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ABSTRACT 
This paper studies the effect of different excitation loads on the low frequency vibrational behaviour of a submerged 

hull. The submerged hull is modelled as a fluid-loaded cylindrical shell closed at each end by circular plates. The ex-

ternal pressure acting on the hull due to the fluid loading is analytically calculated using an infinite model. To simu-

late excitation of the hull from propeller fluctuating forces, both axial and radial excitation was simultaneously con-

sidered. The effect of varying the degrees of load in the axial and radial directions on the hull structural responses, in 

particular, on the hull breathing and bending modes, is examined. 

INTRODUCTION 

Many engineering structures have the basic form of thin-

walled cylindrical shells; for example, aircraft fuselages, 

pipes and ducts, submarine pressure hulls and fluid storage 

tanks. The analysis of vibration characteristics of thin-walled 

circular cylindrical shells is important in cases where the 

ratio of cylinder radius to wall thickness is large, as in aircraft 

fuselages and submarine pressure hulls. The dynamic re-

sponses of thin cylindrical shells have received much re-

search attention, ranging from the free vibrational character-

istics of cylindrical shells with different boundary conditions 

(Leissa 1993, Yu 1955, Forsberg 1964), stiffened cylindrical 

shells (Mukhopadhyay and Sinha 1992), coupled cylin-

der/plate structures (Tso and Hansen 1995), and cylindrical 

shells with various end closures (Galletly and Mistry 1974). 

A review on the vibrations of cylindrical shells with and 

without fluid structure interaction is given by Amabili and 

Paidoussis (2003). 

The fundamental component of a submarine is the pressure 

hull. A submarine propeller can excite low frequency global 

hull modes due to unsteady forces generated on the blades 

which are transmitted via the shafting system. The propeller 

fluctuating forces at the propeller hub occur in axial, tangen-

tial and radial directions. The radial and axial components 

can be of similar magnitude (Breslin and Andersen 1994), 

resulting in global hull axial resonances which are predomi-

nantly excited by the axial forces, and hull bending modes 

which are excited by the radial forces transmitted directly to 

the hull via the aft end journal bearing.  

This work examines the low frequency dynamic responses of 

a submerged hull. The pressure hull is essentially a cylindri-

cal steel shell modelled using thin shell theory. The hull is 

idealised as a fluid-loaded cylindrical shell closed at each end 

by circular plates. Both axial and radial excitation on the aft 

end of the hull is considered. The effect of the different exci-

tation cases on the hull structural responses, in particular, on 

the shell breathing and bending motion, is examined. 

 

DYNAMIC MODEL OF THE SUBMERGED HULL 

Cylindrical shell 

For a cylindrical shell, the axial cu , circumferential cv  and 

radial cw  motions are the orthogonal components of the cyl-

inder displacement in the x,  and z directions, respectively. 

As shown in Fig. 1, a  is the mean radius of the shell, ch  is 

the thickness and L  is the length of the cylinder. As the den-

sity of the water is similar to the density of steel, the fluid-

loading effect has to be considered in the dynamic modelling 

of a submarine hull.  

 
Figure 1. Coordinate system and displacements for a        

thin cylindrical shell 

The uniform cylinder is modelled using Flügge equations of 

motion which are given by (Leissa 1993) 
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where cE , c  and c  

are respectively Young’s modulus, 

density and Poisson’s ratio of the hull. 

 2/ 1Lc c c cc E      is the longitudinal wave speed. 

/ 12ch a   is a non-dimensional thickness parameter. For 

a fluid-loaded cylinder, the external pressure ap  in equation 

(3) is given by (Junger and Feit 1986) 
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where / Lca c   is the non-dimensional ring frequency, 

/f fk c  is the fluid wavenumber, and  f , fc  are re-

spectively the density and speed of sound in the fluid. nk  is 

the hull axial wavenumber and  is the radian frequency. nH  

is the Hankel function of order n . nK  is the modified Bessel 

function of order n . nH  and nK   are their derivatives with 

respect to the argument. 

General solutions for the cylindrical shell displacements can 

be written as 

 , , cos( )njk x j t

cu x t Ue n e                                                (7) 

 , , sin( )njk x j t

cv x t Ve n e                                                  (8) 

 , , cos( )njk x j t

cw x t We n e                                               (9) 

where U , V , W are the amplitudes of the axial, circumfer-

ential and radial displacements, respectively, which are de-

termined frmo the boundary conditions. These solutions rep-

resent a wave travelling in the axial direction and standing 

with n  nodal lines in the circumferential direction. Substitut-

ing the general solutions given by equations (7)-(9) into the 

equations of motion results in three linear equations in terms 

of U , V and .W  These linear equations can be arranged in 

matrix form as ,AX 0  where [ ]
T

U V WX . For a 

non-trivial solution, the determinant of matrix A  must be 

zero. The expanded determinant results in a characteristic 

equation in terms of nk  and  . For each  , the determinant 

is a polynomial of eighth order in terms of nk . Due to the 

Hankel and Bessel functions in equation (5), the characteris-

tic equation is non-linear and must be solved using a numeri-

cal solution
 
as described by Scott (1988) and Caresta et al. 

(2010). 

Circular plate 

The pressure hull is closed at each end by circular plates. The 

equations of motion for bending 
pw  and in-plane 

pu , 
pv  

motions of a circular plate can be found in Leissa (1993). 

General solutions for plate displacements are given by (Tso 

and Hansen 1995) 
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where r is the radial coordinate from the centre of the circular 

plate.   
1/ 4

2 /pB p p pk h D 
 
is the plate bending wavenum-

ber. 2(1 ) /pL p p pk E    , 2 (1 ) /pT p p pk E   
 

are the wavenumbers for in-plane waves in the plate. 
pE , 

p  

and 
p  are the Young’s modulus, density and Poisson’s ratio 

of the circular plate. 
ph  is the plate thickness. nJ  and nI  are 

respectively the Bessel function and modified Bessel function 

of the first kind of order n . The coefficients 
,n iA  and 

,n iB ( 1,2)i   are determined from the boundary conditions. 

Boundary equations 

The displacements and slopes of the cylindrical shell and 

circular end plate at the coupling junction are shown in Fig. 

2. Similarly, the forces and moments of the shell and plate at 

the coupling junction are shown in Fig. 3. 

 
 

Figure 2. Displacements and slopes of the cylindrical shell 

and circular end plate 
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Figure 3. Forces and moments of the cylindrical shell and 

circular end plate 

At the free ends of the cylindrical shell corresponding to 

0x   and L , the continuity equations of the displacements 

and slope between the shell and end plates are as follows  

,p cu w   
p cw u                                           (13,14) 

,p cv v
   

p c
w w

r x

 
 

 
                    (15,16) 

Equilibrium of the forces and moments are given by 

0cx pxF F  ,  0c pF F                          (17,18) 

0cx pxM M  ,  0cr prF F                         (19,20) 

cxF , crF , 
c

F , 
cx

M  are the internal force and moment ex-

pressions for the cylindrical shell. 
pxF , 

prF , 
p

F , 
px

M  are  

the internal force and moment expressions for the circular 

plates. The various force and moment equations can be found 

in Leissa (1993). 

Excitation load cases 

Two excitation cases were considered corresponding to axial 

and radial excitation. These forces were applied separately 

and then simultaneously. Axisymmetric excitation was gen-

erated by applying an axial force to the centre of the circular 

plate. Asymmetric excitation was generated using a radial 

point force at the end of the end plate. When these two exci-

tation cases were simultaneously considered, a weighting was 

applied to each force. The weightings were varied to examine 

the effect of different axial and radial load combinations on 

the hull structural responses. Five axial and radial excitation 

cases listed in Table 1 are examined in this work. 

 
 

Figure 4. Axial and radial excitation load cases 

Table 1. Various axial and radial excitation cases  

 Axial excitation   

weighting  

Radial excitation     

weighting  

Case 1 1 0 

Case 2 0.75 0.25 

Case 3 0.5 0.5 

Case 4 0.25 0.75 

Case 5 0 1 

The axial force applied to the centre of the end plate was 

dynamically modelled by separating the circular plate into an 

inner circular plate of very small radius and an outer annular 

plate (Caresta 2011). The point force at the centre of the plate 

was then approximated as a distributed force applied axially 

at the junction of the annular and inner circular plates. 

For the asymmetric excitation case, a radial point force was 

applied to the edge of the end plate, as shown in Fig. 4. The 

point force located at 0 0( , ) (0,0)x  
 
is described in terms of 

the Dirac delta function. The external force results in modifi-

cation to the equilibrium of the force given by equation (20) 

at 0x  , which now becomes 

tj

prcr
exxFFF





 )()(

000
            (21) 

Excluding the time harmonic dependency, multiplying the 

above equation by cos( )n  and then taking the integral from 

  to  , equation (21) becomes 

0 0
0 0cos( )cr prx x

F F F n                           (22) 

where 1/ 2 a   if 0n   and 1/ a   
 
if 0n  , where n 

is the circumferential mode number.  

The dynamic response of the entire hull is expressed in terms 

of unknown coefficients, 
,n iW ( 1:8)i  , for the cylindrical 

shell and unknown coefficients, 
,n iA  and 

,n iB ( 1,2)i  , for 

the circular end plates. The dynamic response of the hull is 

calculated by assembling a matrix from the boundary and 

continuity equations BX = F  where X  is the vector of the 

unknown displacement coefficients and F  is the force vec-

tor. Solving the system for each circumferential mode n  

gives the steady state shell displacements at a certain fre-

quency .   

RESULTS 

The frequency response functions (FRFs) of the shell dis-

placements are presented for a cylindrical shell of radius 

3.25m, hull thickness 0.04m, length 45m and with two end 

plates of thickness 0.04m. The material properties for steel 

were used for both the shell and plates, with density of 

7800kgm-3, Young’s modulus of 2.1x1011Nm-2 and Poisson’s 

ratio of 0.3. Structural damping was introduced using a com-

plex Young’s modulus
 

)1( jE 
 

where 02.0
 

is the 

structural loss factor. The surrounding fluid has density of 

1500kgm-3 and speed of sound of 1500ms-1.  

The FRFs were measured at the outer edge of the circular 

plate corresponding to the driving point location of the radial 

force. The amplitudes of the external axial and radial forces 

are unity ( 1
0
F ). The FRFs are calculated considering all 

the circumferential modes in the range n=0:10. 
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The effects of the various excitation cases listed in Table 1 on 

the axial and radial responses of the cylindrical shell are 

shown in Figs. 5 to 7. Excitation at the centre of the end plate 

gives rise to an axisymmetric case in which the zeroth 

circumferential shell modes are predominantly excited. The 

submerged hull follows rigid body motion at very low fre-

quencies. The peaks at frequencies of around 9, 35, and 80Hz 

in Fig. 5 are caused by resonances of the end plates. The peak 

at 58 Hz in the axial displacement corresponds the first axial 

mode for the 0n   circumferential modes of the cylindrical 

shell, at which the shell is in breathing motion. Only the 

resonances of the end plates are observed in the radial re-

sponse in Fig. 5. 

In Fig. 6, it is observed that radial excitation at the edge of 

the end plate gives rise to an asymmetric case in which the 

1n
 
circumferential modes are predominantly excited. For 

this case, the shell is in bending motion. All the peaks in the 

axial and radial responses in Fig. 6 correspond to 1n  

modes of various orders.   

Comparison of Figs. 5 and 6 shows that for the asymmetric 

case due to radial excitation at the edge of the end plate, a 

significantly greater number of 1n
 

modes are excited 

compared to the number of 0n   modes for the axisymmet-

ric case due to axial excitation at the centre of the end plate. 

This is attributed to the fact that the modal density of the 

cylindrical shell for the radial modes is significantly greater 

than that for the axial modes which occur at widely spaced 

intervals.  

  
       

 

Figure 5. Axial and radial responses due to axial excitation at 

the centre of the end plate (=1 and =0)  

The results in Fig. 7 were obtained using simultaneous axial 

and radial force excitation with different proportions of force 

as listed by cases 2 to 4 in Table 1. The frequency responses 

of the axial and radial displacements consider all the circum-

ferential modes in the range n=0:10. With a greater contribu-

tion of axial excitation, the axial response is mainly domi-

nated by axial resonances. Similarly, with a greater contribu-

tion of radial excitation, the radial response is mainly domi-

nated by the bending modes. Furthermore, increasing the 

weighting of the axial force increases the amplitudes of the 

axial response, and similarly, increasing the weighting of the 

radial force increases the amplitudes of the bending modes 

for the majority of the frequency range.  

CONCLUSIONS 

A low frequency model of simplified physical model of a 

submarine hull has been presented. The submerged hull was 

modelled as a fluid-loaded cylindrical shell closed at each 

end by circular plates. Two cases of excitation were consid-

ered, corresponding to axial excitation at the centre of one 

end plate and radial excitation at the edge of the end plate. 

For the axisymmetric case corresponding to axial excitation 

at the centre of the end plate, the zeroth ( 0n ) circumferen-

tial shell modes are predominantly excited. Similarly, under 

radial excitation at the edge of the end plate, the bending 

( 1n ) circumferential hull modes are predominantly ex-

cited. Under simultaneous axial and radial excitation, the 

axial displacement is mainly dominated by the axial excita-

tion while the radial response is mainly dominated by radial 

excitation. 

 
        

 

Figure 6. Axial and radial responses due to radial excitation 

at the edge of the end plate (=0 and =1) 
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Figure 7. Comparison of simultaneous axial and radial exci-

tation for different weightings          

  
 

 

       

 

 

 

 

 

 




