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ABSTRACT 
In modelling the reflection of sound from an ocean surface, it is necessary to include the refractive effects of near-

surface bubbles generated by wind action for certain frequencies. The vertical sound speed gradient in the near-

surface region is, however, so extreme that ray acoustics cannot be applied, and thus a wave approach is necessary.  

This paper describes the nature, and application, of a suitable wave-based description of the refraction of the intensity 

vector in this region of very high sound speed gradient.  It is shown that the sound speed profile in the high-gradient 

layer can be well approximated by the sound speed profile in the “transitional” layer described by Brekhovskikh 

(Waves in Layered Media, Academic Press 1960).  This exact solution of the wave equation is used to calculate the 

depth dependence of the acoustic pressure amplitude of the incident plane wave.  The fluid particle velocity vector at 

the surface is also calculated and, together with the pressure amplitude, is used to obtain the intensity vector.  Results 

show that, close to the resonance frequencies, the grazing angle at the surface is significantly larger than that predict-

ed by the laws of geometrical acoustics.  It is also shown that these resonance-like phenomena are characteristic not 

only of sound speed gradients typical of near-surface bubbles, but also of the less-severe gradient typical of conven-

tional isothermal conditions. 

. 

INTRODUCTION 

It is well-known that, if the sound speed in the ocean near the 

surface increases with depth, a surface duct is formed where 

acoustic energy can be trapped. This leads to significant in-

crease of the propagation range. Such conditions occur, for 

example, within an isothermal mixed layer where the sound 

speed increases linearly with depth due to rising hydrostatic 

pressure. 

Sound propagation in such a layer is significantly affected by 

roughness of the ocean surface. The rough surface partially 

scatters incoming sound into different directions and, there-

fore, substantially increases the acoustic energy loss. As a 

result, any realistic model of sound propagation within the 

isothermal duct must take the surface roughness into consid-

eration. 

At the same time, for the evaluation of the influence of the 

surface roughness on reflection loss, the knowledge of the 

grazing angle of the acoustic wave at the surface is required. 

Although the grazing angle within a homogeneous isothermal 

layer can be evaluated without difficulties, in reality its eval-

uation can be significantly complicated by the presence of 

wind-induced bubbles near the surface, which change the 

compressibility of water and, as a result, the sound speed in 

the layer. 

According to the model by Ainslie (2005), the sound speed 

gradients in the bubbly surface layer can be considerable. For 

example, at the wind speed of 10 m/s for the frequency of 2 

kHz the sound speed changes by about 13 m/s within the top 

3 m of the water column. Such strong gradients of the sound 

speed make it impossible to use the laws of ray acoustics for 

the purpose of calculating the grazing angle at the surface. 

Therefore, the use of a wave-based theory is required for this 

purpose. 

Jones et al. (2011) suggested a model for evaluating the loss 

of acoustic energy due to reflection from the rough ocean 

surface. The model will be called the “JBZ model” in this 

analysis. The results obtained by the JBZ model showed good 

correlation with the results obtained with the use of a Para-

bolic Equation transmission code.  

An integral part of the JBZ model is a novel method of eval-

uating the grazing angle at the surface. The method is found-

ed on a wave-based solution of the wave equation in a verti-

cally stratified layer, which is based on a formulation provid-

ed by Brekhovskikh (1960). Although this solution has been 

derived by the present authors previously and utilised in 

Jones et al. (2011), it has not been explicitly justified in that 

publication. 

The main purpose of this paper is to show the derivation of 

the wave-based solution for the acoustic wave within a layer 

with strong sound speed gradient, thus providing justification 

for one of the elements of the JBZ model. It is shown how 

this solution can be applied to calculate the grazing angle at 

the ocean surface. This solution is then used to obtain vertical 

acoustic pressure amplitude profiles and the differences be-

tween the grazing angles at the surface obtained using ray 

acoustics and the wave-based solution. In the case of the 

bubbly surface layer, effects at two wind speeds are consid-

ered. The calculations are also carried out for the convention-

al isothermal surface layer without bubbles. 

The paper has the following structure. The first Section de-

scribes the method suggested by Ainslie (2005) for obtaining 

the sound speed profile in the bubbly layer from the wind 

speed above the surface. In the second Section, the formula-
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tion by Brekhovskikh (1960) of an exact solution of the wave 

equation in a vertically stratified media is introduced. The 

third Section is devoted to obtaining a solution of the Helm-

holtz equation for the bubbly layer described by Ainslie 

(2005). Propagation of a plane acoustic wave through the 

bubbly layer and through the isothermal surface duct is con-

sidered in the fourth and the fifth Sections respectively. In the 

sixth Section, the assumption made by Jones et al. (2011) for 

determining the grazing angle at the surface in modelling 

practical scenarios is justified. 

INFLUENCE OF AIR BUBBLES ON SOUND 
SPEED IN WATER NEAR THE OCEAN 
SURFACE 

Ainslie (2005) described the effect of wind-induced air bub-

bles on sound speed in the ocean. The strength of this effect 

is determined by the volume fraction of air near the ocean 

surface. It is common, for brevity, to call this parameter the 

“air fraction”. To determine it, Ainslie (2005) utilised a bub-

ble population model developed by Hall (1989) and modified 

by Novarini (Keiffer et al. 1995). The Hall-Novarini model 

assumes that the radii of all bubbles lie within the interval 

between amin = 10 μm and amax = 1000 μm. According to this 

model, if the wind speed is about 10 m/s, the air fraction near 

the surface is about 10-6 and quickly decreases with depth so 

that it becomes negligible within a few metres from the sur-

face.  Note that Ainslie’s (2005) analysis for the determina-

tion of compressibility including bubble presence did not take 

account of bubble resonance phenomena.  That is, the com-

pressibility was based on air fraction alone. 

For calculations of the dependence of sound speed, cm, in the 

mixture of water and bubbles on the vertical coordinate, z, 

Ainslie (2005) used the following formula: 
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In Equation (1), c0 and ρ0 are respectively the sound speed 

and density in water without bubbles, κ(z) is the polytropic 

index,  P(z) is the hydrostatic pressure, and U(z) is the air 

fraction obtained from the Hall-Novarini model. Note that, in 

this analysis, the vertical axis is directed downwards and, 

therefore, z increases with increasing depth. 

Equation (1) is used to calculate the sound speed profiles 

shown in Figure 1 for different values of the wind speed, uw, 

at  

19.5 m above the ocean surface. This figure was shown orig-

inally by Jones et al. (2011).  

The curves shown in Figure 1 are calculated using the follow-

ing parameters: c0 = 1500 m/s, ρ0 = 1000 kg/m3, P(z) = 

101325+9.81z Pa. The polytropic index, κ(z), can vary be-

tween 1.0 and 1.4 for isothermal and adiabatic processes in 

gas respectively. As noted by Ainslie (2005), κ depends on 

the ratio between the bubble radius and the thermal diffusion 

length, which is inversely proportional to the square root of 

the acoustic frequency. For the bubble radii and frequencies 

of interest in this paper (of the order of several kHz),  the 

process in the gas is considered to be isothermal and, there-

fore, κ(z) = const = 1. 

 
Figure 1. Sound speed near surface due to the effects of bub-

bles according to Ainslie (Equation (1)). 

It is clear from Figure 1 that wind-induced bubbles near the 

ocean surface can lead to sound speed gradients that are  

much larger than the isothermal gradient of 0.017 s-1. For 

these large gradients, for the frequency range of interest, it 

may be shown that the WKBJ approximation is not satisfied 

(e.g. as shown by Jones et al. (2011)).  As a result, the appli-

cation of ray acoustics to sound propagation in the bubbly 

layer cannot be justified and wave phenomena must be taken 

into account. 

THE EXACT SOLUTION OF THE WAVE 
EQUATION IN A TRANSITIONAL LAYER 

This section contains Brekhovskikh’s (1960) formulation for 

sound propagation in a horizontally stratified layer. He 

showed that, for some specific sound speed profiles in the 

layer, the exact solution for the wave equation can be ob-

tained analytically in closed form. He considered two types 

of layers. The first type is a transitional layer, where the re-

fraction index (or sound speed) has different values at 

z   , and a symmetrical layer, where the values of the 

refraction index at z    are equal. Only the transitional 

layer is considered in this paper. As will be demonstrated 

further in this analysis, the sound speed profile of the transi-

tional layer can be fitted to the sound speed profiles in the 

bubbly layer which are shown in Figure 1. 

Note that Brekhovskikh (1960) considered a transitional layer 

where the sound speed increases along the direction of wave 

propagation. As in our case the sound speed decreases to-

wards the surface, some equations are changed accordingly. 

Sound speed profile in Brekhovskikh’s transitional 
layer 

The sound speed profile in the transitional layer is deter-

mined by the following equation: 
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In Equation (2), m is a parameter, c0 is the sound speed far 

below the layer (i.e. at z=∞) without taking into considera-

tion the isothermal gradient, and the parameter N is deter-

mined as follows: 
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Examples of the sound speed profiles for different values of 

m and N are shown in Figures 2 and 3. It is clear that N char-

acterises the “strength” of the layer, i.e. the difference be-

tween limiting values of sound speed on both sides of the 

layer; and 1/m characterises the thickness of the layer. 
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 Figure 2. Sound speed profiles for the transitional layer for 

different values of m, N = 0.03. 
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Figure 3. Sound speed profiles for the transitional layer for 

different values of N, m = 2. 

Representation of the acoustic field in the layer 

Consider a plane acoustic wave with wavevector k0 ap-

proaching the layer from z  . The incident grazing an-

gle, i.e. the angle between the wavevector and the horizontal 

axis at the lower boundary of the layer, is θ0. The propagation 

of such a wave through the layer is governed by the follow-

ing Helmholtz equation, which is derived from the wave 

equation for layered-inhomogeneous media (Brekhovskikh 

1960): 
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In Equation (4), x is the horizontal coordinate, and k(z) is the 

wavenumber depending on z. For acoustic waves, ψ is deter-

mined as follows: 

,
p



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where p and ρ are the acoustic pressure and the fluid density 

respectively.  

 

As the amplitude of density fluctuations in the acoustic wave  

is assumed to be small in comparison with the equilibrium 

density, the air fraction in the layer is also small (of the order 

of 10-7), and the frequency is, in general, below the resonance 

frequency of the bubbles, Equation (4) can be re-written for 

the acoustic pressure only: 
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The solution of Equation (6) is sought in the form 

     , .p x z X x Z z  (7) 

Equation (6) can be split into two equations for the two un-

known functions: 
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where 
0 0sina k  . Based on the Equations (7), (8) and (9) 

the pressure field in the acoustic wave can be written as fol-

lows: 

   , iaxp x z Z z e . (10) 

Therefore, to solve the problem of the plane wave propaga-

tion through the layer, it is required to find a solution Z(z) of 

Equation (8). 

Representation of the exact solution of the Helm-
holtz equation in the transitional layer via hyperge-
ometric series 

The hypergeometric equation for a function F(ξ) can be writ-

ten in the form 
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where α, β,  and γ are constants. 

It is noted by Brekhovskikh (1960) that, by means of some 

variable replacements, Equation (11) can be reduced to an 

equation equivalent to Equation (8). Therefore, a solution of 

Equation (11) is also a solution of Equation (8), i.e. it deter-

mines the vertical profile of the sound pressure in the plane 

wave propagating through  the layer. 

A solution of Equation (11) is known and can be written as 

the hypergeometric series: 
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There exist five more solutions for Equation (11): 
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A linear combination of the functions F1…F6 is also a solu-

tion of Equation (11). The functions which need to be taken 

into account in the linear combination depend on the direc-

tion of acoustic wave propagation as well as on the region of 

convergence of each function. 

For the transitional layer, the parameters of the hypergeomet-

ric series are as follows (Brekhovskikh 1960):  
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The function Z(z), which is the solution of Equation (8), can 

now be represented as 
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where r0
-1 = const and F is a linear combination of the hyper-

geometric functions F1…F6.  

A SOLUTION OF THE HELMHOLTZ EQUATION 
IN THE TRANSITIONAL LAYER WITH 
DECREASING SOUND SPEED 

This section describes the wave-based solution of the Helm-

holtz equation for the incident wave within a transitional 

layer with decreasing sound speed. This solution is one of the 

main results of this paper.  

A solution for the vertical amplitude profile 

A choice of the functions F1…F6, which need to be included 

into the linear combination F, can be made from the follow-

ing considerations. Only region 0 < z < ∞ is considered here, 

which corresponds to  -∞ < ξ < -1.  It is seen from Equations 

(12) - (17) that only the functions F5 and F6 containing power 

series of ξ -1 converge in this region. It can be also shown 

that, out of these two functions, only F6 describes a wave 

propagating from z → ∞ to z = 0. Therefore, only the func-

tion F6  needs to be taken into account in the problem under 

considerations. Then the solution for the vertical profile of 

the acoustic pressure amplitude takes the form 
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where G(ξ) is a series determined by a recurrent equation: 
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Equations (3), (10), (18) - (23) and (25) - (28) represent the 

exact solution of the Helmholtz equation (6) in the transition-

al layer with the sound speed profile determined by Equation 

(2) in the half-space z > 0. 

Fitting the sound speed profile due to air bubbles to 
the sound speed profile in the transitional layer 

It can be easily demonstrated that the sound speed profile in 

the bubbly layer (Equation (1)) closely resembles the sound 

speed profile in the transitional layer at z > 0 (Equation (2)). 

To fit the latter profile to the former one, i.e. to choose the 

parameters of the transitional layer so that the two profiles 

are as close as possible to each other, the following procedure 

has been carried out. 

It can be easily obtained from Equation (2) that 
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It is clear that, for Brekhovskikh’s transitional layer, the loga-

rithm in the right-hand side of Equation (29) is linear with 

respect to depth. The closer this dependence to the linear one 

for any real layer with a sound speed profile, the better this 

layer can be described by the Brekhovskikh transitional layer. 

As the series determined by Equation (28) is divergent at z = 

0, it is convenient to assume that the surface of the water in 

Ainslie’s layer does not coincide exactly with the surface 

 z = 0 in Brekhovskikh layer, but, instead, it is located at 

some positive depth z = z0. Equation (29) can now be re-

written and a function L(z) can be introduced as follows: 
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Requiring that the two sound speed profiles coincide at two 

depths, z1 and z2, one can determine the parameters m and z0 

of the Brekhovskikh’s transitional layer fitted to the Ainslie’s 

sound speed profile: 

   1 2

1 2

,
L z L z

m
z z





 (31) 

 1 1

0 .
L z mz

z
m


  (32) 

The depths z1 and z2 are determined by the following consid-

erations. It is logical to assume that both profiles have the 

same sound speed at the surface, so that z1 = 0. The other 

depth, z2, can be chosen based on a “best fit” between the two 

sound speed profiles. From visual comparison of Brekhov-

skikh profiles obtained for different z2 with the corresponding 

Ainslie profile it has been concluded that the “best fit” be-

tween the two curves is achieved for z2 at which the sound 

speed is determined as 

      2 00 0.72 0 .c z c c c    (33) 

An example of the matching sound speed profiles are shown 

in Figure 3.  
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Figure 3. Ainslie sound speed profile due to bubbles and the 

matching sound speed profile in the Brekhovskikh transition-

al layer for wind speed  uw = 10 m/s. The fitting parameters 

are m = 2.30 m-1, z0 = 0.0111 m. 

It is clear from Figure 3 that the Ainslie profile due to bub-

bles can be modelled well by the Brekhovskikh transitional 

layer. 

Grazing angle at the surface 

For an acoustic wave, the energy flux vector, q, is given by 
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where v* is the complex conjugate of the fluid particle veloci-

ty vector. For a plane wave in homogeneous media, this vec-

tor is parallel to v and to the wave vector, k, so that the graz-

ing angle can be determined in terms of the direction of any 

of these vectors. 

At the same time, the bubbly layer is a medium with strong 

sound speed gradient where the vectors q, v and k may not be 

parallel. Therefore, the meaning of the grazing angle needs to 

be defined for the wave propagation in the layer. In this pa-

per, the grazing angle is defined in terms of the direction of 

the energy flux vector, q, which means that the grazing angle 

is the angle between q and the horizontal axis. This definition 

is based upon the fact that the energy cannot penetrate the 

surface and, therefore, the vertical components of the energy 

flux vectors in the incident and the reflected waves are equal 

in absolute value and opposite in direction at the surface. 

This behaviour is analogous to behaviour of the wave vector 

k when a plane wave is reflected by a surface in homogene-

ous media. 

Based on the solution for the acoustic pressure in the layer 

obtained above, the following set of equations determining 

the grazing angle, θs, at the surface has been derived: 
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PROPAGATION OF A PLANE WAVE 
THROUGH THE BUBBLY LAYER 

This section deals with a plane wave propagating through the 

layer after having approached its lower boundary with graz-

ing angle θ0. It is important to emphasize that the obtained 

solution of the Helmholtz equation is not its full solution, but 

one part of it, namely, the incident wave. As a result, all vari-

ability of the wave parameters across the layer is due to wave 

phenomena in the layer and not due to the interference of the 

incident and reflected waves. Obviously, the full solution can 

be derived by adding together the obtained solution for the 

incident wave and a solution for the reflected wave. Finding 

the latter solution is considered to be outside of the scope of 

this work. 

Acoustic pressure amplitude profile 

Figure 4 shows the vertical profile of the acoustic pressure 

amplitude in the incident wave at different frequencies. The 

pressure amplitude is calculated by means of Equations (25) - 

(28). The incident grazing angle θ0  is equal to 1°, as this 

value is within the range of typical grazing angles for sound 

propagation in the surface layer (Jones et al. 2011). 

It is clear from Figure 4 that wave phenomena significantly 

affect the pressure field in the layer. At low frequencies  

(f  ≤ 1 kHz) changes in the pressure amplitude across the 

layer are not significant, as at these frequencies  the wave-

length is larger than the depth of the layer. With rising fre-

quency, the pressure amplitude starts to decrease monoto-

nously with decreasing depth (f = 2 kHz). If the frequency 

rises further, minima and maxima appear in the pressure am-

plitude profile. For example, at f = 3.5 kHz, a minimum is 

located close to the ocean surface and at  f = 5 kHz the mini-

mum is at some distance from the surface. At a higher fre-

quency (f = 10 kHz) two minima and a maximum appear on 

the profile.  

It may be noted that the pressure amplitude changes within 

the layer become much less noticeable with increasing graz-

ing angle θ0. For example, for  θ0 = 10°, the normalised pres-

sure amplitude for f = 3.5 kHz at the surface is about 0.9. 

Figure 5 shows the vertical profiles for the normalised pres-

sure amplitude for wind speed uw = 12.5 m/s. It is clearly 

seen that, at this higher wind speed, the surface bubbly layer 

is deeper and the features observed in Figure 4 are more no-

ticeable. This can be explained by higher bubble air fraction 

at higher wind speeds, which leads to larger changes of the 

sound speed within the layer and, therefore, to the stronger 

effect of the layer on wave propagation. 
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Figure 4. Vertical profiles of the acoustic pressure amplitude. 

θ0 = 1°, uw = 10 m/s. 

0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

5

6

7

D
e
p
th

, 
m

Pressure, normalised

 

 

f=1 kHz

f=2 kHz

f=3.5 kHz

f=5 kHz

f=10 kHz

 
Figure 5. Vertical profiles of the acoustic pressure amplitude. 

θ0 = 1°, uw = 12.5 m/s. 

The grazing angle at the surface and its comparison 
with the grazing angle according to Snell’s law 

The influence of the wave phenomena on the sound propaga-

tion in the layer can be demonstrated by comparing the graz-

ing angle calculated by means of the exact solution of the 

wave equation with the one calculated using geometrical 

acoustics. According to geometrical acoustics, refraction of a 

ray in a medium with the sound speed slowly changing along 

the z-axis is described by Snell’s law, which states that the 

following equation is satisfied along the ray path: 

 

 

cos
const.

z

c z


  (43) 

The grazing angle at the surface determined by Snell’s law, 

θsn, can be found from Equation (43) as follows: 

   0

0

0 cos
cos .sn

c

c


   (44) 

Figures 6 and 7 show the difference θs - θsn, where θs is the 

grazing angle determined by the exact solution for the transi-

tional layer (Equation (35)) at the ocean surface, in depend-

ence on frequency and the incident grazing angle θ0 for the 

wind speeds uw = 10 m/s and uw = 12.5 m/s. Colours in these 

Figures are selected to emphasize the areas with the positive, 

negative, and zero angle difference. 

 
Figure 6. Difference between the grazing angles at the sur-

face calculated with the use of wave-based solution and by 

the Snell’s law for the bubbly layer, degrees;  

wind speed uw = 10 m/s. 

 

Figure 7. Difference between the grazing angles at the sur-

face calculated with the use of wave-based solution and by 

the Snell’s law for the bubbly layer, degrees;  

wind speed uw = 12.5 m/s 

It is clearly seen in Figures 6 and 7 that there are significant 

differences between the exact solution of the wave equation 

in the layer and the predictions of Snell’s law.  The grazing 

angle at the surface can be either smaller or larger than that 

predicted by geometrical acoustics. It can be also observed 

that there are narrow frequency intervals where the grazing 

angle at the surface can reach 70° and more, whereas the 

incident grazing angle at the bottom of the layer is less than 

1°. It means that, although the incident wave is nearly paral-

lel to the surface, acoustic energy approaches the surface 

nearly normally. 

These maxima in the grazing angle can be explained as mod-

al resonances of the surface duct which exist in the bubbly 

layer due to its sound speed profile. The acoustic wavelength, 

λ1, corresponding to the cut-on frequency, f1, of the first duct 

mode  can be found using the following equation (Urick 

1983): 

   1
0

8
2 ,

3

H

N z N H dz    (45) 

where H is the thickness of the layer and N(z) = c0/c(z) is the 

index of refraction.  
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Calculations based on Equation (45) have been conducted for 

the layer under considerations. Since c(z) approaches its 

equilibrium value c0 exponentially with increasing depth, H 

can take any significantly large value. In practice, H has been 

made equal to 10 m. The calculations show that f1 = 3573 Hz 

for  

uw = 10 m/s and f1 = 1827 Hz for uw = 12.5 m/s. Clearly, 

these values of f1 are very close to the frequencies of the low-

est resonances in Figures 6 and 7. 

It is also seen from Figures 6 and 7 that the width of the reso-

nances along the grazing angle axis decreases with increasing 

frequency. This is expected, as the ray model becomes more 

precise at higher frequencies and, therefore, the angles ob-

tained from both ray and wave models tend to coincide.  

PROPAGATION OF A PLANE WAVE 
THROUGH AN ISOTHERMAL SURFACE DUCT 

It is well-known that mixed isothermal layers several tens of 

metres deep may exist near the ocean surface. In such a layer, 

the sound speed depends linearly on depth due to the influ-

ence of hydrostatic pressure. The sound speed in the layer is 

usually written in the form 

   0 0.017  m/s.c z c z   (46) 

In this paper, an isothermal duct of depth H = 64m is consid-

ered. The fitting parameters for the corresponding Brekhov-

skikh transitional layer have been chosen based on the condi-

tion of the equality of the first cut-on frequencies f1 calculat-

ed by means of Equation (45) for both layers. The resulting 

sound speed profiles are shown in Figure 8. 

It is clear that the linear sound speed profile in the isothermal 

duct and the profile in the Brekhovskikh transitional layer are 

difficult to fit together. However, it appears to be likely that 

the propagation of an acoustic wave through both layers will 

be similar at least qualitatively as in both cases the sound 

speed decreases by approximately the same value along the 

same vertical distance. 

Figure 9 shows vertical profiles of the acoustic pressure am-

plitude for several frequencies in the Brekhovskikh transi-

tional layer fitted to the isothermal duct. It is clear that the 

pressure profiles in this layer are similar to the profiles within 

the bubbly layer obtained above. In both cases, the pressure 

decreases with decreasing depth and the minimum pressure at 

the surface is achieved at the first cut-on frequency, which is 

344 Hz for the duct. The main difference between the two 

cases is that the resonance frequencies for the duct are much 

lower than those for the bubbly layer due to the much smaller 

gradient of the sound speed and larger depth in the former 

case. 

Figure 10 is analogous to Figures 6 and 7  and shows the 

difference between the grazing angle at the surface obtained 

using the exact solution for the transitional layer and the 

grazing angle calculated using Snell’s law. It is clearly seen 

that the modal resonances that correspond to the grazing 

angle up to tens of degrees can also be observed in the iso-

thermal surface layer, although only for very small incident 

grazing angles. 
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Figure 8. Linear sound speed profile in the isothermal sur-

face duct and the matching profile in the Brekhovskikh tran-

sitional layer,  H = 64 m, the fitting parameters are  

m = 0.0579 m-1, z0 = 0.0376 m. 
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Figure 9. Vertical profiles of the acoustic pressure amplitude 

in the isothermal surface duct, H = 64 m, θ0 = 1°. 

 
Figure 10. Difference between  the grazing angles at the 

surface calculated with the use of wave-based solution and by 

the Snell’s law for the isothermal surface duct, degrees;  

H = 64 m. 

INFLUENCE OF THE GRAZING ANGLE AT 
SURFACE ON REFLECTION LOSS 

The transitional layer considered in this paper is idealised in 

the sense that the surface of water is undisturbed. It can be 

assumed that the wind-induced surface roughness may lead to 

the conditions for the modal resonances in the duct being 
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disturbed and, therefore, the resonances shown in Figures 6, 7 

and 10 being hard to observe. At the same time, as shown 

above in this analysis, wave phenomena at the surface can 

also lead to decrease in the grazing angle as compared with 

Snell’s law.  

The work presented in this paper shows that the grazing angle 

at the surface calculated using the wave-based solution can 

be both larger and smaller than the grazing angle due to 

Snell’s law. For practical implementation with a ray model of 

transmission, Jones et al. (2011) made the assumption that 

the grazing angle at the surface was determined from the 

exact wave-based solution, unless that angle exceeded the 

value obtained from Snell’s law. In that case it was limited to 

the Snell’s law result, as it may be argued that the resonant 

phenomena, and the occurrence of very steep angles θs, will 

not be maintained in the presence of a wind-driven moving 

sea surface. This method of finding the grazing angle was 

combined with the Small Slope Approximation surface 

roughness model (Williams et al. 2004) resulting in the de-

velopment of the JBZ model for surface loss estimation. The 

results of the transmission loss calculations using the JBZ 

model matched well with the average transmission loss ob-

tained by means of calculations using a Parabolic Equation 

transmission code for multiple realisations of the rough sea 

surface (Jones et al. 2011), where the latter included a sound 

speed variation near the surface taken from the Ainslie mod-

el. 

CONCLUSIONS 

In this paper, propagation of a plane acoustic wave through a 

layer with a strong gradient of sound speed is considered. As 

an example, a layer containing wind-induced air bubbles is 

investigated.  

It is shown that the sound speed profile within such a layer 

calculated with the use of the Hall-Novarini bubble popula-

tion model can be closely matched by the sound speed profile 

within a transitional layer considered by Brekhovskikh 

(1960). The parameters of the transitional layer providing the 

best match  between the two profiles are calculated. 

Based on Brekhovskikh’s exact solution for the transitional 

layer, equations determining the acoustic pressure amplitude 

within the layer are derived. Vertical profiles of the pressure 

are calculated for different frequencies. It is shown that the 

pressure amplitude is generally decreasing with decreasing 

depth, but the profiles may have maxima and minima de-

pending on frequency. 

The grazing angle at the surface derived with the use of the 

wave-based solution is compared with the grazing angle pre-

dicted by ray acoustics, i.e. by Snell’s law. It is shown that 

ray acoustics can both underpredict or overpredict the grazing 

angle at the surface depending on the incident grazing angle 

and frequency.  

Maxima in the grazing angle at the surface where it can reach 

tens of degrees, whereas the incident grazing angle is small, 

are exhibited. These maxima are explained via modal reso-

nances of the acoustic duct existing in the layer due to its 

sound speed profile. It is shown that the frequency of the 

lowest observed resonance is close to the frequency of the 

first modal resonance calculated by means of an existing 

formula. It is also shown that, for a higher wind speed, the 

resonances appear closer to each other in frequency. 

The sound speed profile in the transitional layer is also 

matched to the sound speed profile within an isothermal 

mixed layer. It is shown that the maxima in the grazing angle 

at the surface can also be observed in such a layer. 

Finally, an assumption made by Jones et al. (2011) for the 

grazing angle at the surface in a layer with wind-induced 

bubbles and the rough surface is justified. 
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