (1) to (3) are set to 
zero, i.e. 0==== zJIA , then the Donnell-Mushtari equa-
tions of motion for a uniform cylindrical shell of radius R and 
thickness h result.  In this case, ρ is the density of the shell 
material.  When the stiffeners are included, ρ is M/h where M 
is the average smeared out mass per unit area of the stiffened 
shell, i.e. incorporating the mass of the stiffeners.  If the stiff-
ener’s cross-sectional dimensions are small compared to the 
radius R, then the effective density is given by 

( ) materialahA ρρ += 1  (4) 

It can be seen from equation (1) that the only effect on the 
axial equilibrium equation of adding ring stiffeners is this 
added mass. 

Other thin-shell theories such as those of Flügge include 
more terms than in equations (1) to (3) to better model the 
bending effects in shells with higher thickness-to-radius rati-
os.  Nevertheless, these simple Donnell-Mushtari based equa-
tions still illustrate a high degree of coupling between the 
three displacements u, v and w. 

To solve for the natural modes of a shell of finite length L, 
with shear-diaphragm boundary conditions (analogous to 
“simple support” in flat plates) at both ends, the following 
modal solutions  
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are substituted into the equations of motion, where 
Lmπλ =  with m the number of half wavelengths along the 

cylinder’s length and n is the number of wavelengths devel-
oped around the circumference of the cylinder in the mode 
shape.  Here ω is the natural frequency to be solved for.  To 
solve for free waves in the shell, solutions of the form 
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are substituted, where each displacement function is de-
scribed in the axial direction by a wavenumber λ which is to 
be solved for a given circumferential mode number n and 
angular frequency ω. 

Substitution of solutions (5) or (6) into the equations of mo-
tion (1), (2) and (3) results in a matrix equation of the form 
















=

































0
0
0

333231

232221

131211

C
B
A

bbb
bbb
bbb

 (7) 

where 

3
23

2222
22

21

13

12

2222
11

)1(
)1(2)1(

2)1(

2)1(
2)1(

nsnsb
nsRb

nRb
Rb

nRb
nRb

ZA

A

−+−=

Ω++−−=

+±=
=

+=
Ω+−−=

λν

λν
νλ

λν
νλ





 (8) 



Proceedings of ACOUSTICS 2011                                            2-4 November 2011, Gold Coast, Australia 

 

Acoustics 2011                                                                                                                                                                                    3 

22

422244
33

3
32

31

)1(2

)1()1(2

)1(

Ω−+++

+++±=

++=

=

AZ

IJ

ZA

sns
nsknskRkRb

nsnsb
Rb

λλ

νλ

 
cont.

)8(  

The upper sign in equations (8) is for the natural frequency 
equation and the lower sign is for the free wave equation, 
arising from the use of trigonometric functions of λx in equa-
tion (5) versus exponentials in equation (6).  The parameter k 
is defined as 22 12Rhk ≡  and the non-dimensional frequen-

cy squared ER 2−≡Ω ωνρ 222 )1(  is the squared ratio of the 
frequency to the shell ring frequency.  The ring frequency is 
that of the “breathing” mode of the whole shell, where the 
wavelength of longitudinal waves is equal to the shell cir-
cumference.  The shell stiffener section parameters are de-
fined as 
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and are all zero for a plain shell with no stiffeners smeared 
into it. 

Calculation of natural frequencies 

The natural frequencies can be determined from equation (7) 
based on the solutions given by equation (5).  Equation (7) 
has a non-trivial solution when the determinant of the matrix 
is zero.  The determinant can be expanded out explicitly in 
terms of the coefficients bij to give a cubic polynomial in Ω2.  
This can then be solved numerically to give three values of 
Ω2 for each m, n pair.  The natural frequencies are derived 
from the positive square roots of these values.  This is the 
method described in Leissa (1993b) and demonstrated in 
Forrest (2005). 

An alternative method based on eigenvalues will be used in 
this paper.  Inspection of the coefficients (8) shows that Ω2 
appears only in the diagonal terms b11, b22 and b33.  Multiply-
ing the first two rows of (7) by –1 results in all diagonals of 
the matrix containing a –|Ω2 term.  Thus Ω2 represents the 
eigenvalues of the matrix formed from the bij omitting the Ω2  
from the diagonals and with the first and second rows having 
their signs reversed.  The eigenproblem can then be solved 
numerically for each m, n to give the squared natural fre-
quencies Ω2 as eigenvalues and the modeshapes {A B C}T as 
the eigenvectors.   

Since eigenvectors are arbitrarily scaled, the ratios A/C and 
B/C can be considered to determine the relative amounts of 
motion in each direction for the mode.  For example, if A/C is 
large and B/C is small, then the mode is predominantly axial.  
If both ratios are less than unity, then the mode is predomi-
nantly radial, and so on.  

Calculation of free wavenumbers 

Solving equation (7) for the wavenumber λ based on the 
solutions (6) is a different proposition.  λ appears raised to 
various powers in several of the coefficients (8), so eigen-
analysis is not applicable this time and the determinant of the 
matrix in (7) must be expanded out explicitly.  This gives a 

quartic polynomial in λ 2 which can be solved numerically to 
eventually give eight values of λ at a specific frequency 
ω and circumferential mode number n. 

For each of these wavenumbers, the ratios A/C and B/C can 
be calculated from any two rows of the matrix in (7), since its 
determinant is zero when that λ value is substituted.  One 
solution is  
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where the subscript s refers to the particular wavenumber (1 
to 8).  Thus the coefficients A and B in solutions (6) can be 
written in terms of C.  The total displacements at a given n 
can then be written as 
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that is, a sum of the contributions of terms due to the eight 
roots for λ.  Each root has its negative counterpart, so the two 
represent a pair of waves, one travelling in the positive x-
direction, the other in the negative x-direction.  If solving 
directly for a uniform semi-infinite cylinder extending in the 
positive x-direction, only four of the roots for λ would thus 
be included in the sums (11).  If there were some damping 
included in the model, this would mean in practice that the 
four roots with negative real parts would be used, so that the 
waves they represent decay with increasing x. 

Forces acting on a periodic unit 

Consider constructing an infinite cylinder from a periodic 
repetition of a cylinder unit of length a.  To join these units 
together requires knowledge of the forces acting on the ends 
of each unit.  These generalised end forces are shown in Fig-
ure 2 with the sign conventions that will be used here. 

 
Figure 2. The forces and moments per unit length acting on 
the ends of one cylindrical periodic unit, isometric and side 
views.  The forces act around the whole circumference but 

are only shown at the top of the right-hand figure for clarity. 

Expressions for the end forces are given by Mead and Bardell 
(1987).  These allow for stiffeners of arbitrary open, not nec-
essarily symmetric, cross-section.  If we assume a stiffener of 
rectangular section of width b and depth d, which is a sym-
metric and relatively slender section, the Wagner torsion-
bending constant Γ can be taken as zero, as can the product 
moment of area xzI .  Thus the end force expressions can be 
simplified to the following formulae. 
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These are based on Love-Timoshenko shell theory, but this 
differs little from the Donnell-Mushtari formulation used 
earlier.  The first term in each expression, grouped with curly 
brackets, represents the contribution of shell deformation to 
the forces.  Note that it has a different sign depending on 
which end it is calculated for.  The remaining terms represent 
the contribution of beam stiffener deformation to the forces.  
The factor of one-half outside this second group of terms in 
each force expression is because only half a stiffener is con-
sidered at each end of the cylinder unit. 

Periodic structure calculation 

The approach to the analysis of an infinitely long periodic 
cylinder used by Mead and Bardell (1987) and adopted here 
is based on the propagation of states of force and displace-
ment along the structure.  The states 0F  at 0=x  and aF  at 

ax =  of a single periodic unit are defined as  
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where the elements of these vectors are the forces and dis-
placements as developed earlier, calculated at the ends, and 
dash indicates derivative with respect to x in this case (so the 
last element is a rotation).  It is assumed that the propagation 
of a state from one end of a unit to the other is governed by 

0FF µea =  (17) 

that is, the state is only changed in amplitude and phase by 
the complex factor µe  as it moves down the structure.  This 
is a statement of Floquet’s theorem.  The real part of the 
propagation constant µ thus represents the attenuation of the 
state along the structure. 

Substituting the displacements defined in (11) into the force 
expressions (12) to (15) and differentiating w to get the rota-
tion required, the end states of the cylinder unit can be writ-
ten as 

ti
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ti
sn enen ωω θθ ).(

cos
sin

][  , ).(
cos
sin

][ 00 CKFCKF ==  (18) 

where “sin” is used for the tangential displacement v0,a and 
tangential force N0,a and “cos” is used for all other forces and 
displacements.  Matrices ][ 0K  and ][ aK  are functions of ω, 
n and the wavenumbers λsn.  Substitution of these expressions 
(18) into the propagation equation (16) and some manipula-
tion yields 

( ) 0][][][ 1
0 =−−

sna e CIKK µ  (19) 

so that the propagation constants µ can be obtained from the 
values of µe  found as eigenvalues of the 8×8 matrix product 

][][ 1
0 aKK − , a straightforward numerical operation.  There 

are eight values of µ that come in pairs that are the negative 
of each other, since all eight roots λ have been considered in 
the underlying displacement sums (11).  The members of 
each of these pairs represent the same manner of propagation 
of the state, but in opposite directions along the cylinder.  
Therefore, in comparing the computed attenuation factors, 
only four distinct values of µ need to be considered. 

RESULTS 

The cylindrical shell considered here is based on the plain 
(unstiffened) steel shell for which experimentally determined 
modes and natural frequencies are compared to theoretical 
ones in Forrest (2005), and sound radiation and active control 
are analysed in Forrest (2007).  The shell properties and hy-
pothetical ring stiffener properties are given in Table 1. 

Table 1. Properties of the cylindrical shell and ring stiffeners 
Quantity Symbol Value 

Shell radius 
Shell thickness 

Shell length 
Stiffener spacing 
Stiffener width 
Stiffener depth 

Young’s modulus 
Poisson’s ratio 

Density 

R 
h 
L 
a 
b 
d 
E 
ν 
ρ 

200 mm 
2 mm 
1.5 m 

100 mm 
4 mm 
30 mm 

210 GPa 
0.3 

7800 kg/m3 
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Other parameter values are derived from these, such as 
)1(2/ ν+= EG , 12/3bdI xx =  and 12/3dbI zz = .  Young 

and Budynas (2002) give formulae for the torsion constant J, 
which they denote K, for various cross-sections.  For a rec-
tangular cross-section, the torsion constant is given within 
4% accuracy by 
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for the notation used here, with d > b. 

The numerical results presented below were calculated using 
the Matlab software package. 

Natural frequencies for plain and smeared shells 

The eigenvalue method described in the previous section was 
used to calculate the natural frequencies of the finite cylindri-
cal shell of length 1.5 m, for various combinations of the 
modal parameters m and n.  The results for the plain shell 
without any stiffeners are given in Table 2.  The results for 
the shell with stiffeners, calculated using the smeared shell 
approximation, are given in Table 3. 

The natural frequencies in both tables are categorised accord-
ing to their predominant nature.  Nevertheless, there is al-
ways some motion in the other two directions.  In a few cas-
es, the modes have equal radial and tangential motion (A/C 
small and B/C ≈ 1 within 10%) or equal axial and tangential 
motion (A/C ≈ B/C within 10% and greater than unity), and 
these are marked accordingly.  An interesting feature of cy-
lindrical shells that can be seen in both sets of results is that 
the natural frequency does not necessarily increase with 
modal order. 

Table 2. Natural frequencies for the plain shell, * radial-
tangential mode, † axial-tangential mode. 

Mode shape Natural frequency (Hz) 
m n radial axial tangential 
1 1 

2 
3 
4 

  422 * 

161 
132 
201 

3044 
5307 
7784 

10311 

  6247 * 
9806 

13792 
17931 

2 1 
2 
3 
4 

  1214 * 
547 
305 
263 

3962 
5785 
8072 

10512 

6679 
10193 
14103 
18184 

3 1 
2 
3 
4 

1988 
1040 
595 
417 

4830 
6418 
8507 

10829 

  7529 † 
10844 
14616 
18600 

Some of the higher natural frequencies given are going to be 
unrealistic.  Even though the wavelengths, as indicated by the 
modal parameters m and n, are still large relative to the shell 
thickness, the effects of shear and rotary inertia are going to 
become significant at these higher rates of oscillation.  These 
effects are ignored by all thin shell theories. 

Using the cylinder parameters of Table 1 and equation (4), 
the smeared shell’s effective density is 1.6 times the basic 
material density, which is the plain shell’s density.  If just 
this mass effect was added, natural frequencies would be 
expected to drop by a factor of the square root of 1.6, or 
about 20%.  This is seen in some of the lower-order axial 
modes, where axial motion is not affected by the ring stiff-

ness as discussed earlier with respect to equation (1).  As the 
axial mode orders become more complicated (and involve 
greater amounts of motion in the other coordinate directions), 
this reduction is less than 20%.   

Table 3. Natural frequencies for the smeared shell, * radial-
tangential mode. 

Mode shape Natural frequency (Hz) 
m n radial axial tangential 
1 1 

2 
3 
4 

  343 * 
418 
967 

1759 

2459 
4248 
6197 
8187 

  6093 * 
9615 

13571 
17678 

2 1 
2 
3 
4 

  963 * 
584 
984 

1758 

3338 
4769 
6546 
8447 

  6288 * 
9793 

13712 
17791 

3 1 
2 
3 
4 

  1590 * 
916 

1061 
1771 

4280 
5477 
7072 
8855 

6681 
10101 
13949 
17980 

For the radial modes at n = 1, the smeared shell has lower 
frequencies.  This is because n = 1 corresponds to pure trans-
lation of the cylinder cross-section (i.e. a beam bending mode 
of the cylinder), so that the ring stiffeners also do not deform 
and just add mass.  For higher values of n, the stiffening ef-
fect of the rings comes into play, and the smeared shell’s 
natural frequencies are higher than those for the plain shell.   

Propagation constants 

By way of example, the propagation constants µ for infinitely 
long cylinders using the properties of Table 1 were calculated 
for n = 4 using equation (19).  Attempts to generate the quar-
tic polynomial in 2λ  from the matrix in equation (7) by 
means of calculating the determinant of a matrix of numerical 
polynomials in λ with the Matlab or Scilab software packag-
es failed to give correct roots for λ.  This was because the 
spread of numerical values of the polynomial coefficients 
was too great, leading to significant round-off error.  Depend-
ing on the method, this sometimes resulted in only a cubic in 

2λ  being generated for the characteristic determinant.  Thus 
the determinant was expanded in full symbolically using the 
Maxima computer algebra system, and the resulting expres-
sions used to set up the characteristic polynomial for numeri-
cal solution of the roots in Matlab. 

Three different cases were considered: a plain shell, a 
smeared shell, and a shell with discrete stiffeners.  These 
were generated using different combinations of the shell and 
force equations to give a specific version of (19).  For the 
plain shell, the stiffener properties are zero for calculation of 
the wavenumbers λsn and only the shell terms are considered 
in the force expressions (12) to (15).  For the smeared shell, 
the stiffener properties are included in the calculation of the 
λsn, but only the shell terms are included in the forces.  For 
the shell with discrete stiffeners, wavenumbers are the same 
as for the plain shell, but the full force expressions including 
shell and stiffener contributions are used.  No damping has 
been included in the modelling for these free-wave propaga-
tion results.  The attenuation factors for the three cases are 
plotted in Figures 3, 4 and 5.  The non-dimensional frequency 
Ω is used for the independent axis, calculated with the basic 
material density for all cases.  For the cylinder parameters 
used here, the ring frequency (i.e. when Ω = 1) is 4328 Hz.  
Thus the upper frequency limit of the plots is greater than 
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8 kHz, which may be beyond the range of validity of the thin-
shell theory used to model the cylinders. 

 
Figure 3. Attenuation factors (real part of the propagation 

constants) for the plain shell. 

 
Figure 4. Attenuation factors (real part of the propagation 
constants) for the shell with smeared stiffener properties. 

 
Figure 5. Attenuation factors (real part of the propagation 

constants) for the shell with evenly spaced discrete stiffeners. 

As mentioned previously, only four of the eight propagation 
constants need be considered, one from each posi-
tive/negative pairing.  These are marked by numbers 1 to 4 in 
the plots.  For some frequency ranges, propagation constants 
are complex conjugates of one another, so overlap in the 
figures, since they are plots of real part only.  When the at-
tenuation is non-zero, the corresponding wave types do not 

propagate indefinitely, but decay.  When at least one attenua-
tion factor is zero, propagating waves result.  The frequency 
ranges where the latter occurs are known as pass bands, while 
ranges outside this are known as stop bands. 

It can be seen that the three figures are different, although 
Figure 3 for the plain shell and Figure 5 for the shell with 
discrete stiffeners have some broad similarity in the upper 
half of the frequency range shown.  In particular, the two 
methods for treating stiffeners (smeared or discrete) give very 
different results as evident in comparing Figures 4 and 5. 

In Figure 3, there is a short stop band from zero to about 
Ω = 0.045 where no waves propagate down the cylinder, 
because both attenuation factors 1 and 2 are non-zero.  This 
corresponds to a frequency of 195 Hz.  This represents the 
cut-on of the propagation of the n = 4 circumferential flexural 
ring mode down the cylinder.  These cut-on frequencies for 
successive flexural ring modes are discussed by Forrest 
(2006) in the context of an infinitely long cylindrical shell 
representing a railway tunnel.  Otherwise, attenuation factor 1 
is always zero, so there is always propagation for frequencies 
above 195 Hz for n = 4 in the plain shell. 

In Figure 4, attenuation factor 1 is always zero, while atten-
uation factor 2 is also zero for Ω < 0.407 and Ω > 1.871 (fre-
quencies of 1761 Hz and 8098 Hz).  Thus there is always at 
least one, and sometimes two, wave types propagating along 
the smeared shell for the frequency range shown.  It is inter-
esting that there is no low-frequency non-propagation stop 
band as there is for the plain shell. 

The attenuation factors for the shell with discrete stiffeners 
shown in Figure 5 display different behaviour again.  The 
general layout is similar to the plot given by Mead and 
Bardell (1987) for a small cylinder of similar configuration 
but different dimensions at n = 4.  This time only attenuation 
factor 1 is sometimes zero, with a number of non-zero stop 
bands appearing.  While again there is no low-frequency stop 
band corresponding to that in the plain shell, there are stop 
bands at 0.639 < Ω < 0.700 (2766 Hz to 3030 Hz frequency), 
1.058 < Ω < 1.100 (4579 Hz to 4761 Hz), 1.344 < Ω < 1.633 
(5817 Hz to 7068 Hz) and Ω > 1.871 (8098 Hz).  The pass 
band parts of factor 1 are not exactly zero, which suggests 
some numerical issue or a mismatch due to the different shell 
theories used to calculate the free wavenumbers on the one 
hand and the end forces and moments on the other.  Howev-
er, the overall picture is clear.  In contrast to the smeared 
shell results, consideration of discrete stiffeners shows that 
there are stop bands where no propagation occurs, and that 
when there are pass bands, only one wave type, never two, 
propagates along the cylinder. 

DISCUSSION 

Consideration of the propagation constants and the attenua-
tion factors that are their real parts illustrate some of the dif-
ferences in the two approaches to including stiffeners in a 
cylindrical shell.  However, they do not alone make it clear as 
to when the simpler smeared shell approach is appropriate for 
practical modelling of a cylinder.  While the non-zero attenu-
ation factors in Figures 3 to 5 differ a lot, their corresponding 
waves may not have much influence on a total displacement 
field in a cylinder under forced vibration simply because 
these waves will not be propagating.  Another way of looking 
at this is that any given arbitrary state can be written as a 
unique linear combination of the eigenstates Csn from equa-
tion (19), each governed by its own µ value.  The two differ-
ent models will have different sets of eigenstates but there-
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fore also different linear combinations to represent the same 
arbitrary state, so that the propagation of the overall total 
state may be much the same in both.  Additionally, the stop 
bands that appear when discrete stiffeners are considered 
only occur at relatively high frequencies.  The effects on 
natural frequencies are also not immediately obvious. 

Natural frequencies for a discretely stiffened shell 

Mead and Bardell (1987) describe a method to estimate the 
natural frequencies for a finite-length stiffened shell based on 
the phase of the propagation constants µ.  This method is 
taken to be valid for cylinders with simply supported (shear 
diaphragm) or clamped ends.  The method is based on the 
idea that a wave impinging on one of these boundary types 
will suffer a phase change of ± π on reflection.  Say the finite 
cylinder comprises N cylindrical units as defined previously.  
The phase axis is conceptually divided into N equal intervals 
between 0 and ± π and horizontal lines of constant phase are 
drawn at these divisions.  The natural frequencies are esti-
mated as the intersections of these horizontal lines with the 
curves of the phase of the propagation constants µ. 

In practice, these intersections on the phase curve would be 
solved numerically, and would have to be done for the phase 
curves calculated over a range of n values.  The natural fre-
quencies could then be compared to those in Tables 2 and 3.  
However, the issues described for the results of Figure 5 for 
the current shell with discrete stiffeners would need to be 
resolved to ensure reasonable accuracy of estimated frequen-
cies. 

Finite shell with discrete stiffeners 

The expressions given in equation (18) for the states of force 
and displacement at the ends of a unit of cylinder can be used 
in a slightly different way.  Instead of writing the equations in 
terms of the end states F0 and Fa, one matrix equation can be 
written for all the end displacements and one for all the end 
forces in terms of the constants Csn.  This allows the elimina-
tion of those constants to generate a dynamic-stiffness matrix 
instead of the propagation matrix product ][][ 1

0 aKK − . 

The dynamic-stiffness matrix relates the forces (at both ends) 
to the displacements (at both ends).  As such, it can be as-
sembled with the dynamic-stiffness matrices of other struc-
tural elements in the same way as stiffness matrices are as-
sembled in the finite-element method.  However, such dy-
namic-stiffness matrices describe much larger parts of a 
structure than a finite element does, so the order of the matrix 
representation of the structural dynamics is still relatively 
small. 

This approach could be used to link a number of cylinder 
units together and the forced response could be calculated.  
This would require the summation of contributions over a 
range of n values to generate a total response to a general set 
of forces. 

Randomisation of stiffener spacing 

It would be interesting to investigate the effect of stiffeners 
with random spacing on the wave propagation and forced 
response.  This could be based on the uniform spacing al-
ready considered with say ± 20% variation in the axial 
placement of the stiffeners, while keeping the overall length 
of the cylindrical shell the same. 

Dynamic-stiffness matrices could be generated for a number 
of cylindrical units with varying lengths matching the differ-
ent stiffener spacings.  These could then be assembled as 
described in the previous section above.  This could be used 
to calculate forced responses.  Alternatively, this newly as-
sembled dynamic-stiffness matrix could be partitioned and 
rearranged to go back to a propagation matrix relating end 
states, but now for a longer cylindrical unit with a number of 
randomly spaced stiffeners included.   Solving for the eigen-
values of this new matrix would give the propagation con-
stants µ for a “pseudo-random” infinitely long stiffened cyl-
inder, where the randomness of the stiffener spacing repeats 
periodically.  These new µ values could then be compared 
with those calculated for a cylinder with uniformly spaced 
discrete stiffeners as presented in this paper. 

CONCLUSIONS 

The dynamics of a plain cylindrical shell and a cylindrical 
shell with ring stiffeners have been considered.  The stiffened 
shell has been treated via two approaches: the smearing of the 
mass and stiffness of the ring stiffeners into the continuous 
shell, and the consideration of discrete stiffeners using peri-
odic structure theory. 

Comparison of the natural frequencies calculated for a finite 
plain shell and a finite shell with smeared stiffeners shows 
expected effects of the ring stiffeners.  Modes that are pre-
dominantly axial in nature are reduced in natural frequency in 
proportion with the mass added by the stiffeners, especially at 
lower circumferential orders, as the stiffeners are not being 
deformed much so only their mass counts.  Modes that have 
significant radial motion are raised in frequency because the 
stiffness of the rings is the significant factor this time, and 
this is a bigger effect than the added mass for the parameter 
values chosen for this paper.   

Propagation constants calculated from periodic structure 
theory show some distinct differences between the plain 
shell, smeared shell and shell with discrete stiffeners.  The 
curves of the non-zero attenuation factors corresponding to 
non-propagating waves vary quite a lot between the three 
cases.  Propagation behaviour is also different.  The plain 
shell exhibits a small stop band from zero to the cut-on fre-
quency of the flexural ring mode for the n = 4 case calculat-
ed.  Neither of the stiffened shell models exhibit this.  The 
smeared shell always has at least one wave type propagating 
over the frequency range calculated, and sometimes has two.  
The shell with discrete stiffeners shows four stop bands, but 
at higher frequency ranges.  In its pass bands, it only ever has 
one propagating wave type. 

A number of areas for future work could shed light on the 
importance of the differences between the smeared and dis-
crete stiffener models.  The phase of the propagation con-
stants could be used to estimate the natural frequencies of a 
finite shell with discrete stiffeners, and these could be com-
pared to the ones calculated in this paper for the smeared 
shell.  Some of the analysis used for the periodic structure 
could be modified to create a dynamic-stiffness matrix of a 
typical cylindrical shell unit.  A number of these units could 
then be assembled as in the finite-element method and the 
forced response calculated.  This approach would also be 
amenable to modelling the effects of some randomisation of 
stiffener spacing. 
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