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ABSTRACT 
Internal resonances within vibration isolators have been shown to increase force transmissibility and radiated noise 
from supporting structures. This paper theoretically investigates the optimal use of an inertial mechanism within a 
uni-axial vibration isolator to reduce the influence of these internal resonances. The inertial mechanism under consid-
eration is associated with a device which exerts an inertial force proportional to the relative acceleration of its connec-
tion points. Examples of such devices include dynamic antiresonant vibration isolators, resonance changers and inert-
ers. It has been shown that these devices can be used to establish suppression bands in vibration transmission. Previ-
ous research has examined the use of such a device for attenuating low frequency vibration transmission. This work 
considers the inertia of the isolator and minimises the force transmissibility over a wider frequency range to include 
the effect of internal resonances. The optimisation is carried out using a combination of a particle swarm and gradient 
based optimisation algorithm. It is shown that this isolator configuration has the potential to reduce the force trans-
missibility to levels approaching an ideal vibration isolator over a wide frequency range.  

INTRODUCTION 

Resilient elements are commonly used to reduce the trans-
mission of vibrations from machinery to supporting struc-
tures. This form of control represents a manipulation of the 
transmission path. Vibration isolators reduce transmitted 
vibration by dissipating or impeding the transfer of vibra-
tional energy. Vibration isolation mounts for machinery are 
typically made of rubber or other viscoelastic materials, al-
though steel springs can also be used. The theory on isolation 
is well understood (Beranek et al., 1992, Harris, 1995). The 
performance of an isolator can be characterised by the ratio 
of transmitted force to the excitation force. This ratio is 
commonly referred to as the force transmissibility. Isolation 
systems are frequently analytically modelled at low frequen-
cies as simple lumped-parameter systems with the isolators 
represented by a complex stiffness. In a recent paper, Moore 
(2011) used this approximation to study single, two-stage and 
two-stage rafted isolation configurations. This lumped-
parameter approximation which considers the vibration isola-
tor to be massless, however, over-predicts the reduction in 
force transmissibility at high frequencies.  

Real isolators suffer from internal resonances also known as 
wave effects. These are due to their distributed mass and 
elasticity. The frequencies of these resonances are related to 
the material properties and geometry of the isolator, generally 
occurring in the audible frequency range (Harrison et al., 
1952). Sykes (1960) reported that the effectiveness of typical 
rubber and neoprene vibration isolators was reduced by as 
much as 20 or 30 dB by internal resonance. Harrison et al. 
(1952) presented a theoretical and experimental study of 
internal resonances. A reduction in predicted performance of 
up to 20 dB for isolators made from various materials was 
observed. The theoretical study approximated the isolator as 
a slender elastic rod in longitudinal vibration. It was noted 
that the theoretical predictions correlated well with the meas-
ured results. Snowdon (1979) also approximated the response 
of isolators as slender longitudinal rods of uniform cross 
section to examine the influence of internal resonances. It 

was commented that for isolators with significant lateral di-
mensions, a correction to this description can be applied.  

Little work has been completed on attenuating internal reso-
nances; this is largely due to the assumption that the trans-
missibility is already quite low at these higher frequencies. 
Du et al. (2003), however, showed that they can contribute 
significantly to the radiated sound power from a supporting 
structure. This contribution was shown to be an increase of 2 
– 22 dB over a 200 Hz – 3 kHz frequency band. The model 
considered in Du’s work was a primary mass with three de-
grees-of-freedom (bounce, pitch and roll) supported by three 
isolators on a simply supported rectangular plate in an infi-
nite baffle. Du et al. (2005) later developed a vibration isola-
tor that included two active dynamic vibration absorbers 
(DVAs) to control internal resonances. The passive properties 
of the DVAs were optimised to minimise the force transmis-
sibility over two frequency bands. Experiments demonstrated 
a reduction in force transmissibility up to 20 dB and a 4.3 dB 
reduction in total acoustic power using the DVAs as passive 
devices. With active control, the RMS force transmissibility 
and acoustic power were reduced by 22 dB and 9.1 dB re-
spectively. The importance of internal resonances on active 
isolation systems was investigated by Yan et al. (2010) who 
demonstrated velocity feedback was unable to suppress them. 
Furthermore, it was shown that the internal resonances 
caused stability issues in the control system. 

This paper investigates the potential for mitigating internal 
resonance using an inertial device which produces a force 
which is proportional to relative acceleration. An example of 
such a device is a resonance changer. The inertial force in 
this device is generated hydraulically by a piston, pipe, and 
reservoir arrangement. Resonance changers have been used 
to minimise the vibration transmission in marine propulsion 
systems (Dylejko et al., 2007). A recent example of a me-
chanical device was developed by Smith (2002) which util-
ised a rack and pinion to generate an inertial force propor-
tional to relative motion. This mechanism, known as an in-
erter, has been successfully used in Formula One cars to re-
duce tyre load fluctuations. An earlier example of a mechani-
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cal device for vibration isolation was proposed by Flannelly 
(1967) and is shown in Figure 1. This device, known as a 
dynamic vibration antiresonant isolator (DAVI), consists of a 
levered mass mDAVI in parallel with a stiffness k. Anti-
resonance occurs when the spring force cancels with the iner-
tial force associated with the levered mass. The leverage can 
provide inertial amplification resulting in a larger effective 
mass. This device has been used in the aerospace industry 
where there are stiffness and mass restrictions on isolators 
(McGuire, 2003, Smith et al., 2002, Desjardins and Hooper, 
1978). 

 

Figure 1. Dynamic vibration antiresonant isolator (DAVI) 
proposed by Flannelly, (1967). 

Work by Yilmaz and Kikuchi (2005) demonstrated that mul-
tiple DAVIs could be used to establish suppression bands in 
low frequency force transmission. It was shown that the sup-
pression bandwidth was significantly larger than an equiva-
lent system with a DVA. The suppression bands established 
by a similar inertial mechanism in finite lattices was investi-
gated by Yilmaz and Hulbert (2010). These suppression 
bands were compared with band gaps established by local 
resonance and Bragg Gaps. 

The aim of this paper is to theoretically investigate the merit 
of a symmetrical inertial mechanism for reducing the influ-
ence of internal resonances on the force transmissibility of a 
vibration isolator. For brevity, the inertial mechanism will be 
referred to from this point as a DAVI. The system modelled 
in this paper is based on the work completed by Du et al. 
(2005). This consists of a primary mass supported by a resil-
ient element with two intermediate masses incorporating 
DVAs. An isolator with intermediate masses is also known as 
a compound isolator.  

Figure 2 shows a graphical representation of the system un-
der consideration in this paper, including a potential imple-
mentation of the DAVI in grey. This potential DAVI imple-
mentation consists of hinged rods. The inertial force is asso-
ciated with the rods accelerating laterally with the relative 
motion of the attached masses. Several elements could be 
used around the circumference of the isolator to make up the 
required effective mass. It should be noted that the elastic 
response of the DAVI is not considered in this preliminary 
study. 

A dynamic model of the vibration isolator supporting a pri-
mary mass under uni-axial loading is developed using the 
transmission matrix approach (Rubin, 1967). Transmission 
matrices linearly relate the force and velocity at an input to 
the force and velocity at an output. This sub-structure model-
ling technique allows for flexibility with future design modi-
fications. The matrices can be determined analytically, com-
putationally or experimentally (Dickens, 1999). The trans-
mission matrices are related to other immittance descriptions 
such as impedance through matrix transformations (Rubin, 
1967).  

 

 

Figure 2. Representation of the vibration isolator considered. 

The resilient elements are modelled as continuous rods in 
longitudinal vibration while the other elements are treated as 
lumped parameters. Isolator design parameters are chosen by 
minimising the force transmissibility relative to an ideal iso-
lator over a chosen frequency range. The optimisation is car-
ried out with a particle swarm and gradient based optimisa-
tion algorithm. Two isolator configurations are examined: an 
isolator with two passive DVAs, and one with two DAVIs. 
The performance of each is compared and their relative merit 
discussed. Finally, the sensitivity of the force transmissibility 
to variations in the optimum design parameters is investi-
gated.  

ANALYTICAL MODEL OF A VIBRATION 
ISOLATOR 

Sub-structure model 

A schematic diagram of the transmission matrix representa-
tion of the dynamic system is presented in Figure 3. 
 

 

Figure 3. Schematic of transmission matrix model of the 
vibration isolator. 
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The velocities of the primary mass 0m , first intermediate 
mass 1m  and second intermediate mass 2m  are described by 

0v , 1v  and 2v  respectively. The forces at these locations are 
given by 0f , 1f  and 2f . The first and second DAVI have 
effective masses of 

1DVm  and 
2DVm  respectively. The mass, 

stiffness and structural loss values for the first and second 
DVA are described by 

1DAm , 
1DAk , 1DAη , 

2DAm , 
2DAk  

and 2DAη  respectively. The resilient elements are assumed to 

have the same cross sectional area A , Young’s modulus E , 
density ρ  and structural loss factor η . The individual 
lengths of the first, second and third resilient elements are 
described by 

1RDL , 
2RDL and 

3RDL . The coordinates to the 

first and second intermediate masses from the bottom of the 
isolator are given by 1x  and 2x . The overall height of the 
isolator is L . The dynamic responses of the individual stages 
of the compound isolator are described by the transmission 
matrices 1α , 2α  and 3α . 

Transmission matrices 

In the following, the time dependence of force and velocity is 
proportional to tje ω− , where 1−=j , ω  is the radian 
frequency and t is time. The transmission matrices for the 
individual stages are developed from the individual compo-
nents. The transmission matrices for the nth lumped mass, 
DVA and DAVI are given by (Snowdon, 1971, Dylejko et 
al., 2007): 
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It should be noted that the transmission matrix for the DVA 
describes a drive-point response. Hysteretic damping is in-
cluded in the DVAs by using a complex stiffness 

)1(
nn DADA ηjk − . The transmission matrix for the nth resil-

ient element modelled as a slender rod undergoing longitudi-
nal vibration is given by (Dylejko et al., 2007): 
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ll ck ω=  is the longitudinal wavenumber and ρEcl =  is 
the longitudinal wave speed. Hysteretic damping is included 
by using a complex Young’s modulus )1( ηjE − .  

Coupled response 

The transmission matrices of the individual stages can be 
calculated from: 

 
110 DVRDM1 αααα =  (5) 

2211 DVRDAM2 ααααα D=  (6) 

322 RDDAM3 αααα =  (7) 

Elements in series are combined by forward matrix multipli-
cation. The symbol , represents an operation for adding 
transmission matrices in parallel and is described by 
(Snowdon, 1971): 
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The subscripts of iα refer to the row and column element 

number respectively of the transmission matrix iα . The 

description of the complete system is given by: 
 

321 αααβ =  (12) 

The transmitted force can be calculated from (Snowdon, 
1971): 

 
( ) 1

1211
−+= de Zf ββ  (13) 

Where 11β  and 21β  represent the first and second elements 
in the first row of the matrix β . dZ  is the drive-point im-
pedance of the foundation; in this work, a rigid termination is 
assumed. The force transmissibility assuming 10 =f  is then 
defined as: 

 
eF fT 10log20=  (dB) (14) 

OPTIMISATION 

Design parameters 

The design parameters to be optimised for this work are the 
locations of the intermediate masses, properties of the DAVIs 
and the properties of the DVAs. Vectors including these de-
sign variables are respectively defined by: 
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Where 
1DAf  and 

2DAf  are the DVA tuning frequencies. For 
the nth DVA, the tuning frequency is related to the DVA mass 

and stiffness by: 
nnn DADADA mkf r= , rk

nDA  is the real 

part of the complex stiffness 
nDAk . The design parameters 

can be combined to give: 
 

{ }DADVDM xxxx =  (18) 

Performance criteria 

The primary performance criterion chosen for this work is the 
difference between the force transmissibility of a particular 
isolator configuration and an ideal isolator. This can be ex-
pressed by a relative force transmissibility which is a func-
tion of the design parameters and frequency: 

 
)(),(),( ωωω FIFFR TTT −= xx  (19) 

FIT  is the force transmissibility of an ideal isolator. The 
ideal isolator is modelled by replacing the resilient elements, 
otherwise described by Equation (4), with a stiffness of 

LAE . The cost function to be minimised is the maximum 
relative force transmissibility over a chosen frequency range: 
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lω  and uω  are the lower and upper frequency limits to be 
considered during the optimisation. This is the minimax 
problem. Another performance criterion for assessing the 
broadband response is the RMS transmissibility; this is de-
fined as: 
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f∆  is the frequency spacing at which the force transmissibil-
ity is evaluated. This parameter gives an estimate of the RMS 
transmitted force for a unity broadband excitation over the 
chosen frequency range. 

Two configurations of isolator are considered in this paper. 
The first, is the configuration used by Du et al. (2005) which 
includes the two intermediate masses with the two DVAs. 
The cost function to be minimised becomes:  

 
),0,( DADVDM xxx =J  (22) 

The second configuration includes the two intermediate 
masses with two DAVIs. The cost function in this case be-
comes:  

 
)0,,( DADVDM =xxxJ  (23) 

These two configurations, one with DVAs and one with 
DAVIs, will be referred to as the DVA and DAVI isolators 
respectively. 

Algorithm 

Complex cost functions such as Equation (20) can include 
many local minima. Stochastic methods such as genetic algo-
rithms, simulated annealing and particle swarm optimisation 
attempt to improve the chances of finding the global opti-
mum. Often, this is achieved at the expense of computational 
efficiency. These global optimisation techniques do not re-
quire assumptions based on continuity or the existence of 
derivatives. For these reasons, they are well suited to mini-
mise cost functions derived from models characterised by 
numerical or experimental methods.  

For this work, a combination of a particle swarm algorithm 
(Kennedy and Eberhart, 1995) and a general non-linear con-
strained algorithm has been chosen. The particle swarm algo-
rithm was chosen for its flexibility, simplicity and efficiency 
with large dimensional problems. While equality constraints 
may be included in the system model, inequality cannot be 
directly enforced by this algorithm. Constraints are included 
by shifting agents which violate the parameter constraints 
back to the edge of the search space. The general non-linear 
constrained algorithm is based on the sequential quadratic 
programming method (Nocedal and Wright, 1999). This al-
gorithm is used to efficiently locate the minimum close to the 
final point of the search conducted by the particle swarm 
optimisation. 

RESULTS 

Numerical study 

The values for the isolator parameters have been chosen to be 
consistent with the work completed by Du et al. (2003). The 
parameters not involved in the optimisation are presented in 
Table 1. It should be noted that the primary mass (m0) has 
been reduced by a factor of three. This is to take into account 
the three isolators in parallel used by Du et al. (2003). It 
should also be kept in mind when comparing results from this 
work with Du et al. (2003) that the primary mass in their 
paper had multiple degrees-of-freedom and was supported on 
top of a flexible plate. 

Table 1. Constant parameter values. 

Parameter Value 

0m  (kg) 9.27 

1m , 2m  (kg) 0.050 

E  (Pa) 20×106 

ρ  (kg/m3) 1103 

L  (m) 0.066 

A  (m2) 0.00123 

η  0.1 

The limits imposed on the design variables for the optimisa-
tion are given in Table 2. 
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Table 2. Optimisation limits. 

Parameter Lower limit Upper limit 

1x  (m) 0.033 0.066 

2x  (m) 0 0.033 

DVm  (kg) 0 0.500 

DAm  (kg) 0 0.150 

DAη  0 0.4 

DAf  (Hz) 350 1200 

f  (Hz) 200 3000 

Optimum DVA isolator 

The optimum parameters for the DVA isolator, found from 
minimising the cost function described by Equation (22) are 
given in Table 3. The cost function was evaluated numeri-
cally over the 200 Hz to 3000 Hz frequency range with a 
resolution of 1 Hz. The intermediate masses in the isolator 
presented by Du et al. (2003) were positioned at x1 = 0.0495 
m and x2 = 0.0165. These locations were chosen based on 
practical considerations and a modal analysis of an isolator 
without intermediate masses. The optimum values found in 
this study are closer to the anti-nodes of the first two internal 
resonances for an isolator without intermediate masses (Du et 
al., 2003). Also different, is that the optimum DVA masses 
were not found to be the maximum allowable. Similar to their 
findings, however, the optimum loss factor for both DVAs 
was found to be the maximum value.  

Table 3. Optimum parameters for DVA isolator. 

Parameter Value 

1x  (m) 0.052 

2x  (m) 0.031 

1DAm  (kg) 0.068 

1DAη  0.400 

1DAf  (Hz) 753 

2DAm  (kg) 0.133 

2DAη  0.400 

2DAf  (Hz) 350 

The force transmissibility using a massless isolator (ideal); 
isolator including internal resonances (realistic); isolator 
including internal resonances and intermediate masses (com-
pound) and the optimum DVA isolator is shown in Figure 4. 
The vertical dotted grey lines represent the frequency range 
considered during the optimisation. The rigid body resonance 
(f0) of the primary mass can be observed at a frequency of 32 
Hz. For the ideal isolator, the transmissibility drops below 0 
dB after 02 f  and then decreases at a rate of approximately 
12 dB per octave. The internal resonances occur at 1020 Hz, 
2090 Hz and 3060 Hz for the frequency range displayed. The 
inclusion of the internal resonances in the realistic isolator 
decreases the performance of the isolator compared with the 
ideal isolator by up to 26 dB. The rate at which the transmis-

sibility drops with frequency is reduced to around 6 dB per 
octave. The inclusion of the intermediate masses in the com-
pound isolator lowers the first two resonances to 625 Hz and 
1196 Hz. The rate at which the transmissibility decays at 
frequencies above these two intermediate mass resonances is 
increased. This phenomena is exploited in multi-stage vibra-
tion isolation systems (Moore, 2011).  
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Figure 4. Force transmissibility for an ideal, realistic, com-
pound and optimum DVA isolator. 

The optimum DVA isolator reduces the maximum difference 
in transmissibility relative to the ideal isolator to 8.5 dB. This 
is a 17.5 dB improvement over the realistic isolator. Also, the 
transmissibility roll-off with frequency is similar to that of 
the ideal isolator. The RMS transmissibility, however, has 
increased from -5.9 dB to -4.8 dB compared with the realistic 
isolator. This is due to the increase in transmissibility at 
lower frequencies. Although not shown, an interesting obser-
vation was that the internal resonances had little influence 
over the motion of the primary mass. This implies that the 
primary mass is de-coupled at these higher frequencies. 
Unlike the optimum DVA isolator presented by Du et al. 
(2003), the highest DVA tuning frequency is not close to the 
first resonance of the compound isolator. This suggests that 
the traditional method of tuning a DVA to a problem reso-
nance is not suitable for best performance with the chosen 
cost function. Previous research with DVAs has also demon-
strated the benefits of a detuned strategy (Fuller et al., 1997). 

Optimum DAVI isolator 

The optimum parameters for the DAVI isolator found from 
minimising the cost function described by Equation (23) are 
given in Table 4.  

Table 4. Optimum parameters for DAVI isolator. 

Parameter Value 

x1  (m) 0.034 

x2  (m) 0.013 

1DVm  (kg) 0.110 

2DVm  (kg) 0.040 

The cost function was again evaluated numerically over the 
200 Hz to 3000 Hz frequency range with a resolution of 1 
Hz. Interestingly, the optimum locations of the two interme-
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diate masses are quite different from the DVA isolator. For 
the DAVI, the intermediate masses are roughly in the centre 
and 1/5th of the length from the bottom. These locations are 
also close to anti-nodes of the first two internal resonances 
for an isolator without the intermediate masses (Du et al., 
2003). The force transmissibility with a massless isolator 
(ideal); isolator including internal resonances (realistic); iso-
lator including internal resonances and intermediate masses 
(compound) and the optimum DAVI isolator is shown in 
Figure 5.  
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Figure 5. Force transmissibility for an ideal, realistic, com-
pound and optimum DAVI isolator. 

Even though the locations of the intermediate masses are 
different to those of the DVA isolator, the compound isolator 
transmissibility for both configurations is very similar. This 
is explained by the symmetry of the intermediate mass loca-
tions about the centre of the isolator for the two different 
configurations. With the introduction of the optimum DAVIs, 
the maximum deviation in force transmissibility relative to 
the ideal isolator over the chosen frequency range is reduced 
to 3.6 dB. This represents a 22.4 dB improvement over the 
realistic isolator. An interesting feature in the transmissibility 
is the wide suppression band established between 867 Hz and 
2143 Hz where the transmissibility drops below the ideal 
case. Also of interest, are the two anti-resonances occurring 
within this frequency band. Similar to the optimum DVA, the 
transmissibility roll-off in frequency over the chosen band-
width is close to the ideal case. Above 3 kHz, however, the 
response increases to levels similar to the realistic isolator. 
This is due to the inertial coupling associated with the DAVIs 
which negates the increase in frequency roll-off of normally 
associated with the intermediate masses. The RMS transmis-
sibility has been reduced to -10 dB which is only 0.4 dB 
higher than the ideal case. 

Sensitivity analysis 

To understand the effect of manufacturing and material toler-
ances on the performance of real isolators, it is necessary to 
conduct a sensitivity analysis. The most sensitive parameters 
for the DVA isolator taking into account J as the performance 
criterion were found to be the tuning frequencies of the 
DVAs (

1DAf  and 
2DAf ). The DAVI isolator was more 

sensitive to changes in the locations of the intermediate 
masses ( 1x  and 2x ). These four parameters are plotted to-
gether in Figure 6 over a perturbed parameter range of %5± .  

 
 

Figure 6. Effect of parameter perturbations on J. 

The curves in Figure 6 were produced by perturbing a single 
parameter with the others remaining at their optimal value. It 
can be seen that the DAVI isolator is far more sensitive to 
parameter perturbations than the DVA isolator. This result 
shows that perhaps it would be preferable to suffer a slight 
loss in performance for a reduction in parameter sensitivity. 
This criterion could be included in the optimisation process. 
It was found that the RMS transmissibility, however, was far 
less sensitive to changes in the design parameters. 

A perturbation analysis was also carried out. All the combi-
nations of -5%, 0% and +5% variations in the design parame-
ters were evaluated against J to find the worst case. The 
worst case perturbations for the DVA and DAVI isolators are 
listed in and Table 5 and Table 6 respectively. The force 
transmissibilities for the worst case DVA and DAVI isolators 
are shown against the optimum responses in Figure 7 and 
Figure 8 respectively. The worst case DVA isolator incurs an 
increase in J from 8.5 dB to 11 dB. The RMS transmissibility 
for this parameter set changes from -4.8 dB to -5 dB. The 
DAVI isolator suffers a large increase in J from 3.6 dB to 
18.6 dB. Examining Figure 8 shows that this is due to a reso-
nance shifting into the frequency range considered in the 
calculation of J. The RMS transmissibility, however, remains 
unchanged. This is due to a wide suppression band being 
established which covers lower frequencies. 

 

Table 5. Worst case perturbations for DVA isolator. 

1x  2x  
1DAm

1DAη
1DAf  

2DAm  
2DAη

2DAf

-5% +5% -5% -5% +5% -5% -5% -5% 

 

Table 6. Worst case perturbations for DAVI isolator. 
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Figure 7. Force transmissibility of perturbed and optimum 
DVA isolator.  
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Figure 8. Force transmissibility of perturbed and optimum 
DAVI isolator. 

 

Summary of results 

A summary of the performance criteria evaluated for the 
different isolator configurations is presented in Table 7. 

Table 7. Summary of the performance of the different isola-
tor configurations. 

Isolator J (dB) TF,RMS (dB) 

Ideal 0 -10.4 

Realistic 26.0 -5.9 

DVA 8.5 -4.8 

DAVI 3.6 -10.0 

Perturbed DVA 11.0 -5.0 

Perturbed DAVI 18.6 -10.0 

 

CONCLUSIONS 

This paper is a preliminary theoretical study into the use of 
an inertial mechanism within a uni-axial vibration isolator for 
suppressing the influence of internal resonances on force 
transmission. The inertial mechanism under consideration is a 
device that exerts an inertial force proportional to the relative 
acceleration of its connection points.  

Two isolator configurations were examined. The first was a 
compound vibration isolator incorporating dynamic vibration 
absorbers, referred to as the DVA isolator. This design was 
proposed by Du et al. (2003). The second, referred to as the 
DAVI isolator, was a concept that incorporated ideal inertial 
mechanisms coupling the primary mass to the intermediate 
masses. The design parameters under consideration were the 
intermediate mass locations; dynamic vibration absorber 
properties and the effective masses of the inertial mecha-
nisms.  

The force transmissibility of the isolators supporting a pri-
mary mass was modelled analytically using the transmission 
matrix approach. This allows for greater flexibility for future 
design changes. The primary mass, intermediate masses, 
dynamic vibration absorbers and inertial mechanism were 
considered as lumped parameters. The resilient elements 
were modelled as continuous slender rods undergoing longi-
tudinal vibration. This approximation has been shown previ-
ously to compare well with experimental results (Harrison et 
al., 1952). The elastic response of the inertial mechanism was 
not considered in this preliminary study. 

A cost function was defined as the maximum deviation in 
force transmissibility from an ideal isolator. Optimum design 
parameters were found for the two isolator configurations by 
minimising this cost function over a chosen frequency range. 
Realistic constraints were imposed on the parameters during 
this optimisation. A particle swarm and gradient based algo-
rithm was used to find the global optima. It was shown that 
for the chosen frequency range, both isolator configurations 
significantly reduced the influence of the internal resonances 
on the force transmissibility. The DVA configuration reduced 
the maximum difference in force transmissibility from an 
ideal isolator by 17.5 dB. The DAVI isolator configuration 
improved on this result with a reduction of 22.4 dB. This 
configuration was found to have an RMS force transmissibil-
ity close to that of an ideal isolator. This represents a 5.2 dB 
improvement in RMS transmissibility over the DVA isolator. 

Finally, a sensitivity and perturbation analysis was performed 
to assess the impact of variations in design parameters. It was 
found that the DAVI isolator was more sensitive to changes 
in the design parameters than the DVA isolator. The results 
demonstrate, however, that a small compromise in maximum 
force transmissibility relative to an ideal isolator could be 
made to reduce this sensitivity. 
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