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ABSTRACT 
Adaptive beamformers suffer from performance degradation when the assumptions made of the environment, signal 

sources, or sensor array, are violated. This paper investigates the robustness of the constrained least mean square 

beamformer with respect to its adaptive step size, in the presence of model errors and direction of arrival mismatches. 

A sacrifice in convergence speed can be used to improve the robustness of the algorithm, as simulation results show 

improved performance in the presence of errors as the algorithms step size is made small. A comparison is made be-

tween the effect of the popular diagonal loading method and a reduced step size on the robustness of the algorithm, 

showing improved results with a reduced step size. 

INTRODUCTION 

The constrained least mean square beamformer is a widely 

used adaptive beamforming algorithm, effective in producing 

a signal originating from a direction of interest with high 

fidelity in the presence of strong interferences. Fields in 

which the technique is applicable include wireless communi-

cations and networking, sonar, radar, microphone array 

speech processing, and medical imaging. A disadvantage 

exists as adaptive beamformers suffer from performance 

degradation when the assumptions made of the environment, 

signal sources, or sensor array, are violated. Such violations 

may be caused by array look direction errors, imperfect sen-

sor array calibration, wavefront distortions and local scatter-

ing effects. The error sources other than look direction errors 

are referred to collectively here as ‘model errors’, as they 

cause discrepancies in the signal environment model used 

originally to develop the adaptive beamformer. That is, the 

assumption that signals arrive at the sensor array in plane 

waves is made invalid by these errors. 

Recently, there have been many publications on the methods 

of robust adaptive beamforming (Gershman, 2003; Lin, Li & 

Jin, 2010). Particular focus is placed on the popular ad-hoc 

method of diagonal loading (Laseetha & Sukanesh, 2011), 

while others develop new approaches toward a robust adap-

tive algorithm (El-Keyi, Kirubarajan & Gershman, 2006; 

Landau, Lamare, Wang, and Haardt, 2011). The problem 

with diagonal loading is that there is no rigorous method for 

determining the magnitude of the loading, whereas new algo-

rithms necessitate a significant performance improvement 

over existing algorithms to justify implementation. 

In this paper, we investigate how the widely used constrained 

least mean square beamformer can be made robust by reduc-

ing the algorithms adaptive step size. A sacrifice in conver-

gence speed can be used to improve the robustness of the 

algorithm. The authors analyse the effectiveness of the algo-

rithm in the presence of both look-direction errors and model 

errors as the step size is made small, and compare the per-

formance to that produced through the use of the diagonal 

loading method. 

BEAMFORMING PROBLEM FORMULATION 

Constrained Least Mean Square Beamformer 

The beamforming algorithm used in this study is the Con-

strained Least Mean Square or Constrained LMS algorithm 

developed by Frost (1972). This is a simple stochastic gradi-

ent-descent algorithm that in the adaptive process progres-

sively learns the statistics of noise arriving from directions 

other than the look direction, minimising the noise power in 

these directions. Noise arriving from the look direction may 

be filtered out by a suitable choice of the frequency response 

characteristic in that direction. 

The beamforming processor structure, depicted in Figure 1, 

with L sensors and J taps per sensor has a vector of tap volt-

ages      such that 

 

      [                    ]   (1) 

 

Figure 1. Broadband Beamformer Structure 
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The vector of weights at each tap is 

 

   [           ]   (2) 

The output of the array is then 

 

           .  (3) 

The stochastic constrained LMS algorithm developed in Frost 

(1972) is 

 

       (4) 
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where P is an LJ x LJ matrix determined by the constraints on 

each vertical set of weights, F is an LJ-dimensional vector 

specifying the frequency response in the look direction, and μ 

is the algorithms convergence coefficient. 

Diagonal Loading 

Diagonal loading is a popular and effective ad hoc method of 

imparting robustness on an adaptive beamformer to look 

direction mismatches and model errors (Elnashar, Elnoubi, & 

El-Mikati, 2006). The technique involves adding a small 

constant to the main diagonal of the array covariance matrix. 

For this algorithm, we use a transient estimate of the covari-

ance matrix; diagonal loading is applied with a modification 

of the weight update Equation (5) 

 

        [                     ]    (6) 

where γ is a loading constant. 

Algorithm Step Size 

The convergence coefficient used in this study is data-

dependent, consistent with the common Normalised Least 

Mean Square algorithm, while incorporating an independent 

and arbitrary forgetting factor to account for changing signal 

environments 
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where Px is the power of the array response, λ is the forget-

ting factor, and μc is a constant. 

By manipulating μc we can select a convergence coefficient 

as required, and relate this to the performance of the beam-

former. 

SIMULATIONS 

The aim of the simulations is to explore the relationship be-

tween the Constrained Least Mean Square algorithm (CLMS) 

step size and performance under practical conditions where 

look-direction and model errors will likely exist. The perfor-

mance metric used is the Signal-to-Interference-and-Noise-

Ratio (SINR). 

The array considered consists of 16 sensors with a uniform 

linear inter-element spacing of 0.17m. The speed of sound 

was taken as 340m/s and a sampling frequency of 4000Hz 

was used. The design frequency of this array is then 1000Hz. 

The number of taps in the FIR filters of the beamformer is 

16. This gives a sufficiently high level of performance con-

sidering the increased computational expense for marginally 

higher performance that an increased number of taps would 

provide. The signal incident upon the array consists of four 

tonal components (200Hz, 400Hz, 600Hz, and 800Hz). This 

was chosen so as to span the low, mid and high frequencies 

within the design frequency of the array. There are two inter-

ferences, each also with 4 tonal components, (220Hz, 420Hz, 

620Hz and 820Hz) and (180Hz, 380Hz, 580Hz, and 780Hz) 

respectively, both at 10dB relative to the signal. A uniformly 

distributed random noise of 0 dB relative to the signal is also 

added. The length of the considered signal is restricted both 

to ensure that the algorithm converges within a practical 

length of time, and to minimise the computational require-

ment of the simulation. 

Each of the scenarios described below are simulated for a 

range of μc, with and without a near optimal level of diagonal 

loading, as the determination of an optimal loading constant 

without prior knowledge of array response characteristics is 

still a research area. CLMS(0) denotes the case with no diag-

onal loading, while CLMS denotes with loading. 

Scenario 1 

The signal arrives from broadside (perpendicular to the ar-

ray , with interferences equally spaced either side with an 

angle of separation of     from the signal. This represents a 

situation with no look-direction mismatch. No model error is 

introduced, giving a best case scenario for adaptive beam-

forming. 

The results of this scenario are shown in Figure 2. As there 

are no error sources introduced, the performance of the beam-

former is near optimal. This represents the best performance 

that this beamformer is able to produce, given the levels of 

noise and interference used here. Loading in this scenario 

causes a performance reduction, due to the adjustment made 

to the algorithm distancing filter weights from their optimum. 

The algorithm step size has no impact on performance in this 

scenario. 

 

Figure 2. Scenario 1 - No look-direction mismatch, no model 

error 

Scenario 2 

 he signal arrives from  .    from a line perpendicular to the 

array , with interferences equally spaced either side with an 
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maximum look-direction mismatch, as the signal arrives from 

directly between two discrete beamsteering directions. In this 

situation, the look-direction is perpendicular to the array. No 

model error is introduced. 

The results shown in Figure 3 depict that as the convergence 

coefficient is reduced, performance improves to the point that 

a non-optimal diagonal loading causes performance degrada-

tion. Performance with diagonal loading is almost constant 

for decreasing μc. Notice that the introduction of a look-

direction error produces a significant performance reduction 

from scenario 1. 

 

Figure 3. Scenario 2 - Look-direction mismatch, no model 

error 

Scenario 3 

The signal arrives from broadside (perpendicular to the ar-

ray), with interferences equally spaced either side with an 

angle of separation of     from the signal and a ma imum 

model error of  .   is introduced.  his is chosen to  e an error 

similar in magnitude to the look-direction mismatch. The 

model error is introduced in simulation by placing a random 

phase adjustment with a ma imum value of  .   to the sensor 

delays, creating non-planar waves incident upon the array. 

 

 

Figure 4. Scenario 3 - No look-direction mismatch, with 

model error 

The results are shown in Figure 4. Similar to scenario 2, 

when there is no loading, the performance reduction caused 

by the model error is minimised as the convergence coeffi-

cient decreases. Again the performance level with loading is 

consistent for all μc, and there e ists a μc beyond which diag-

onal loading becomes detrimental. 

Scenario 4 

The parameters in this scenario are the same as in scenario 3 

except that the signal arrives from  .  , as in scenario  . 

The results shown in Figure 5 reflect those in scenarios 2 and 

3, except that the cumulative effect of the look-direction 

mismatch and model error produce a greater performance 

reduction. 

 

Figure 5. Scenario 4 - Look-direction mismatch, with model 

error 

Convergence Speed 

The speed at which the algorithm converges depends upon μc. 

Figure 6 shows the number of samples required for the algo-

rithm to converge, with and without loading. Scenario 4 is 

used, as the maximum error conditions burden the algorithm 

with the longest convergence times. 

 

Figure 6. Number of samples required for adaptive weights 

to converge 

The results show that diagonal loading can improve the con-

vergence speed of the algorithm. For example, in Figure 5, 

where there e ists a μc where performance is equivalent with 

and without loading, the loading improves the convergence 

speed of the algorithm, as indicated by Figure 6. 
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Optimal Diagonal Loading 

A repetition of scenario 4 with optimal diagonal loading con-

stants is performed. An optimal loading constant is deter-

mined by simulation, varying the loading until peak perfor-

mance is consistently achieved over multiple trials. The re-

sults given in Table 1 show that as μc is reduced, the optimal 

diagonal loading constant becomes small. The performance 

improvement also becomes minimal. Assuming that the algo-

rithm is able to converge within an appropriate time as re-

quired by the application, this indicates that with a sufficient-

ly small convergence coefficient there is little motivation to 

determine an appropriate diagonal loading. 

Table 1. Optimal diagonal loading 

 μc (max) μc (min) 

Loading Constant 2.5 0.3 

Performance Increase 11.4% 0.11% 

 

CONCLUSION 

This paper has examined the performance of the Frost con-

strained least mean square beamformer with and without 

diagonal loading with decreasing adaptive step size. Simula-

tions consider the presence of strong interferences, look-

direction mismatches, and adaptive beamformer model er-

rors. Results show that with a sufficiently small adaptive step 

size, diagonal loading becomes unnecessary, and if not opti-

mal, becomes a source of performance degradation. Again 

with sufficiently small adaptive step size, the benefit of diag-

onal loading becomes primarily an increased algorithm con-

vergence speed. This paper has shown that robustness can be 

improved not only with diagonal loading, but also with a 

sacrifice in convergence speed, yielding improved perfor-

mance. Future work would be to determine the mechanism 

behind this improved performance. 
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