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ABSTRACT 
Steering vector errors can severely degrade the performance of adaptive beamforming. For the case of a platform-
mounted array, unknown scattering from the platform can be a major source of bearing and frequency dependent er-
rors. These errors can be estimated using a technique based on maximizing the signal-to-interference-plus-noise ratio 
(SINR) in the spatial spectrum computed using the minimum power distortionless response beamformer with sample 
matrix inverse (MPDR SMI). This technique is simple compared to some other techniques in the literature, and can be 
used if the noise is spatially correlated and weak interferers are present. We use simulations to show that good results 
are obtained if the uncertainty in the signal bearing is not too large, and interferers are sufficiently weak compared to 
the calibration signal.  

INTRODUCTION 

Adaptive beamforming (ABF) using algorithms like the mini-
mum power distortionless response beamformer with sample 
matrix inverse (MPDR SMI), is widely used in sonar, radar 
and telecommunications (Van Trees, 2002). The MPDR SMI 
beamformer maximizes the signal-to-interference-plus-noise 
ratio (SINR) if there are no steering vector or finite-sample 
errors. But finite-sample errors often arise in practice because 
the cross-spectral matrix (CSM) is estimated using a finite 
quantity of data, and steering vector errors arise due to 
uncertainty in the array response to the signal; e.g., due to 
imprecise knowledge of sensor locations, unknown local 
scattering, or unknown propagation channel distortions such 
as multipath. These errors reduce the performance of ABF 
and can even lead to self-nulling of signals of interest (Van 
Trees, 2002, Vincent and Besson, 2004). For these reasons, it 
is common practice to make ABF more robust by applying 
methods such as diagonal loading (Van Trees, 2002, Li etc, 
2003). Unfortunately, as the loading is increased and ABF 
becomes more robust to errors, the benefits of ABF over 
conventional beamforming are reduced. If the steering vector 
errors can be measured and compensated, then the level of 
loading required can be kept to a minimum. 

This paper gives simulation results for a technique that can be 
used to analyse bearing and frequency dependent steering 
vector errors on a passive array. We refer to the phase and 
amplitude error at each sensor, defined relative to a nominal 
steering vector, as the calibration phase and calibration am-
plitude. We can estimate these from array recordings with 
targets of opportunity, using a method based on maximizing 
SINR in the MPDR SMI spatial spectrum (Bertilone and Bao, 
2012). This method is simple compared to some other algo-
rithms in the literature (Viberg etc, 2009, Boonstra and van 
der Veen, 2003, Wijnholds and van der Veen, 2009, Furgu-
son etc, 1992, Solomon etc, 1998),

 
and can be used if the 

noise is spatially correlated and weak interferers are present. 
Simulations show that good results are obtained if the uncer-
tainty in the signal bearing is not too large, and interferers are 
sufficiently weak compared to the calibration signal. Multi-
path gives additional steering vector errors that are difficult 
to estimate and are not discussed here. Using broadband sig-

nals allows the frequency dependence of the calibration val-
ues to be obtained. The bearing dependence can be obtained 
using a large number of signals with a variety of fixed bear-
ings, or alternatively, a single signal that sweeps across the 
required bearing range during a platform manoeuvre.  

THEORY 

The complex sensor outputs from an array of M sensors at 
frequency f are obtained from a single snapshot of data and 
placed in an M×1 vector X (Van Trees, 2002), Repeating for 
I snapshots of data, we form an estimate of the CSM as fol-
lows,  
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where H
 
denotes conjugate transpose. Suppose a signal arrives 

at the array from a bearing θ. If a large number of snapshots 
is available so that the finite-sample error is negligible, then  
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where a is the true steering vector, P
s 
is the signal power, and 

Q is the CSM for interference plus noise. The elements of the 
true steering vector, a, are imperfectly known in practice. We 
quantify the differences between the true elements and those 
of a nominal steering vector obtained from an idealized 
model, by introducing frequency and bearing dependent cali-
bration phases, φ, and amplitudes, γ. For example, for a linear 
array we write,  
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where zm
 
is the location of sensor m on the array axis, and c is 

wave speed. Note that the calibration phases are defined up to 
an additive constant, while the amplitudes are defined up to a 
multiplicative constant (as it is not our aim to relate sensor 
output to acoustic power). We choose the constants so that 
the mean of the phases measured across the array is zero, and 
the mean of the amplitudes measured across the array equals 
one, at each frequency and bearing.  
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We use a simple calibration technique based on the maximi-
zation of SINR, which applies when finite-sample error is 
negligible (Bertilone and Bao, 2012). It follows from the 
well-known optimality of MPDR beamforming (Van Trees, 
2002). The output power using an assumed steering vector b 
is given by 

 

bRb 1
1
−= HP  (4) 

Here the assumed steering vector, b, can differ from the true 
steering vector, a. Note that the SINR at the output of the 
beamformer when it is steered to the signal can be written as  
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where PS+I+N is the output power when the signal is present 
together with interference and noise, and PI+N is the output 
power when the signal is absent. The latter are given as fol-
lows,  
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Applying Woodbury’s identity (Van Trees, 2002) to Eq. (2) 
gives  
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Using Eqs. (6) and (9),  
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where  
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Since Q-1
 
is Hermitian and positive definite, the Cauchy-

Schwarz inequality
7 

shows that 0 ≤ κ ≤ 1 with κ = 1 if and 
only if b is a complex scalar times a. Using Eqs. (5), (7), (10) 
and (12),  
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Since SINR is maximized when κ = 1, the true steering vector 
can be found by varying the elements of b until SINR is 
maximized. This is the case even if the noise is spatially cor-
related and interferers are present. Unfortunately for a pas-

sive array, we cannot directly measure SINR so we must 
replace it by a proxy metric (Bertilone and Bao, 2012). This 
is discussed below. 

Calibration algorithm 

We estimate the CSM using a large number of snapshots with 
signal at constant bearing, and compute the MPDR SMI spa-
tial spectrum, Eq. (4), with an assumed steering vector b. The 
bearing bin that contains the signal is assumed to be known. 
We replace SINR by a proxy metric (P−µ)/µ, where P is the 
power in the signal bin, and µ is the mean power in a small 
window of bins that surrounds but excludes the signal bin and 
several bins on either side. The elements of b are varied until 
the global maximum of the proxy metric is found. We use a 
commercial optimization algorithm for this purpose. When 
the noise is spatially correlated, the likelihood of failure of 
the algorithm due to replacing SINR by a proxy can be 
greatly reduced if the CSM is diagonally loaded; we add 
0.02×(trace(R)/M)×I loading, where I is the identity matrix.  

SIMULATIONS 

The aim of simulation is to evaluate the effectiveness of the 
algorithm under different conditions. Calibration accuracy 
can be quantified by computing the rms error averaged across 
the array, σφ = √[(1/M)∑(φm,true–φm,est)2] and σγ = 
√[(1/M)∑(γm,true–γm,est)2], and compare them to  
σφ,0=√[(1/M)∑(φm,true–0)2] and σγ,0=√[(1/M)∑(γm,true–1)2], the 
values obtained with the nominal steering vector.  The quan-
tities 100×σφ/σφ,0 and 100×σγ/σγ,0 give the relative rms errors 
after calibration, expressed as a percentage of the rms error 
before calibration. 

We model a linear array of 16 sensors in spherically isotropic 
noise at frequency f = 0.4fd where fd = c/(2d) and d is sensor 
spacing. The noise has significant spatial correlations at this 
frequency (Burdic, 1991). At the start of each simulation run, 
calibration phases and amplitudes are assigned to each sensor 
at each of 201 bearings from cosθ = −1 to +1 by sampling 
uniform distributions over (−60o, +60o) and (1−0.5, 1+0.5), 
respectively. Noise is simulated by adding Gaussian plane 
waves from 201 bearings. The signal is a Gaussian plane 
wave arriving from a bearing located randomly within a bin-
width. The signal bin is taken to be known, but the precise 
bearing within the bin is unknown and is resampled at each 
run.  

Scenario 1 

In this scenario, there are no interferers. The calibration sig-
nal is at cosθ = 0.4 and average input SNR per sensor varies 
from -3 dB to 10 dB.  

Figure 1 shows results with SNR = 10 and 0 dB, respectively. 
Estimated vs true calibration phases and amplitudes of each 
sensor are plotted for 100 simulation runs. Also plotted are 
the distribution functions for the relative rms errors from 100 
simulation runs, based on kernel estimates. The linear struc-
ture of the plots with SNR = 10 dB implies high accuracy of 
calibration in that case. The relative phase error is less than 
6% and the relative amplitude error less than 4% for most 
runs. The corresponding mean errors are 2.8% and 2.2%, 
respectively. The accuracy of calibration with SNR = 0 dB 
drops a bit but is still fairly high, with the reltive phase error 
less than 9% and the relative amplitude error less than 15% 
for most runs, and the mean errors 5.7% and 9.1%, respec-
tively. 
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Figure 1. Estimated vs true calibration phases (top) and am-
plitudes (middle) of each sensor, and Kernel density estimate 

of distribution of relative rms errors (bottom). 

Table 1 lists the mean relative rms errors with SNR = 10, 3, 
0, and -3 dB, respectively. It shows that even with a relatively 
low SNR of -3 dB the algorithm is still able to achieve fairly 
high accuracy for phase calibration, which is more important 
for ABF. 

Table 1. Mean relative rms errors 
SNR (dB) Phase error (%) Amplitude error (%) 

10 2.8 2.2 
3 3.8 5.2 
0 5.7 9.1 
-3 12.6 21.6 

 

Scenario 2 

In this scenario, there is a single interferer. The calibration 
signal is at cosθ = 0 and average input SNR per sensor for the 
signal is 3 dB. We vary SNR of the interferer and its angle 
separation from the signal to evaluate the effectiveness of the 
algorithm. 

Table 2 lists the mean relative rms errors with the interferer 
at cosθ = 0.6 and its SNR = 3, 0 -3, and -7 dB, respectively. It 
shows that in order to have reasonably high accuracy of cali-
bration the interferer should be weaker than the calibration 
signal (at least 3 dB weaker in this case). 

Table 2. Mean relative rms errors with single interferer at  
cosθ = 0.6; SNR of the signal is 3 dB. 

SNR of inter-
ferer (dB) 

Phase error (%) Amplitude error (%) 

3 110.4 161.7 
0 10.5 21.4 
-3 5.1 9.9 
-7 3.7 7.5 

Figure 2 plots the mean relative rms errors against the angle 
separation of the interferer from the calibration signal with 
SNR of interferer fixed at -3 and -7 dB, respectively. It shows 
that if the interferer is sufficiently weaker (10 dB weaker in 
this case) than the calibration signal, fairly high accuracy of 
calibration is achieved independent of the angle separation, 
as indicated by the blue and green solid lines. If the interferer 
is not sufficiently weaker (6 dB weaker in this case), reason-
able accuracy of calibration is only achieveable at certain 
angle separations (around cosθ = 0.6 in this case), as indi-
cated by red and black broken lines. 
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Figure 2. Mean relative rms errors against angle separation. 

Scenario 3 

In this scenario, there are two interferers. The calibration 
signal is at cosθ = 0 and average input SNR per sensor for the 
signal is 3 dB. We vary SNR of the interferers and their angle 
separation with the signal to evaluate the effectiveness of the 
algorithm. 

Table 3 lists the mean relative rms errors with one interferer 
at cosθ = 0.6 and the other at cosθ = -0.6, and their SNR = 3, 
0 -3, and -7 dB, respectively. Compared to the results with 
the single interferer listed in Table 2, the accuracy of phase 
calibration is quite similar when the interferers are weaker 
than the calibration signal, and the accuracy of amplitude 
calibration is a bit worse. This indicates that adding an addi-
tional interferer on the different side to the calibration signal 
will have a similar effect on the algorithm as that with the 
single interferer. 

Table 3. Mean relative rms errors with two interferers at  
cosθ = 0.6 and -0.6; SNR of the signal is 3 dB. 

SNR of inter-
ferers (dB) 

Phase error (%) Amplitude error (%) 

3 147.0 188.6 
0 9.2 41.5 
-3 4.6 14.4 
-7 3.9 8.1 
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Figure 3. Mean relative rms errors against angle separation 

with two interferers. 

Next we shall investigate the effect on the algorithm of hav-
ing two interferers on the same side to the calibration signal. 
In the simulation, the angle separation between the two inter-
ferers is fixed to be cosθ = 0.1 and their angle separation 
from the calibration signal is varied. SNR of both interferers 
is chosen to be -7 dB.  Figure 3 plots the mean relative rms 
errors against the angle separation of the interferers from the 
calibration signal obtained from the simulation. Compared to 
the case with single interferer (blue and green solid lines in 
Figure 2), accuracy for both phase and amplitude calibration 
is reduced noticeably when the angle separation is smaller 
than 0.4. To increase accuracy of calibration, the SNRs of the 
interferers need to be reduced further. 
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CONCLUSION 

Steering vector errors can severely degrade the performance 
of ABF. For the case of a platform-mounted array, unknown 
scattering from the platform can be a major source of bearing 
and frequency dependent errors. These errors can be 
estimated using a technique based on maximizing the SINR 
in the spatial spectrum computed using MPDR SMI. We have 
used simulations to show that the technigue is effective if the 
uncertainty in signal bearing is small, and interferers are suf-
ficiently weak compared to the calibration signal.  
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