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ABSTRACT

Plates and shells with beam stiffeners are common structural elements in ships, aircraft and land vehicles. Several
approaches can be used to model the dynamics of these elements. One is to smear the mass and stiffness of the beam
stiffeners to give an orthotropic plate or shell which models the low-frequency response well. Another is the use of
periodic structure theory to give a compact result for the vibration transmission with evenly spaced stiffeners consid-
ered discretely. This paper considers a cylindrical shell with ring stiffeners as an example problem and compares the
performance of the smeared model with that of the discrete-stiffener approach. A method that could be used to inves-
tigate the effect of some randomisation in stiffener spacing is also described.

INTRODUCTION

Plates and shells are basic structural building blocks and their
dynamics have been of interest since the earliest investiga-
tions in mechanics. Stiffeners in the form of beams of vari-
ous cross-sections are used in many plate and shell structures
to increase stiffness and strength with a minimal increase in
weight. Earlier work on stiffened plates and stiffened cylin-
drical shells is described by Leissa (1993a, 1993b). These
approaches treat the stiffened structure as an equivalent or-
thotropic one, i.e. the stiffeners’ mass and stiftness is effec-
tively smeared over the continuous plate or shell. As noted
by Leissa (1993b) and compared by Ruotolo (2002), there are
a number of thin-shell theories, which differ in the terms
included to account for shell bending.

The advantage of smearing the stiffener properties is that it
makes the solution of the plate or shell dynamics only a little
more complicated than the uniform isotropic case. Gan et al.
(2009) apply the smeared approach in a wave propagation
method to solve the natural frequencies of a ring-stiffened
cylindrical shell. Luan et al. (2011) propose improvements
to the smeared approximation for cross-stiffened rectangular
plates. Beyond simple smearing, Junger and Feit (1993)
consider reaction forces on a plate due to just the translational
and rotary inertia of regularly spaced stiffeners.

Large structures with evenly spaced stiffeners can be ana-
lysed as infinite periodic structures. Consideration of struc-
tural periodicity results in pass and stop bands of vibration
transmission which are not accounted for in smeared-stiffener
analysis. Mace (1980) considers infinite fluid-loaded stift-
ened plates excited by line and point forces, giving general
expressions for the stiffener reaction forces and moments and
specific values for beam-like stiffeners. Langley (1989) ap-
plies the periodic method to a chain of plates joined end to
end, each with two sides simply supported and a stiffener at
the joins. He also discusses the use of the dynamic-stiftness
matrix for a single plate unit in assembling a structure with
varied stiffener spacing from a finite number of plate units.
Hodges et al. (1985) model an infinitely long ring-stiffened
cylindrical shell using Fourier decomposition and space-
harmonic analysis, with the cross-section of the symmetric
stiffeners allowed to distort. Mead and Bardell (1986) inves-
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tigate wave propagation in a cylinder with axial stiffeners
(stringers), and, in Mead and Bardell (1987), in a cylinder
with circumferential (ring) stiffeners. They allow for stiffen-
ers of arbitrary cross-section. The approach assumes perio-
dicity in the circumferential or axial direction respectively,
and seeks propagation constants that are related to the wave
types in the cylinder. They note that either axial or circum-
ferential stiffeners can be considered with this method, but
not both together. Lee and Kim (2002) apply a similar meth-
od for sound transmission through a ring-stiffened aircraft
fuselage, but treat each stiffener as a lumped mass, transla-
tional spring and rotational spring. Efimtsov and Lazarev
(2009) demonstrate a solution for periodically stiffened plates
and shells using space-harmonic expansions which is more
amenable at high frequencies than the propagation constant
method. Solaroli et al. (2003) analyse periodically stiffened
shells numerically using the finite-element method.

A cylindrical shell with ring stiffeners will be considered in
this paper. Such shells are of practical interest in many ap-
plications. A cylindrical shell is equivalent to a plate rolled
up, but the introduction of the curvature couples all three
displacement components together. This makes its dynamics
more interesting than a flat plate, where the bending vibration
is decoupled from the two in-plane components. The natural
frequencies of a finite shell with and without smeared stiffen-
ers will be compared. Periodic structure theory will be ap-
plied to compare the wave propagation in the plain cylindri-
cal shell, the shell with smeared stiffener properties, and the
shell with discrete stiffeners. Approaches to calculate the
natural frequencies of the shell with discrete stiffeners, and to
investigate the effect of some randomisation of stiffener spac-
ing, will also be discussed.

MODELLING APPROACHES

The equations of motion for a thin cylindrical shell including
the option of smeared ring stiffeners will be presented. These
can then be used to calculate the natural frequencies of a
cylinder of finite length, or to calculate wavenumbers for
vibration propagation in an infinite periodic cylinder made up
of uniform-length units of shell with or without discrete ring
stiffeners at their ends.
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Equations of motion

Figure 1 shows a thin cylindrical shell of radius R, thickness
h and length L. Also shown is the coordinate system X (lon-
gitudinal), y (tangential) and z (radial) centred on an element
of the shell surface which is at angular position 6.

Figure 1. A thin cylindrical shell of radius R and thickness h
showing the local coordinate system X, y and z used.

A cylindrical shell with ring stiffeners will be considered
here. Leissa (1993b) gives results for a number of ortho-
tropic shell formulations. When these are applied to shells
with discrete stiffeners, the stiffener properties are effectively
smeared over the whole shell. If the approach of Mikulas and
McElman quoted in Leissa (1993b) is simplified to consider
only ring stiffeners and ignore longitudinal stringers, and
inertia terms and general distributed forces are also added in,
the following three equations of motion for equilibrium along
each coordinate result:

R%u,, +(1-v)u,, /2— p(1-v*)R*i/E +(1+V)Ro,, /2

1
—WRw, +(1-v*)R*q, /Eh=0 M

(1+V)Ru,, 2+ (1-v)R%,, /2 + 1+ A1 —v*)/ah]o,,
— p(=v)R*[E +[1+ Al —v?)/ah]w, )
—ZA(1-v*)w,,,/ahR + (1-v*)R?q, /En =0

WRu, + [1+ Al =v?)/ahlv, - ZA(1 - v*)0,,, /ahR

+[1+ AQ-v?)/ah]w-22A0-v*)w,, /ahR

+h*RYw,, 12+ [0 /6 + 3(1-v)/28h]w,, ©)
02 /12R? + (1, + 22 A1 = 1) /ahR? |,
+p(1-v)R’W/E - (1-v*)R’q, /Eh =0

where u, v and w are the displacements and q,, ¢, and Q,

are the external forces per unit area in the X, y and z directions
respectively. These forces are set to zero to calculate natural
frequencies, or free waves in the shell. They can be set to
Dirac delta functions to represent point forces in the middle
of the shell, but this will not be used in the following anal-
yses. The shell and ring stiffeners are assumed to be of the
same material with a Young’s modulus E and Poisson’s ratio
v. The ring stiffeners are placed along the cylinder with axial
spacing a and the stiffener cross-section has area A, second

moment of area | , torsion constant J and its centroid is a

XX 2
distance of Z from the shell middle surface. The subscripts
x and @ on u, v and w denote differentiation with respect to
those variables, while dot denotes differentiation with respect
to time.

2
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If the stiffener properties in equations (1) to (3) are set to
zero, i.e. A=1=J =7 =0, then the Donnell-Mushtari equa-
tions of motion for a uniform cylindrical shell of radius R and
thickness h result. In this case, p is the density of the shell
material. When the stiffeners are included, p is M/h where M
is the average smeared out mass per unit area of the stiffened
shell, i.e. incorporating the mass of the stiffeners. If the stiff-
ener’s cross-sectional dimensions are small compared to the
radius R, then the effective density is given by

pP= (1 +A/ ah)pmaterial “4)

It can be seen from equation (1) that the only effect on the
axial equilibrium equation of adding ring stiffeners is this
added mass.

Other thin-shell theories such as those of Fliigge include
more terms than in equations (1) to (3) to better model the
bending effects in shells with higher thickness-to-radius rati-
os. Nevertheless, these simple Donnell-Mushtari based equa-
tions still illustrate a high degree of coupling between the
three displacements u, v and w.

To solve for the natural modes of a shell of finite length L,
with shear-diaphragm boundary conditions (analogous to
“simple support” in flat plates) at both ends, the following
modal solutions

1 = Acos AXcosnGe'™
v = Bsin Axsinnge' (5)

w = Csin Axcosn ™

are substituted into the equations of motion, where
A=mz/L with m the number of half wavelengths along the
cylinder’s length and n is the number of wavelengths devel-
oped around the circumference of the cylinder in the mode
shape. Here w is the natural frequency to be solved for. To
solve for free waves in the shell, solutions of the form

u=Ae™ cosne'

v =Be"sinné' 6)
w=Ce™ cosnte™
are substituted, where each displacement function is de-
scribed in the axial direction by a wavenumber A which is to

be solved for a given circumferential mode number n and
angular frequency @.

Substitution of solutions (5) or (6) into the equations of mo-
tion (1), (2) and (3) results in a matrix equation of the form

by by, Dby|[A 0
b, b, by [{B;=10 (7)
by, by, by ||C 0

where

b, =FR222 —(1-v)n*/2+Q?

b, = R(1+v)ni/2
b, =RvA
(®)
b,, = +R(1+v)ni/2
b, =FR*(1-v)A?[2—(1+s,)n* +Q*
b,, =—(1+s,)n-s,n’
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b, =F¥RvA
b,, =(1+s,)n+s,n’ ®)
b,, =kR*A* £2kR*(1+5,)n*2* + k(1 +s,)n* cont.

+25,n% +(1+5,)-Q°

The upper sign in equations (8) is for the natural frequency
equation and the lower sign is for the free wave equation,
arising from the use of trigonometric functions of AX in equa-
tion (5) versus exponentials in equation (6). The parameter k

is defined as k =h?/12R? and the non-dimensional frequen-
cy squared Q= p(1-v*)R’w’/E is the squared ratio of the

frequency to the shell ring frequency. The ring frequency is
that of the “breathing” mode of the whole shell, where the
wavelength of longitudinal waves is equal to the shell cir-
cumference. The shell stiffener section parameters are de-
fined as

s, =A(l-v?)/ah

s, = ZA(1-v?)/Rah

s, =3J(1-v)/ah’

s, =121, + 2 A)(1-v?)/ah’

©

and are all zero for a plain shell with no stiffeners smeared
into it.

Calculation of natural frequencies

The natural frequencies can be determined from equation (7)
based on the solutions given by equation (5). Equation (7)
has a non-trivial solution when the determinant of the matrix
is zero. The determinant can be expanded out explicitly in
terms of the coefficients bjj to give a cubic polynomial in Q%
This can then be solved numerically to give three values of
Q? for each m, n pair. The natural frequencies are derived
from the positive square roots of these values. This is the
method described in Leissa (1993b) and demonstrated in
Forrest (2005).

An alternative method based on eigenvalues will be used in
this paper. Inspection of the coefficients (8) shows that Q7
appears only in the diagonal terms by, by, and bs;. Multiply-
ing the first two rows of (7) by —1 results in all diagonals of
the matrix containing a —Q* term. Thus Q represents the
eigenvalues of the matrix formed from the bj; omitting the o?
from the diagonals and with the first and second rows having
their signs reversed. The eigenproblem can then be solved
numerically for each m, n to give the squared natural fre-
quencies O as eigenvalues and the modeshapes {A B C}" as
the eigenvectors.

Since eigenvectors are arbitrarily scaled, the ratios A/C and
B/C can be considered to determine the relative amounts of
motion in each direction for the mode. For example, if A/C is
large and B/C is small, then the mode is predominantly axial.
If both ratios are less than unity, then the mode is predomi-
nantly radial, and so on.

Calculation of free wavenumbers

Solving equation (7) for the wavenumber A based on the
solutions (6) is a different proposition. A appears raised to
various powers in several of the coefficients (8), so eigen-
analysis is not applicable this time and the determinant of the
matrix in (7) must be expanded out explicitly. This gives a
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quartic polynomial in A2 which can be solved numerically to
eventually give eight values of A at a specific frequency
 and circumferential mode number n.

For each of these wavenumbers, the ratios A/C and B/C can
be calculated from any two rows of the matrix in (7), since its
determinant is zero when that A value is substituted. One
solution is

Asn /Csn =Py = (_blsbzz + blzbzs)/(bnbzz _blzbm) (10)

Bsn /Csn =V = (b13b21 - b11b23 )/(bllbzz - b12b21)
where the subscript s refers to the particular wavenumber (1
to 8). Thus the coefficients A and B in solutions (6) can be
written in terms of C. The total displacements at a given n
can then be written as

¢ _
u= zsﬂgosncsneis"x cosng.e'™

8 a . N
0= w.C.e’ sinnge (11)

_\® DX iot
wfzS:lene cosné.e

that is, a sum of the contributions of terms due to the eight
roots for 4. Each root has its negative counterpart, so the two
represent a pair of waves, one travelling in the positive x-
direction, the other in the negative X-direction. If solving
directly for a uniform semi-infinite cylinder extending in the
positive x-direction, only four of the roots for 4 would thus
be included in the sums (11). If there were some damping
included in the model, this would mean in practice that the
four roots with negative real parts would be used, so that the
waves they represent decay with increasing X.

Forces acting on a periodic unit

Consider constructing an infinite cylinder from a periodic
repetition of a cylinder unit of length a. To join these units
together requires knowledge of the forces acting on the ends
of each unit. These generalised end forces are shown in Fig-
ure 2 with the sign conventions that will be used here.

M, M,
nle R
0 So S, a
N,
% «——
N,

Figure 2. The forces and moments per unit length acting on
the ends of one cylindrical periodic unit, isometric and side
views. The forces act around the whole circumference but
are only shown at the top of the right-hand figure for clarity.

Expressions for the end forces are given by Mead and Bardell
(1987). These allow for stiffeners of arbitrary open, not nec-
essarily symmetric, cross-section. If we assume a stiffener of
rectangular section of width b and depth d, which is a sym-
metric and relatively slender section, the Wagner torsion-
bending constant /" can be taken as zero, as can the product
moment of area |, . Thus the end force expressions can be

simplified to the following formulae.
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+ RpA(u —waj - Rp[ R Upy R UHH

(15)

These are based on Love-Timoshenko shell theory, but this
differs little from the Donnell-Mushtari formulation used
earlier. The first term in each expression, grouped with curly
brackets, represents the contribution of shell deformation to
the forces. Note that it has a different sign depending on
which end it is calculated for. The remaining terms represent
the contribution of beam stiffener deformation to the forces.
The factor of one-half outside this second group of terms in
each force expression is because only half a stiffener is con-
sidered at each end of the cylinder unit.

Periodic structure calculation

The approach to the analysis of an infinitely long periodic
cylinder used by Mead and Bardell (1987) and adopted here
is based on the propagation of states of force and displace-
ment along the structure. The states F, at Xx=0 and F, at

x =a of asingle periodic unit are defined as
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Fo={-L -N, =5, -M, u, v, w, w;)}T (16)
F, ={L,

N, S, M wl )T

u 4 w

a a a a a a

where the elements of these vectors are the forces and dis-
placements as developed earlier, calculated at the ends, and
dash indicates derivative with respect to X in this case (so the
last element is a rotation). It is assumed that the propagation
of a state from one end of a unit to the other is governed by

F, =e‘F, (17

that is, the state is only changed in amplitude and phase by
the complex factor e“ as it moves down the structure. This
is a statement of Floquet’s theorem. The real part of the
propagation constant u thus represents the attenuation of the
state along the structure.

Substituting the displacements defined in (11) into the force
expressions (12) to (15) and differentiating w to get the rota-
tion required, the end states of the cylinder unit can be writ-
ten as

F(J :[KO]CSn sn

sin ot sin ot
(ng)e'"" , F, =[K,IC (nO).e (18)
0s cos

where “sin” is used for the tangential displacement vy, and
tangential force Ny, and “cos” is used for all other forces and
displacements. Matrices [K,] and [K,] are functions of o,

n and the wavenumbers Ag,. Substitution of these expressions
(18) into the propagation equation (16) and some manipula-
tion yields

(K, T, 1-e“[17)Cy, =0 (19)

so that the propagation constants 4 can be obtained from the
values of e“ found as eigenvalues of the 8x8 matrix product
[K,'[K,], a straightforward numerical operation. There

are eight values of y that come in pairs that are the negative
of each other, since all eight roots A have been considered in
the underlying displacement sums (11). The members of
each of these pairs represent the same manner of propagation
of the state, but in opposite directions along the cylinder.
Therefore, in comparing the computed attenuation factors,
only four distinct values of x need to be considered.

RESULTS

The cylindrical shell considered here is based on the plain
(unstiffened) steel shell for which experimentally determined
modes and natural frequencies are compared to theoretical
ones in Forrest (2005), and sound radiation and active control
are analysed in Forrest (2007). The shell properties and hy-
pothetical ring stiffener properties are given in Table 1.

Table 1. Properties of the cylindrical shell and ring stiffeners

Quantity Symbol Value
Shell radius R 200 mm
Shell thickness h 2 mm
Shell length L 1.5m
Stiffener spacing a 100 mm
Stiffener width b 4 mm
Stiffener depth d 30 mm
Young’s modulus E 210 GPa
Poisson’s ratio v 0.3
Density p 7800 kg/m®
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Other parameter values are derived from these, such as
G=E/2(1+v), I,=bd*/12 and I, =b’d/12. Young

and Budynas (2002) give formulae for the torsion constant J,
which they denote K, for various cross-sections. For a rec-
tangular cross-section, the torsion constant is given within
4% accuracy by

4
3=bd/ L0221 2 (20)
3 07l 12d

for the notation used here, with d > b.

The numerical results presented below were calculated using
the Matlab software package.

Natural frequencies for plain and smeared shells

The eigenvalue method described in the previous section was
used to calculate the natural frequencies of the finite cylindri-
cal shell of length 1.5 m, for various combinations of the
modal parameters m and n. The results for the plain shell
without any stiffeners are given in Table 2. The results for
the shell with stiffeners, calculated using the smeared shell
approximation, are given in Table 3.

The natural frequencies in both tables are categorised accord-
ing to their predominant nature. Nevertheless, there is al-
ways some motion in the other two directions. In a few cas-
es, the modes have equal radial and tangential motion (A/C
small and B/C = 1 within 10%) or equal axial and tangential
motion (A/C = B/C within 10% and greater than unity), and
these are marked accordingly. An interesting feature of cy-
lindrical shells that can be seen in both sets of results is that
the natural frequency does not necessarily increase with
modal order.

Table 2. Natural frequencies for the plain shell, " radial-
tangential mode,  axial-tangential mode.

Mode shape Natural frequency (Hz)

m n radial axial tangential

1 1 422° 3044 6247"
2 161 5307 9806
3 132 7784 13792
4 201 10311 17931

2 1 12147 3962 6679
2 547 5785 10193
3 305 8072 14103
4 263 10512 18184

3 1 1988 4830 75291
2 1040 6418 10844
3 595 8507 14616
4 417 10829 18600

Some of the higher natural frequencies given are going to be
unrealistic. Even though the wavelengths, as indicated by the
modal parameters m and n, are still large relative to the shell
thickness, the effects of shear and rotary inertia are going to
become significant at these higher rates of oscillation. These
effects are ignored by all thin shell theories.

Using the cylinder parameters of Table 1 and equation (4),
the smeared shell’s effective density is 1.6 times the basic
material density, which is the plain shell’s density. If just
this mass effect was added, natural frequencies would be
expected to drop by a factor of the square root of 1.6, or
about 20%. This is seen in some of the lower-order axial
modes, where axial motion is not affected by the ring stiff-
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ness as discussed earlier with respect to equation (1). As the
axial mode orders become more complicated (and involve
greater amounts of motion in the other coordinate directions),
this reduction is less than 20%.

Table 3. Natural frequencies for the smeared shell, " radial-
tangential mode.

Mode shape Natural frequency (Hz)

m n radial axial tangential

1 1 3437 2459 6093 "
2 418 4248 9615
3 967 6197 13571
4 1759 8187 17678

2 1 963" 3338 6288 "
2 584 4769 9793
3 984 6546 13712
4 1758 8447 17791

3 1 1590" 4280 6681
2 916 5477 10101
3 1061 7072 13949
4 1771 8855 17980

For the radial modes at n = 1, the smeared shell has lower
frequencies. This is because n = 1 corresponds to pure trans-
lation of the cylinder cross-section (i.e. a beam bending mode
of the cylinder), so that the ring stiffeners also do not deform
and just add mass. For higher values of n, the stiffening ef-
fect of the rings comes into play, and the smeared shell’s
natural frequencies are higher than those for the plain shell.

Propagation constants

By way of example, the propagation constants g for infinitely
long cylinders using the properties of Table 1 were calculated
for n = 4 using equation (19). Attempts to generate the quar-
tic polynomial in A* from the matrix in equation (7) by
means of calculating the determinant of a matrix of numerical
polynomials in A with the Matlab or Scilab software packag-
es failed to give correct roots for A. This was because the
spread of numerical values of the polynomial coefficients
was too great, leading to significant round-off error. Depend-
ing on the method, this sometimes resulted in only a cubic in
A* being generated for the characteristic determinant. Thus
the determinant was expanded in full symbolically using the
Maxima computer algebra system, and the resulting expres-
sions used to set up the characteristic polynomial for numeri-
cal solution of the roots in Matlab.

Three different cases were considered: a plain shell, a
smeared shell, and a shell with discrete stiffeners. These
were generated using different combinations of the shell and
force equations to give a specific version of (19). For the
plain shell, the stiffener properties are zero for calculation of
the wavenumbers Ag, and only the shell terms are considered
in the force expressions (12) to (15). For the smeared shell,
the stiffener properties are included in the calculation of the
Asn, but only the shell terms are included in the forces. For
the shell with discrete stiffeners, wavenumbers are the same
as for the plain shell, but the full force expressions including
shell and stiffener contributions are used. No damping has
been included in the modelling for these free-wave propaga-
tion results. The attenuation factors for the three cases are
plotted in Figures 3, 4 and 5. The non-dimensional frequency
Q is used for the independent axis, calculated with the basic
material density for all cases. For the cylinder parameters
used here, the ring frequency (i.e. when Q= 1) is 4328 Hz.
Thus the upper frequency limit of the plots is greater than
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8 kHz, which may be beyond the range of validity of the thin-
shell theory used to model the cylinders.

16
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Figure 3. Attenuation factors (real part of the propagation
constants) for the plain shell.
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Figure 4. Attenuation factors (real part of the propagation
constants) for the shell with smeared stiffener properties.
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Figure 5. Attenuation factors (real part of the propagation
constants) for the shell with evenly spaced discrete stiffeners.

As mentioned previously, only four of the eight propagation
constants need be considered, one from each posi-
tive/negative pairing. These are marked by numbers 1 to 4 in
the plots. For some frequency ranges, propagation constants
are complex conjugates of one another, so overlap in the
figures, since they are plots of real part only. When the at-
tenuation is non-zero, the corresponding wave types do not
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propagate indefinitely, but decay. When at least one attenua-
tion factor is zero, propagating waves result. The frequency
ranges where the latter occurs are known as pass bands, while
ranges outside this are known as stop bands.

It can be seen that the three figures are different, although
Figure 3 for the plain shell and Figure 5 for the shell with
discrete stiffeners have some broad similarity in the upper
half of the frequency range shown. In particular, the two
methods for treating stiffeners (smeared or discrete) give very
different results as evident in comparing Figures 4 and 5.

In Figure 3, there is a short stop band from zero to about
Q) =0.045 where no waves propagate down the cylinder,
because both attenuation factors 1 and 2 are non-zero. This
corresponds to a frequency of 195 Hz. This represents the
cut-on of the propagation of the n = 4 circumferential flexural
ring mode down the cylinder. These cut-on frequencies for
successive flexural ring modes are discussed by Forrest
(2006) in the context of an infinitely long cylindrical shell
representing a railway tunnel. Otherwise, attenuation factor 1
is always zero, so there is always propagation for frequencies
above 195 Hz for n =4 in the plain shell.

In Figure 4, attenuation factor 1 is always zero, while atten-
uation factor 2 is also zero for Q2 <0.407 and Q2 > 1.871 (fre-
quencies of 1761 Hz and 8098 Hz). Thus there is always at
least one, and sometimes two, wave types propagating along
the smeared shell for the frequency range shown. It is inter-
esting that there is no low-frequency non-propagation stop
band as there is for the plain shell.

The attenuation factors for the shell with discrete stiffeners
shown in Figure 5 display different behaviour again. The
general layout is similar to the plot given by Mead and
Bardell (1987) for a small cylinder of similar configuration
but different dimensions at n =4. This time only attenuation
factor 1 is sometimes zero, with a number of non-zero stop
bands appearing. While again there is no low-frequency stop
band corresponding to that in the plain shell, there are stop
bands at 0.639 <Q < 0.700 (2766 Hz to 3030 Hz frequency),
1.058 <Q < 1.100 (4579 Hz to 4761 Hz), 1.344 <Q < 1.633
(5817 Hz to 7068 Hz) and Q> 1.871 (8098 Hz). The pass
band parts of factor 1 are not exactly zero, which suggests
some numerical issue or a mismatch due to the different shell
theories used to calculate the free wavenumbers on the one
hand and the end forces and moments on the other. Howev-
er, the overall picture is clear. In contrast to the smeared
shell results, consideration of discrete stiffeners shows that
there are stop bands where no propagation occurs, and that
when there are pass bands, only one wave type, never two,
propagates along the cylinder.

DISCUSSION

Consideration of the propagation constants and the attenua-
tion factors that are their real parts illustrate some of the dif-
ferences in the two approaches to including stiffeners in a
cylindrical shell. However, they do not alone make it clear as
to when the simpler smeared shell approach is appropriate for
practical modelling of a cylinder. While the non-zero attenu-
ation factors in Figures 3 to 5 differ a lot, their corresponding
waves may not have much influence on a total displacement
field in a cylinder under forced vibration simply because
these waves will not be propagating. Another way of looking
at this is that any given arbitrary state can be written as a
unique linear combination of the eigenstates Cg, from equa-
tion (19), each governed by its own u value. The two differ-
ent models will have different sets of eigenstates but there-
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fore also different linear combinations to represent the same
arbitrary state, so that the propagation of the overall total
state may be much the same in both. Additionally, the stop
bands that appear when discrete stiffeners are considered
only occur at relatively high frequencies. The effects on
natural frequencies are also not immediately obvious.

Natural frequencies for a discretely stiffened shell

Mead and Bardell (1987) describe a method to estimate the
natural frequencies for a finite-length stiffened shell based on
the phase of the propagation constants s This method is
taken to be valid for cylinders with simply supported (shear
diaphragm) or clamped ends. The method is based on the
idea that a wave impinging on one of these boundary types
will suffer a phase change of + 7 on reflection. Say the finite
cylinder comprises N cylindrical units as defined previously.
The phase axis is conceptually divided into N equal intervals
between 0 and + 7 and horizontal lines of constant phase are
drawn at these divisions. The natural frequencies are esti-
mated as the intersections of these horizontal lines with the
curves of the phase of the propagation constants /.

In practice, these intersections on the phase curve would be
solved numerically, and would have to be done for the phase
curves calculated over a range of n values. The natural fre-
quencies could then be compared to those in Tables 2 and 3.
However, the issues described for the results of Figure 5 for
the current shell with discrete stiffeners would need to be
resolved to ensure reasonable accuracy of estimated frequen-
cies.

Finite shell with discrete stiffeners

The expressions given in equation (18) for the states of force
and displacement at the ends of a unit of cylinder can be used
in a slightly different way. Instead of writing the equations in
terms of the end states F( and F,, one matrix equation can be
written for all the end displacements and one for all the end
forces in terms of the constants Cg,. This allows the elimina-
tion of those constants to generate a dynamic-stiffness matrix

instead of the propagation matrix product [K,]"'[K,].

The dynamic-stiffness matrix relates the forces (at both ends)
to the displacements (at both ends). As such, it can be as-
sembled with the dynamic-stiffness matrices of other struc-
tural elements in the same way as stiffness matrices are as-
sembled in the finite-element method. However, such dy-
namic-stiffness matrices describe much larger parts of a
structure than a finite element does, so the order of the matrix
representation of the structural dynamics is still relatively
small.

This approach could be used to link a number of cylinder
units together and the forced response could be calculated.
This would require the summation of contributions over a
range of n values to generate a total response to a general set
of forces.

Randomisation of stiffener spacing

It would be interesting to investigate the effect of stiffeners
with random spacing on the wave propagation and forced
response. This could be based on the uniform spacing al-
ready considered with say +20% variation in the axial
placement of the stiffeners, while keeping the overall length
of the cylindrical shell the same.
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Dynamic-stiffness matrices could be generated for a number
of cylindrical units with varying lengths matching the differ-
ent stiffener spacings. These could then be assembled as
described in the previous section above. This could be used
to calculate forced responses. Alternatively, this newly as-
sembled dynamic-stiffness matrix could be partitioned and
rearranged to go back to a propagation matrix relating end
states, but now for a longer cylindrical unit with a number of
randomly spaced stiffeners included. Solving for the eigen-
values of this new matrix would give the propagation con-
stants u for a “pseudo-random” infinitely long stiffened cyl-
inder, where the randomness of the stiffener spacing repeats
periodically. These new u values could then be compared
with those calculated for a cylinder with uniformly spaced
discrete stiffeners as presented in this paper.

CONCLUSIONS

The dynamics of a plain cylindrical shell and a cylindrical
shell with ring stiffeners have been considered. The stiffened
shell has been treated via two approaches: the smearing of the
mass and stiffness of the ring stiffeners into the continuous
shell, and the consideration of discrete stiffeners using peri-
odic structure theory.

Comparison of the natural frequencies calculated for a finite
plain shell and a finite shell with smeared stiffeners shows
expected effects of the ring stiffeners. Modes that are pre-
dominantly axial in nature are reduced in natural frequency in
proportion with the mass added by the stiffeners, especially at
lower circumferential orders, as the stiffeners are not being
deformed much so only their mass counts. Modes that have
significant radial motion are raised in frequency because the
stiffness of the rings is the significant factor this time, and
this is a bigger effect than the added mass for the parameter
values chosen for this paper.

Propagation constants calculated from periodic structure
theory show some distinct differences between the plain
shell, smeared shell and shell with discrete stiffeners. The
curves of the non-zero attenuation factors corresponding to
non-propagating waves vary quite a lot between the three
cases. Propagation behaviour is also different. The plain
shell exhibits a small stop band from zero to the cut-on fre-
quency of the flexural ring mode for the n = 4 case calculat-
ed. Neither of the stiffened shell models exhibit this. The
smeared shell always has at least one wave type propagating
over the frequency range calculated, and sometimes has two.
The shell with discrete stiffeners shows four stop bands, but
at higher frequency ranges. In its pass bands, it only ever has
one propagating wave type.

A number of areas for future work could shed light on the
importance of the differences between the smeared and dis-
crete stiffener models. The phase of the propagation con-
stants could be used to estimate the natural frequencies of a
finite shell with discrete stiffeners, and these could be com-
pared to the ones calculated in this paper for the smeared
shell. Some of the analysis used for the periodic structure
could be modified to create a dynamic-stiffness matrix of a
typical cylindrical shell unit. A number of these units could
then be assembled as in the finite-element method and the
forced response calculated. This approach would also be
amenable to modelling the effects of some randomisation of
stiffener spacing.
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