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ABSTRACT 
             This work studies the dynamic responses of a coupled fluid-loaded cylinder/plate structure. The cylindrical shell 

closed at each end by circular plates is driven by an axial force applied centrally to one end plate, resulting in an axi-

symmetric case. Analytical expressions for the axial and radial displacements of the cylindrical shell are derived. The 

spatially and frequency averaged energy due to radial motion of the cylindrical shell is compared with results ob-

tained from a Statistical Energy Analysis (SEA) model. Results from a fully coupled finite element /boundary ele-

ment (FE/BE) model are also presented. The dynamic responses estimated by the deterministic and stochastic ap-

proaches are discussed.  

 

 
INTRODUCTION 

Vibration characteristics of cylindrical shells in the low fre-

quency range have been investigated by many researchers. 

Most of the thin shell theories and fundamental partial differ-

ential equations for thin cylindrical shells have been summa-

rized by Leissa (1993). The dynamic characteristics of cou-

pled cylinder/plate structures have been investigated by sev-

eral authors (Irie et al. 1984, Huang and Soedel 1993, Tso and 

Hansen 1995). The presence of a dense fluid medium results 

in strong fluid-structure interaction. Cylindrical shells with 

internal or external fluid loading have been examined by 

Fuller and Fahy (1982) and Scott (1988). A general technique 

combining a classic in vacuo eignfunction expression with 

Green’s function method accounting for fluid loading was 

used to obtain the vibratory response of a finite fluid-loaded 

cylindrical shell under harmonic excitation (Stepanishen 

1982). The approximate analytical expressions for velocity 

responses induced by axisymmetric wave propagating along 

the fluid-loaded cylindrical shell were compared with nu-

merical results below the ring frequency (Photiadis 1990). A 

Fourier integral transform method was implemented to gener-

alise the surface velocity distribution on a fluid-loaded cylin-

drical shell closed with rigid end closures (Sandman 1976). A 

wave propagation approach was used to conduct the fre-

quency analysis of submerged finite cylindrical shells en-

closed with plate end-caps in comparison with FEM/BEM 

method (Zhang 2002). The first eight coupled natural fre-

quencies were obtained with good agreement between the 

wave propagation and the numerical methods.    

 

Statistical Energy Analysis (SEA) is an energy based tech-

nique to predict the average noise and vibration levels of 

complex structures at high frequencies (Fahy 1994, Lyon 

1995). Tso and Hansen (1997) used SEA to predict structure-

borne noise transmission in naval ship structures. External 

fluid load can modelled as an additional subsystem in SEA in 

order to consider fluid-structure interaction. Liu and Keane 

(2000) studied the vibrations of a coupled fluid-structural 

pipework system ulitising SEA method. Manning (2002) 

implemented SEA method to predict the vibrational energy 

transmission from fluid-filled piping systems. Three modifi-

cations were made to initial SEA models: introducing the 

frequency-dependent damping loss factors, reducing the cou-

pling between pipe bending and inplane modes, and adding 

the coupling between the pipe and the support structure. The 

comparsion between refined SEA model and test data pro-

vided better accuracy of the SEA predictions. 

 

Cylindrical shells used in engineering applications such as 

pressure vessels, autonomous underwater vehicles and sub-

marine hulls are generally subjected to loads. For example, a 

submarine hull is excited by the propulsion system and on-

board machinery. Fluctuating forces arise from the rotation of 

the propeller in a non-uniform wake field. Harmonic forces 

also arise from the motion of rotary parts in the diesel en-

gines, generators and auxiliary equipment. All these loads 

generate vibration in the mid frequency range where neither 

deterministic nor statistical approaches alone are suitable. To 

address this shortcoming in mid frequency predictive tech-

niques, hybrid deterministic-statistical methods for vibration 

analyses of structures have been developed (Cotoni et al. 

2007, Langley and Bremner 1999, Langley and Cordioli 

2009). Using the hybrid FE-SEA technique, rigid body com-

ponents are modelled using finite elements while the flexible 

components are modelled using SEA.  

 

In this paper, analytical and numerical models are developed 

for a coupled fluid-loaded cylinder/plate structure, corre-

sponding to a cylindrical shell closed by either rigid or flexi-

ble circular plates at each end. The system is driven by an 

external axial force at one end plate, resulting in only axi-

symmetric motion of cylindrical shell. The frequency re-

sponses and vibrational energy levels of the cylinder/plate 

structure are presented for both the in-vacuo and fluid-loaded 

cases. The dynamic responses obtained from the analytical 

model are validated with results from a fully coupled FE/BE 

model. The geometry of the structure in the finite element 

model was then imported into an SEA software package as 

the structural subsystem. The spatially and frequency aver-
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aged energy levels of the cylinder obtained analytically are 

compared to results obtained from the SEA model. The dy-

namic responses from the deterministic and statistical ap-

proaches are discussed. 

ANALYTICAL MODEL 

Dynamic response of a fluid-loaded cylindrical shell 
 
In this work, a fluid-loaded cylindrical shell closed with cir-

cular end plates is modelled. Both flexible and rigid end 

plates are considered. An axial force is applied at the centre 

of one end plate, as shown in Fig. 1. The cylindrical shell has 

length L  and is assumed to be thin-walled, that is, the shell 

thickness h  is much smaller than the mean shell radius a . 

The material parameters for the cylindrical shell are denoted 

by Young’s modulus E , Poisson’s ratio  , and mass den-

sity  . In Fig. 2, the shell motions are represented by cu , cv  

and cw  which are, respectively, the displacements in the 

longitudinal x , tangential   and radial z  directions. 

 

 

 

 

 

 

 

Figure 1. Schematic diagram of the fluid loaded cylinder 

with rigid end plates and under axial excitation 

 

 

Figure 2. Dispacements and co-ordinate system of a cylindri-

cal shell 

The axial force applied at the centre of one end gives rise to 

an axisymmetric case corresponding to excitation of the ze-

roth circumferential modes ( 0n  ) of the shell. For the 

0n   circumferential modes, the equations of motion for the 

axial and radial shell displacements become uncoupled from 

the equation of motion for circumferential motion. Using 

Flügge’s theory, the equations of motion for the axial and 

radial displacements of the fluid-loaded cylindrical shell are 

given by (Flügge 1973, Leissa 1993) 
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where 2/ (1 )Lc E     is the longitudinal wavespeed. 

12h a   is a non-dimensional thickness parameter. 

Equation (2) includes the fluid-loading term 2
a Lp hc  due 

to the acoustic pressure ap . The acoustic pressure due to the 

fluid loading acting normally to the surface of the shell is 

approximated using an infinite model and is expressed by 

(Junger and Feit 1986) 
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where   is the radian frequency. The fluid reactance fm  and 

fluid resistance fr  per unit area are given by (Junger and Feit 

1986) 
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where 
2 2

s s fa k k    and 
2 2

f f sa k k   . f
 

is the 

density of the fluid and fc is the speed of sound in the fluid. 

sk
 
is the axial wavenumber of the structure and fk

 
is the 

wavenumber of the fluid. nJ
 
and nY

 
are respectively the 

Bessel functions of the first and second kind, of order n . 

0K  and 1K
 
are respectively the modified Bessel function of 

the second kind of order zero and order one.
 1H is the Hankel 

function of the order one.
 
General solutions to the cylindrical 

shell displacements are of the form 

 

( , ) sjk x j t
c cu x t U e e                           (6) 

 

( , ) sjk x j t
c cw x t W e e                          (7)                                                                                                   

      

cU
 
and cW  are respectively the wave amplitudes in the axial 

and radial directions. Substituting these general solutions into 

the equations of motion gives rise to the following matrix 

expression 

 

Fluid loading 

Axial 

force 
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L
ca /  is the non-dimensional ring frequency, where 

the ring frequency ( ac
Lr

/ ) is the frequency at which 

the wavelength of extensional waves in the shell is equal to 

the shell circumference. Putting the determinant of the matrix 

in equation (8) to zero yields the following characteristic 

equation of the system  
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which is a third order dispersion equation in terms of 
2
sk . Due 

to the Hankel and Bessel functions, the characteristic equation 

given by equation (10) is non-linear and the complex axial 

wavenumbers can only be determined using a numerical 

method (Scott 1988). For the in vacuo case, the characteristic 

equation is a polynomial of sixth order in terms of sk . Three 

couples of complex conjugated solutions are determined as 

complex axial wavenumbers. The complex wavenumber can 

be written as .s real imagk k jk  Similarly, the characteristic 

equation can be written as .real imagC C jC  The complex 

solutions of the characteristic equation can then be found by 

solving , ,( ) 0; ( ) 0 .real real imag imag real imagC k k C k k  The axial 

wavenumbers are determined for any value of real frequency 

  as described by Scott (1988).  
 

Omitting the time dependent term 
j te


 for harmonic mo-

tion, the complete solutions can be written as: 
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,c iU and ,c iW

 

are determined from the boundary conditions. 

In the presence of a heavy fluid medium, the solutions for the 

cylindrical shell displacements are more accurate in the low 

frequency range where the fluid wavenumber fk  is higher 

than the structural wavenumber sk .  

Dynamic response of a circular plate 
 

The equations of motion for the bending (out-of-plane) pw  

and in-plane pu  displacements of a circular plate in axisym-

metric motion are given by (Tso and Hansen 1995)  

 

2

4 0
p p

p p

p

h
w w

D

  
   
 
 

                                             (13) 

2 2

2 2

(1 )1
0

p p p p p

p

u u u

r r Er t

    
  

 
                               

(14) 

 

224   where 2  is the Laplacian operator for axi-

symmetric motion, 
3 2/ 12(1 ) p p p pD E h   is the plate flex-

ural rigidity, and p , ph , pE , p  are the plate density, 

thickness, Young’s modulus and Poisson’s ratio, respectively. 

r  is the radial coordinate from the plate centre. Fluid loading 

on the end plates has been neglected. General solutions for 

the bending and in-plane displacements in harmonic motion 

are given by (Tso and Hansen 1995) 
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where 0J  is the Bessel function of the first kind of order zero 

and 0I  is the modified Bessel function of the first kind of 

order zero. pBk  and pLk  are respectively the bending and in-

plane structural wavenumbers. For an annular plate in axi-

symmetric motion, the general solutions for bending and in-

plane motion are given by (Tso and Hansen 1995) 
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where 0Y  is the Bessel function of the second kind of order 

zero and 0K  is the modified Bessel function of the second 

kind of order zero. Putting the coefficients 
3

A , 
4

A  and 
2

B  

in equations (17) and (18) to zero reduces the general solu-

tions to those of a circular plate given by equations (15) and 

(16). 

Cylindrical shell closed by rigid end plates 
 

Using rigid end plates, the boundary conditions at each end of 

the cylinder corresponding to 0x  and Lx   result in the 

radial displacement and slope of zero (Leissa 1993) 
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The external excitation was modelled as an axial force of 

amplitude extF  at one end of the cylinder corresponding to 

0x  . The force equations at 0x  and Lx   are given by 
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where m is the mass of each rigid end plate. ,x cF
 
is the in-

ternal axial force of the cylinder per unit length of circumfer-

ence and is given by (Leissa, 1993) 
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Cylindrical shell closed by flexible end plates 
 

In the case of flexible end plates, the point force is applied 

axially at the centre of the end plate located at 0x . This 

was analytically modelled by separating the circular plate at 

0x   into an inner circular plate of radius 
1a  and an outer 

annular plate of radius 
2a  (Caresta and Kessissoglou 2011). 

The point force at the centre of the end plate was then ap-

proximated by a distributed force applied axially to the cir-

cumference of the inner circular plate, that is, at the junction 

of the annular and circular plates. Using a very small value 

for 
1a , the distributed force converges to a point force. The 

continuity equations between the circular and annular plates 

at 
1r a  are given by: 
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 
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The subscript ‘p’ denotes circular plate and the subscript ‘a’ 

denotes the annular plate. The positive directions of the 

forces, moments, displacements and slopes for the cylindrical 

shell and circular plates located at 0x  is shown in Fig. 3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Displacements, slopes, forces and moments of the 

cylindrical shell and circular/annular plates  
 

The corresponding expressions for the internal forces and 

moments of the cylindrical shell and plates are given in the 

Appendix. The continuity expressions between the annular 

plate and cylindrical shell at x 0  and r 2a  (and noting 

that 2a  is the same as the radius of the cylindrical shell, that 

is, 2 a a ) are given by: 

 

,c au w           ,c aw u       c adw w

dx r


 


         

(30-32) 

 

, , 0,x c x aF F 
    , , 0,r c r aF F 

   
0 ac MM

        
(33-35)       

       

     

Similar equations to those given by equations (30) to (35) are 

used at the junction between the cylindrical shell and circular 

plate at x L . The displacements, slope, forces and moment 

terms associated with the annular plate are replaced by those 

for a full circular plate. 

  

For the structure consisting of a cylindrical shell closed with 

rigid end plates, there are a total of 6 unknown coefficients 

corresponding to the wave amplitudes of the cylinder dis-

placements. For a cylindrical shell closed with flexible end 

plates, there are a total of 18 unknown coefficients for the 

cylinder and circular/annular plates. The various boundary 

and continuity equations at each end of the cylinder can be 

arranged in matrix form BX F , where X  is the vector of 

the unknown displacement coefficients and F  is the force 

vector containing only one non-zero term due to the external 

force. Solutions for the unknown coefficients of vector X  are 

determined by 1X B F . The cylindrical shell axial and 

radial displacements are then obtained using equations (11) 

and (12) for the two cases using the rigid and flexible end 

plates. 

FE/BE NUMERICAL MODEL 
 

A finite element model of the coupled cylinder/plate structure 

was developed in MSC Patran/Nastran with a quadrilateral 

mesh using quad8 elements. The boundary conditions and 

external load were chosen to simulate those in the analytical 

model. The external fluid domain is modelled using the BEM 

module of the ESI Group VA-One 2010 software. A har-

monic analysis was carried out and the frequency response 

results from the FE/BE model were validated against those 

obtained analytically.   

STATISTICAL ENERGY ANALYSIS 
 

Statistical Energy Analysis (SEA) is an energy based method 

in which a structure is decomposed into subsystems which 

contain a fairly uniform response in terms of their vibrational 

energy. Using SEA, a structure is modelled using only a few 

degrees of freedom, where each degree of freedom corre-

sponds to a subsystem. The interaction between the SEA 

subsystems is based on the principle of conservation of the 

energy flow. In an SEA model, the power balance equations 

at each band-centre frequency over the frequency range of 

interest considers the power input to each subsystem due to 

external excitation, the power dissipated via damping in each 

subsystem, and the power transmitted between subsystems. 

The standard SEA equation which states the power balance 

for each subsystem in terms of the mean subsystem energies 

has the following well-known form (Fahy 1994, Lyon 1995) 
 

,
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where ,in iP , iE ,

 

in  and i  are respectively the input power, 

vibrational energy, modal density, and damping loss factor of 

subsystem i . ij  is the coupling loss factor between subsys-

tem i and subsystem j. Validity of the SEA equations is de-

pendent, amongst other things, on there being weak coupling 

between the subsystems (Mace 1994). 

 

The geometry of the coupled cylinder/plate structure devel-

oped in MSC Patran/Nastran was imported into the SEA 

module of the ESI Group VA-One 2010 software. The struc-

ture was decomposed into three structural subsystems corre-

sponding to the cylindrical shell and two end plates. The fluid 

loading effect is simulated by connecting a semi-infinite-fluid 

(SIF) subsystem with the cylindrical shell subsystem in VA-

One 2010 software. The power was injected into one end 

plate as shown in Fig. 4. 

 

 
 

Figure 4.  SEA model of the cylinder/plate structure show-

ing input power at one end plate 

 

RESULTS AND DISCUSSION 
 
The cylinder of radius 3.25ma  , thickness 0.04mh  and 

length 45mL   is made of steel with Young’s 

modulus 22.1 11N/m ,E e Poisson’s ratio 0.3  and den-

sity 37800kg/m  . The structural damping loss factor was 

introduced analytically using a complex Young’s 

modulus (1 )E E j  , where 01.0
 
is the structural loss 

factor. The mass of the cylinder is 2.866 5 kgM e . The 

additional mass of 2 5kgm e for each rigid end plate was 

modelled using a very high Young’s modulus of 
22.1 21N/m

p
E e and mass density 31.507 5kg/m .p e 

 
The 

flexible end plates were modelled using the same Young’s 

modulus and density as the cylindrical shell. The thickness 

and Poisson’s ratio of the end plates were the same as for the 

cylindrical shell.  

 

An axial force of 1N was applied to the centre of one end 

plate. Due to the excitation, only axisymmetric motion of the 

hull was considered in the analytical and computational mod-

els.  

 

The analytical results were obtained using Matlab. The com-

putational results were obtained using the FEM/BEM solver 

in the VA-One software. The SEA results were also obtained 

using the SEA solver in the VA-One software. 

Frequency response  
 

To validate the deterministic models, results for the frequency 

responses from the analytical and FE/BE methods are initially 

presented. The same dimensions and material properties of 

the cylindrical shell and end plates were used in both deter-

ministic models. The frequency response function of the cyl-

inder axial displacement is measured at the outer edge of the 

end plate at 0x  . Figures 5 and 6 present results for the 

cylinder closed by rigid end plates and flexible end plates, 

respectively. In both figures, results for both the in-vacuo 

case and with fluid-loading are given. Axial excitation at the 

centre of the end plate gives rise to an axisymmetric case in 

which only the zeroth circumferential shell modes ( 0n  ) 

are excited. The peaks in the frequency responses correspond 

to axial resonances at which the cylinder is in breathing mo-

tion. For this axisymmetric case, the effect of fluid loading 

reduces the peaks at the resonant frequencies, thus acting as a 

damping effect. 

 

 
 

Figure 5. Axial displacement of the cylinder closed by 

rigid end plates, without and with fluid loading 
 

 
 

Figure 6. Axial displacement of the cylinder closed by 

flexible end plates, without and with fluid loading 

Figures 7 and 8 compare results obtained analytically and 

from the FE/BE model, for the fluid-loaded cylinder with 

rigid and flexible end plates, respectively. Good agreement is 

observed at lower frequencies. The results start to deviate in 

amplitude at higher frequencies which is attributed to differ-

ing underlying assumptions associated with the fluid loading 

in the analytical and numerical models. In the analytical 
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model, fluid loading is only associated with travelling waves 

in the shell, whereas the FE/BE model considers fully cou-

pled fluid-structure interaction. 
 

 
 

Figure 7. Axial displacement of the fluid-loaded cylinder 

closed by rigid end plates  
 

 
 

Figure 8. Axial displacement of the fluid-loaded cylinder 

closed by flexible end plates  
 

Subsystem energy  
 
A comparison between the analytical and SEA results was 

conducted by comparing the total energy levels of the cylin-

der. For the coupled cylinder/plate structure excited at one 

end, the transmission of vibrational energy is dominated by 

the radial (out-of-plane) motion (Tso and Hansen 1995). The 

spatially-averaged mean square radial velocity is obtained as 
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where cw  is the radial displacement, cw  is the radial ve-

locity, the brackets 

 

denotes the spatial average and H()

 denotes the Hermitian transpose operator. The kinetic energy 

of the cylindrical shell due to radial motion is then obtained 

by 21

2
k cE Mw , where M is the cylinder mass. At the reso-

nant modes, the total energy is twice the kinetic energy which 

can be obtained by 
k

EE   (Lyon 1995). 

 

Figures 9 and 10 present the energy levels due to radial mo-

tion of the fluid-loaded cylinder obtained analytically and 

from an SEA model, for the fluid-loaded cylinder with rigid 

and flexible end plates, respectively. The energy levels ob-

tained analytically were spatially and frequency averaged. 

The difference in amplitudes in the energy levels between the 

two figures is attributed to the axisymmetric excitation of the 

rigid and flexible end plates. For the case of rigid end plates, 

the cylinder axial modes are predominantly excited which 

indirectly excites the bending (radial) modes due to the cou-

pling effect by Poisson’s ratio. For the case of flexible end 

plates, both the axial and bending cylinder modes are directly 

excited. The results obtained analytically converge to those 

from the SEA model at higher frequencies, corresponding to 

around 700Hz for the structure with rigid end plates and 

300Hz for the flexible end plates. Below these frequencies, 

the use of SEA to predict the mean energy levels is not valid. 

SEA parameters  
 

Key SEA parameters corresponding to the modal density and 

coupling loss factors from the SEA model developed in the 

VA-One software are observed in what follows. The modal 

density of the cylinder for the radial and axial modes is pre-

sented in Fig. 11. The peak in the modal density for the radial 

modes at 267.5 Hz occurs at the ring frequency of the cylin-

der, given by / 2r Lf c a  where Lc
 

is the longitudinal 

wave speed. Below the ring frequency, the cylinder dynamic 

response is influenced by the curvature of the shell. Above 

the ring frequency, the modal density of the cylinder for the 

radial modes approaches that of a flat plate. The axial modes 

occur at widely spaced intervals over the frequency spectrum 

thus their effect on the modal density is very small.  

 

The coupling loss factor is a parameter uniquely associated 

with SEA and describes the energy transmitted from one sub-

system to another. The coupling loss factors between the 

cylinder and flexible end plates are shown in Fig. 12. The 

coupling loss factor between the cylinder and driven plate are 

significantly higher than between the cylinder and receiving 

plate. A dip in the coupling loss factor from the cylinder to 

the receiving plate occurs at the ring frequency. Above the 

ring frequency, the coupling loss factor values of the cylin-

der/plate structure asymptotes to that of an equivalent 

plate/plate structure (Tso and Hansen 1997). 

 

 
 

Figure 9. Energy levels due to radial motion of the fluid-

loaded cylinder closed by rigid end plates 
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Figure 10. Energy levels due to radial motion of the fluid-

loaded cylinder closed by flexible end plates 
 

 
 

Figure 11. Modal density of the cylinder 
 

 
 

Figure 12. Coupling loss factors between the cylinder and 

flexible end plate subsystems 
 

SUMMARY 
 
The work presented here uses a combination of deterministic 

and statistical approaches to predict the dynamic responses of 

a fluid-loaded coupled cylinder/plate structure. A cylindrical 

shell closed by either rigid or flexible circular plates was 

modelled. The acoustic pressure due to the fluid loading act-

ing normal to the surface of the shell was approximated using 

an infinite model. The axial and radial displacements of the 

cylindrical shell were analytically obtained and validated 

using results from a fully coupled FE/BE numerical model. 

The spatially and frequency averaged energy due to radial 

motion of the cylindrical shell obtained analytically was then 

compared with results obtained from an Statistical Energy 

Analysis (SEA) numerical model. For this simple structure, 

good agreement between the energy levels obtained from an 

analytical model and an SEA numerical model was observed 

at higher frequencies.  
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APPENDIX 
 
For the axisymmetric case in which only the 0n   circum-

ferential modes are excited, the internal cylindrical forces and 

moments per unit length of shell circumference are given by 

(Flügge 1973) 
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For the circular plate internal forces and moments are 
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1ia a  for the inner circular plate at 0x  . 
2ia a  for the 

annular plate at 0x  . ia a  for the circular plate at x L  

 

 

 

 

 




