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ABSTRACT 
This paper reviews the development of geoacoustic inversion as a statistical inference process to estimate geoacoustic 
model parameter values and their associated uncertainties.  Nonlinear inversion methods are examples of model-
based signal processing techniques that were enabled by the introduction of efficient numerical techniques for search-
ing multi-dimensional model parameter spaces. Applications of inversions based on acoustic pressure field data 
(matched field processing methods) are discussed and analysed.  The paper concludes by pointing out limitations in 
the present day inversion techniques that can severely limit performance, and discusses some new approaches that 
provide robust performance without compromising the accuracy of the estimated model parameters. 

INTRODUCTION 

The interaction of sound with the ocean bottom is generally 
acknowledged to have a significant impact on the acoustic 
field in the ocean, especially in shallow water.  Over the past 
several decades, there has been a concentrated research effort 
in underwater acoustics to understand the physics of sound 
propagation in the ocean bottom.  This work has led to the 
general practice of using geoacoustic models, – profiles of 
the sound speed and attenuation, and density of ocean bottom 
materials (Figure 1) – to describe the bottom for applications 
such as prediction of transmission loss, analysis of sonar 
performance, environmental impact assessments of sound on 
marine fauna, etc. Much of the research was focused on de-
veloping inversion methods to determine geoacoustic model 
parameter values from the information about the model con-
tained in measurements of the acoustic field – or quantities 
that can be derived from the field – in the water.  

 

Figure 1.  Geoacoustic model indicating a simple layered 
structure of sound speed, cp, attenuation, α, and density, ρ.   

This paper reviews the stages in the development of 
geoacoustic inversion as a statistical inference process to 
estimate geoacoustic model parameter values and their asso-
ciated uncertainties.  The inversion methods fall into two 
main categories, linear methods that assume small changes 

from an initial profile, and methods that are fully non-linear 
(Chapman, 2008).  The non-linear methods are examples of 
model-based signal processing techniques that were made 
possible by the introduction of efficient numerical techniques 
for exploring multi-dimensional model parameter spaces. 
Inversion methods based on both approaches have been 
benchmarked in exercises with simulated data (Tolstoy et al., 
1998; Chapman et al., 2003), and have also been applied for 
use with data from experiments in many different ocean bot-
tom environments - with varying degrees of success (e.g. 
Special issue on Geoacoustic Inversion, IEEE J. Oceanic 
Eng., 2003; Caiti et al., 2006).   

The focus in this paper is on the development and application 
of non-linear inverse methods that make use of acoustic pres-
sure field data (matched field processing (MFP) methods).  
The technique of matched field inversion (MFI) is analysed 
in terms of its performance in estimating realistic geoacoustic 
models in shallow water waveguides.  Examples are also 
presented that demonstrate severe limitations of MFI in 
waveguides in which the water sound speed profile is uncer-
tain.   The paper concludes with a discussion of some new 
approaches that provide robust performance without com-
promising the accuracy of the estimated model parameters. 

GEOACOUSTIC INVERSION METHODS 

Matched field processing 

The acoustic field measured in the ocean contains informa-
tion about the properties and structure of the water column 
and the ocean bottom.  Knowledge of the physical properties 
of both systems, the ocean and its boundaries, is fundamen-
tally important.  The relationship between the physical prop-
erties of the ocean medium and the acoustic field in the ocean 
is expressed by the acoustic wave equation.  It is a non-linear 
mapping, and analytic solutions for the field can be obtained 
only for very simple ocean waveguide models (e.g. Jensen et 
al, 1995).  Sophisticated numerical methods for calculating 
acoustic fields in realistic ocean waveguides were developed 
primarily in navy laboratories in the 1970s, and research 
continues in improving these techniques to the present time.   

Unlike the forward problem of calculating the field from a set 
of ocean environmental parameters, the inverse problem of 

Paper Peer Reviewed



21-23 November 2012, Fremantle, Australia Proceedings of Acoustics 2012 - Fremantle 

 

2 Australian Acoustical Society 

inferring the properties of the ocean medium from acoustic 
field data is inherently non-unique.  The origins of MFI in 
underwater acoustics trace back to the paper by Homer 
Bucker, who suggested that source location in the ocean 
could be determined by matching measured data with calcu-
lated replicas of the acoustic field (Bucker, 1976).  MFP was 
viewed as a correlation process; the maximum in the correla-
tion between the data and replicas occurred for the correct 
source position in range and depth in the ocean (Porter, 
1993).  The relationship between the measured and modelled 
fields at an array of hydrophones is conveniently expressed in 
terms of the Bartlett processor, Bf(r,z) 

 
Bf(r,z) = |Qf

†(r,z)Pf(r,z)|2/|Qf(r,z)|2|Pf(r,z)|2.      (1)          

Here Qf is the vector of modelled fields for a set of 
waveguide environmental parameters, m (assumed to repre-
sent the ‘true’ waveguide); Pf is the vector of measured data 
and f is the sound frequency.   The inverse problem of source 
localization by MFP was initially implemented as a straight-
forward grid search over range and depth, and several exam-
ples were reported of successful applications in experiments. 

Matched field inversion 

The more general application of MFP as an inversion tech-
nique for determining environmental properties of the 
waveguide was not as direct.  The basic premise was similar: 
for a known experimental geometry, the best match between 
measured and modelled fields was obtained for the 
waveguide model that represented the true ocean environ-
ment.  However, the process of evaluating possible models of 
the environment involved an extensive search over a multi-
dimensional model parameter space.  Although numerical 
methods for calculating sufficiently accurate replica fields 
were available in the 1980s, it was not feasible to carry out 
grid searches with the available computing resources at the 
time. 

The breakthrough that enabled geoacoustic inversion with 
MFP occurred in 1990 when Frazer introduced simulated 
annealing as an efficient global search technique (Basu and 
Frazer, 1990).  MFI was thus formulated as an optimization 
problem with four basic components: 

• A prior geoacoustic model for the waveguide envi-
ronment 

• An accurate method for calculating replica fields 

• A cost function for comparing measured and mod-
elled acoustic fields 

• An efficient search method for navigating the 
model parameter space 

The prior geoacoustic model was designed based on the best 
available knowledge of the local environment.  This involved 
assessment of ‘ground truth’ information from sediment 
cores and grab samples, and high resolution seismic surveys. 
The form of the prior model determined the type of 
geoacoustic model that was inverted.  Model structure was 
generally based on homogeneous or gradient layers to repre-
sent the sediment material in the ocean bottom, and the dis-
tribution of values for the model parameters was assumed to 
be uniform within the bounds that were set.  The water sound 
speed profile was usually assumed to be known from meas-
urements at the experimental site.   

The cost function was generally based on the Bartlett 
matched field processor; models tested in the search process 
were selected or rejected based on the change in the cost 
function.  Convergence was controlled either by pre-selecting 
the number of iterations, or by a criterion that set a minimum 
value for the change of the cost function (Lindsay and Chap-
man, 1993)    

Inversions based on simulated annealing as the global search 
method were reported in the early 1990s (Collins et al., 1992; 
Lindsay and Chapman, 1993).  Simulated annealing is an 
example of a general approach known as importance sam-
pling for efficiently navigating model parameter spaces.  By 
analogy with a thermodynamic cooling process, SA uses a 
Boltzmann criterion to allow models that do not decrease the 
cost function.  This feature allows the search to move out of 
areas of local minima in the model parameter space, thus 
enabling a more extensive search.  The genetic algorithm is 
another example of a search technique based on importance 
sampling; this method was introduced for MFI by Gerstoft 
(1994) and is widely used today.  A number of hybrid search 
methods were also developed that combined global and local 
search processes such as the downhill simplex method, e.g. 
simulated annealing and downhill simplex (Dosso et al., 
2001); genetic algorithm and Gauss-Newton (Gerstoft, 1995); 
genetic algorithm and downhill simplex, (Musil et al. 1999).  
Two benchmark workshops sponsored by the US Office of 
Naval Research demonstrated that these sophisticated inver-
sion methods were highly successful in tests with simulated 
data (Tolstoy et al, 1998; Chapman et al., 2003).  However, 
some serious issues about the performance of the methods 
with experimental data remained unsolved.       

Limitations of optimization inversions 

Results of inversions using simulated annealing were conven-
tionally presented in terms of the annealing history of each 
model parameter during the search process.  The example in 
Figure 2 shows results from a well-designed inversion based 
on a hybrid search method (simulated annealing with downhil 
simplex): the allowed values for each model parameter were 
well sampled during the initial phase of the search (to about 
10000 steps). Subsequently, the process fixed on subsets of 
the values which optimized the cost function and remained in 
those regions.  The search was completed in about 30,000 
steps, during which the ‘temperature’ decreased from an 
initial high value.  The spike at the end of the search results 
from a final ‘quenching’ of the local downhill simplex algo-
rithm to refine the optimal values.   

Figure 2.  Annealing history from a hybrid search process for 
estimating model parameters of a half-space geoacoustic 

model (Chen et al., 2006). 
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Note that this example shows that the search included geo-
metrical parameters of the experimental arrangement in addi-
tion to the geoacoustic parameters. 

The annealing history provides only an indication of the op-
timal values of the search process.  A sense of how well each 
parameter was estimated is obtained from a scatter plot of the 
cost function values for each model that was tested.  Figure 3 
shows the scatter plots for the same model parameters.   This 
display provides an indication of the hierarchy of sensitivity 
of the model parameters, and a sense of which ones were well 
estimated in the inversion.  Scatter plots that appear as ‘tor-
nadoes’ ( e.g. the range, r, source depth, zsou, water depth, D, 
in the top three panels) indicate well-estimated parameters, 
whereas those that appear broader at the base (e.g. those in 
the lower panels: density, ρ, sound speed, c, and attenuation, 
α, of the half-space) are less well estimated.  The flatness of 
the display also indicates that the parameter is not sensitive, 
i.e. the data from the experiment do not contain any useful 
information about the parameter.   

 

  Figure 3.  Cost function values (1 - Bf(r,z)) for the 
geoacoustic model parameters from the optimization inver-

sion in Figure 1 (Chen et al., 2006).     

Figure 3 reveals the inherent weakness of the optimization 
approach.  Optimization inversions always generate an ‘op-
timal’ estimated value for each parameter.  However, it is 
usually the case that some model parameters are insensitive, 
so that the ‘optimal’ values of such parameters do not signifi-
cantly affect the acoustic field.   As a result, inversions were 
often over-parameterized, with meaningless values for some 
of the model parameters.  Optimization inversions did not 
provide a statistically valid measure of the uncertainty of the 
estimated values. 

Model parameter correlations 

An inherent problem in geoacoustic inversion arises due to 
correlations that exist between model parameters.  Optimiza-
tion inversions addressed this issue by re-parameterizing the 
model parameter set during the initial stages of the inversion 
(Collins and Fishman, 1995).  Although this enabled more 
efficient navigation of the model parameter space in the 
search process, it did not eliminate the basic problem.  The 
fundamental issue is that, due to the model parameter correla-
tions, errors in the estimate of one parameter will impact the 
estimates of all the others. 

A simple but striking example of this effect is the acoustic 
‘mirage’ in source localization by MFP.  D’Spain et al. 
(1998) showed that the range and water depth were strongly 
correlated in matched field source localization.  Since water 

depth and source range are not ever known exactly in ex-
periments, the uncertainty in these parameters generates er-
rors in all other estimates in the inversion.  Another well 
known example is the correlation between source range and 
sound frequency through the waveguide invariant (Lysanov 
and Brekhovskih, 1993).  The common practice of using 
multi-frequency data in inversions mitigates the impact of 
this effect to some degree, but does not eliminate the basic 
problem.   

INVERSION AS STATISTICAL INFERENCE 

Bayesian inference 

The complete solution of the inverse problem involves pro-
viding an estimate for the model parameters and a measure of 
the uncertainty of the estimates.  Some researchers reported 
attempts to generate probabilities of the estimated parameter 
values that were generated in the search process (Gerstoft and 
Mecklenbrauker, 1998; Jaschke and Chapman, 1999).  How-
ever, the full resolution of the inverse problem as a statistical 
inference process was provided by Dosso (2002a; 2002b) 
who introduced Bayesian inference (Sen and Stoffa, 1996) 
for geoacoustic inversion in underwater acoustics. 

Bayes’ relationship between measured data, d, and a set of 
environmental model parameters, m, is expressed in terms of 
conditional probabilities: 

  P(m|d)P(d) = P(d|m)P(m).                     (2) 

Here, P(m|d)is the conditional probability of the model given 
the data, P(d|m) is the conditional probability of the data 
given a model m, and P(m) is the prior information about the 
model m.   

The complete solution of the inverse problem is given by 
P(m|d), the a posteriori probability distribution (or PPD) of 
model parameter values.  It is evident from (2) that Bayesian 
inversion involves an interaction between the information 
about the model that is contained in the data and the prior 
knowledge about the model.  If there is no information in the 
data about a model parameter, the probability of that parame-
ter is close to the original prior probability distribution.  Oth-
erwise, the final probability distribution is determined by the 
information contained in the data. 

The relationship between the data and the set of environ-
mental model parameters can be interpreted in terms of the 
mismatch between the measurement and a prediction of the 
measurement, q, based on the model: 

  d – q(m)  = n.                                    (3) 

Here, the mismatch n can be interpreted as noise arising from 
either the noise in the experimental data itself or theory errors 
due to differences between the environmental model and the 
real earth, or differences caused by an inaccurate model of 
the physics of the problem (in this case, the wave equation).  
The distribution of n is generally not known. 

Bayesian inversion is implemented by assuming that the con-
ditional probability of the data for a given model, P(d|m), in 
(2) can be expressed in terms of a likelihood function of the 
data and model mismatch, E(m,d):  

E(m,d)= [(d – q(m))† Cd
-1 (d – q(m)),               (4) 

where Cd is the data error covariance matrix (Dosso, 2002).  
In many applications, the assumption is made that the covari-
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ance matrix is diagonal.  However, this condition is not usu-
ally correct, and some attempt must be made to evaluate Cd in 
the inversion.  This involves making assumptions about the 
statistics of the data mismatch distribution, and these must be 
verified by statistical tests (Dosso et al., 2006; Jiang and 
Chapman, 2007). 

Although the complete solution of the inverse problem is 
given by the PPD, it is a multi-dimensional distribution that 
is difficult to visualize.  Its interpretation in terms of model 
parameter estimates and their uncertainties involves computa-
tion of the properties of the PPD, such as the maximum a 
posteriori estimate (MAP), the mean values and covariances, 
and marginal probability distributions.  Parameter uncertain-
ties can be quantified in terms of credibility intervals, i.e. the 
γ% highest probability density interval that represents the 
minimum width interval that contains γ% of the marginal 
probability distribution.     

Limitations of MFI 

Inversions based on the Bayesian formulation were applied to 
experimental data from various different experiments, with 
remarkable success in estimating geoacoustic profiles that 
compared favourably with ground truth information.  How-
ever, most of the experiments were carried out at sites where 
the ocean environment was benign for MFI: constant water 
depth and minimal variability of the ocean sound speed pro-
file and the sediment materials and structure over the track of 
the experiment.  For these conditions, the inversions could be 
carried out assuming that the sound propagation was inde-
pendent of range.  An example of Bayesian inversion with 
experimental data is discussed here that demonstrates the 
performance of the method, and reveals the fundamental 
limitations of MFI in strongly variable ocean environments 
(Jiang and Chapman, 2009). 

The experiment was carried out in 2006 near the edge of the 
continental shelf break off the New Jersey coast of the east-
ern USA (Tang et al., 2007).  The site is strongly influenced 
by internal waves, eddies and fronts that are shed from the 
Gulf Stream that passes offshore.  These features create a 
highly variable sound speed profile in the ocean, with short 
time scales of the order of minutes and spatial variability 
scales of the order of a few km.  An example of the sound 
speed variability at the site during the experiment is shown in 
Figure 4.  The profiles shown were measured over a 4-hour 
period at stations along an 8-km track. 

The data used in the experiment consisted of multiple con-
tinuous wave (CW) tones that were transmitted from a ship 
that held station at a distance of 1 km from a moored vertical 
line array.  The array consisted of 16 hydrophones at spac-
ings of 3.75 m, with the bottommost sensor about 8.2 m 
above the sea floor.  The water depth was ~79 m over the 
propagation path.  Data from 7 CW tones from 53–703 Hz 
were used simultaneously in the inversion. 

The data from this experiment presented a significant chal-
lenge for MFI due to the strong variability of the sound speed 
profile in the water over the experimental track.  To account 
for the variability, the sound speed profile was included as an 
unknown in the inversion, using empirical orthogonal func-
tions (EOFs) to account for the observed variability in the 
profile.  Consequently, a total of 17 parameters were required 
in the inversion: 4 geometrical parameters of the experimen-
tal arrangement (source range and depth, water depth, and 
array tilt); 4 EOFs for the sound speed profile in the water; 
and 9 geoacoustic parameters of a single layer model of the 

bottom in which the sediment was modelled as a gradient 
layer for the sound speed and density.  

 
Figure 4.  Sound speed profiles measured along the experi-

mental track at the New Jersey site. 

The marginal densities for the geometrical parameters are 
shown in Figure 5.  These parameters are highly sensitive in 
the inversion, and the estimated values compared very well 
with ground truth data from the experiment. The vertical lines 
represent the 95% HPD limits. 

 

Figure 5. Marginal probability densities for the water depth, 
WD, source depth, SD, Range and array tilt. 

Similar results were obtained for the 4 EOFs, and the esti-
mated sound speed profile derived from the EOFs is shown in 
Figure 6.  The assumption in the inversion was that a single 
profile could account for the changes in the water sound 
speed along the propagation path. 

Marginal densities for the geoacoustic model parameters are 
shown in Figure 7.  The vertical dotted lines show the 95% 
HPD limits.  The densities for the most sensitive parameters, 
sediment layer thickness, H, the sound speeds in the sedi-
ment, cp1 (top) and cp2 (bottom) and basement, cpb, and the 
sediment density, ρ1, are peaked within the parameter 
bounds, indicating that these parameters were well estimated 
in the inversion.  However, the marginal densities for the 
other parameters were relatively flat, indicating that the data 
did not contain significant information about these parame-
ters.   

These results are typical of those from other matched field 
inversions: the most sensitive parameters are generally the 
sound speeds in the uppermost layers of sediment (within a 
few wavelengths of the sea floor).  A particularly striking 
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result from the inversion is the accurate estimate of sediment 
thickness.  Ground truth surveys revealed a strong sub-
bottom reflector at a depth of about 20 m that was ubiquitous 
over the experimental area.  The inversion was also sensitive 
to a slow sound speed layer within the sediment above the 
basement reflector (Ballard et al, 2010).  Although the de-
tailed structure within the sediment could not be resolved 
with these data, the presence of the low speed layer was in-
ferred from the negative gradient of sound speed within the 
sediment. 

 

Figure 6.  Estimated sound speed profile in the water.   

 

 

Figure 7.  Marginal densities for the geoacoustic model pa-
rameters estimated in the inversion. 

Attenuation is interpreted as an intrinsic loss in the sediment, 
and was modeled in this inversion as frequency dependent, 
α0(f/f0)β, where f0 = 1 kHz.  The results indicated that the in-
version with data from a range of 1 km was not sensitive to 
attenuation: the marginal density for the constant, αp1, was 
shifted to the lower bound, and the density for the exponent, 
fexp, was flat.  However, the data are sensitive to other mech-
anisms that remove energy from the propagation plane, such 
as scattering.  Since the loss accumulates with range, data 
from greater ranges likely contain more information about 
this parameter. 

Although the inversion was successful in providing accurate 
estimates of the geoacoustic model, the overall success of the 
same approach for other data sets at longer ranges was not 
repeated.  The success of the inversion reported here de-
pended on the assumption that the sound speed variation in 
the water column could be represented by a single profile 
based on the observed sound speed variations.  This assump-
tion was not upheld for data from ranges of 3 km and 5 km 
from the same experiment.  Oceanographic data from moored 
sensors revealed that internal waves passed through the ex-
perimental site when the longer range data were obtained.  
Knowledge of the full range dependence of the sound speed 
profile is required for inverting these data. 

This example indicates the fundamental weakness of model-
based inversions such as MFI.  If the environmental variation 
cannot be modelled, the inversion will fail.  However, the 
degree of variability that will allow simple assumptions such 
as a single profile is not known.  And even for simple as-
sumptions, the increased computational load of including 
additional model parameters as unknowns in the inversion is 
a significant issue. 

Apart from the issues mentioned above, there are other chal-
lenges that need to be addressed.  Most of the inversions 
reported to date have been restricted to low frequencies (< 1 
kHz) for which the sea floor and sub-bottom layer interfaces 
are assumed to be smooth.  Inversions at higher frequencies 
must address rough surface scattering losses in modelling the 
acoustic field.  The impact of shear wave propagation in the 
bottom has been addressed in some inversions, but this issue 
is generally ignored.  Another important issue is the assump-
tion of 2-D sound propagation.  In most cases, this assump-
tion is valid. However, in experimental geometries that in-
volve propagation across a sloping sea bottom, 3-D propaga-
tion effects must be considered.  An example reported by 
Jiang et al. (2006) demonstrated the impact of 3-D sound 
propagation on MFI at a site in the Florida Straits.  In this 
case, sound refracted along the slope could be removed by 
spatial filtering; otherwise, a 3-D sound propagation model is 
required (Sturm et al., 2009). 

Ocean sediments are porous media, and there has been sig-
nificant research effort in developing theories of sound 
propagation sediment materials.  Among the most well 
known are the Biot theory (Biot, 1956; 1962), and the more 
recent theories based on grain shearing by Buckingham 
(1997; 1999; 2007).    The critical issue is the dispersion of 
sound speed and attenuation in sediments: experiments show 
that the frequency dependence of attenuation in sand sedi-
ments is non-linear within the low frequency band less than 5 
kHz.  However in most applications of MFI, sound propaga-
tion has been modelled using viscous fluid models (e.g. nor-
mal mode; parabolic equation), or in some cases visco-elastic 
models.  These methods inherently assume linear frequency 
dependence for attenuation.   

The impact of using more appropriate models for sound 
propagation in marine sediments has not been examined ex-
tensively in MFI.  One of the benefits of using the grain 
shearing theory, for instance, may be in obtaining a more 
efficient set of model parameters for sampling the PPD.  The 
theory provides analytic expressions for the sound speed, 
attenuation and density in terms of more fundamental physi-
cal parameters (such as porosity, compressional and shear 
grain contact stress) that are independent (Buckingham, 
1999; 2007).   
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OTHER APPROACHES 

There is no simple remedy to fix model-based approaches 
such as MFI for conditions in which there is insufficient 
knowledge of the waveguide environment.   A reasonable 
alternative approach is to use quantities derived from the 
acoustic field in the inversion, instead of the measured pres-
sure.  Although this usually requires special signal processing 
to extract the observable, there are clear benefits if modelling 
the observable is not sensitive to variability in ocean 
waveguide properties.  One example is the use of travel time.  
Jiang et al. (2010) reported an inversion of relative travel 
times between sub-bottom and sea floor broadband signal 
arrivals to estimate sound speed and attenuation in the sedi-
ment.  The experiment was designed to provide a tomo-
graphic sampling of the sediment using multiple source 
depths and a vertical hydrophone array at very short range.  
The data (shown in Figure 8 for a single source/receiver pair) 
are more robust to uncertainty in the water sound speed pro-
file due to the relatively short range (~ 200 m), assuming that 
the sound speed profile is adequately sampled at the site dur-
ing the experiment. 

 

Figure 8.  Matched filtered broadband data from 1-s linear 
frequency modulated sweeps transmitted for one minute.  

The sub-bottom reflection is clearly seen about 10 ms after 
the sea floor reflection (BR). 

Other quantities such as the sea bottom reflection coefficient 
derived from broadband data (Holland and Osler, 2000; Hol-
land et al., 2005), modal wave numbers extracted from CW 
data (Ballard et al., 2010), and modal dispersion from time-
frequency analysis of broadband signals (Potty et al., 2003) 
have been used successfully.   

The approach by Ballard et al. (2010) is particularly interest-
ing because it provides an estimate of the range dependence 
of the geoacoustic profile along the experimental track.  The 
method extracts the wave numbers of propagating modes and 
follows the change in wave number as the source opens range 
along the track.  Although it requires independent informa-
tion about the layered structure (obtained from two way 
travel time data from a chirp sonar survey along the track), 
the method is one of few that addresses range dependence 

successfully. It is worth emphasizing that the Bayesian for-
malism can be applied for inversion of all these different 
types of data. 

Perhaps the most promising new approaches are those that 
make use of ambient noise.  The use of ambient noise meas-
ured on a vertical array as a fathometer has been demon-
strated by Siderius et al. (2006).  Recently, Quiano extended 
this approach for geoacoustic inversion using the wind noise 
measured by the array as the sound source (Quiano et al., 
2012).  The method inverts the broadband reflection coeffi-
cient that is estimated from wind noise data on the array. The 
estimate of reflectivity is self-calibrated, and the reflection 
coefficient inversion is robust to uncertainty in the water 
sound speed profile.  This is also true of the reflection coeffi-
cient inversions of controlled source data as proposed by 
Holland (Holland et al., 2005). 

Finally, a promising technique that is robust to uncertainty in 
both the experimental geometry and the water sound speed 
profile was reported by Bonnel (Bonnel et al., 2011).  The 
method is based on estimating the modal dispersion from 
single hydrophone data using a signal processing technique 
known as warping.  Although the use of modal dispersion 
data for estimating geoacoustic model parameters is not new, 
warping enables the inversion of relatively short range data 
for which the modes are not clearly separated in time.  Warp-
ing transforms the non-linear dispersion relationship in the 
original time-frequency domain to single tones at frequencies 
near the modal cut-off frequencies in the warped domain 
(Figure 9).  The warping operation is reversible, so that the 
modes that are resolved in the warped domain can be filtered 
and transformed back to the original time-frequency space.   

 

 

Figure 9.  Modal dispersion in the original time-frequency 
domain (top panel) and in the warped domain (bottom panel) 

for a broadband light bulb signal at a range of 7 km. 
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The method was applied successfully to broadband light bulb 
data from the New Jersey shelf experiment (Bonnel and 
Chapman, 2011) to estimate the parameters of the single 
layer geoacoustic model that was used for MFI as discussed 
previously.  Figure 9 shows the initial time-frequency display 
of the modal dispersion (upper panel) and the subsequent 
display in the warped domain; four modes are resolved in the 
warped domain (lower panel).  The black curves in the upper 
panel indicate the estimated modal dispersion curves, and the 
white curves are the modelled dispersion curves based on the 
estimated sediment model parameters. 

SUMMARY 

This paper reviewed the development of geoacoustic inver-
sion in underwater acoustics as a statistical inference method. 
The widely used technique of matched field inversion was 
examined to display its advantages and discuss its fundamen-
tal limitations.  MFP is an example of model based inversion: 
model parameters are estimated by comparing measured data 
with calculated replicas of the data.  In underwater acoustics, 
the wave equation describes the physical interaction of sound 
with the ocean medium, and efficient and accurate numerical 
techniques have been developed for modelling the acoustic 
field for realistic ocean environments.  The Bayesian formal-
ism for MFI provides the complete solution to the inverse 
problem: estimates of the model parameter values and statis-
tically valid measures of their uncertainties are derived from 
the a posteriori probability density.  The marginal probabili-
ties derived from the PPD indicate the degree to which the 
data contain information about the model parameters.  How-
ever, if there is uncertainty due to variability in the properties 
of the ocean environment, model-based inversions such as 
MFI can fail. 

New approaches that are robust to uncertain knowledge of 
the ocean properties and the experimental geometry provide 
some options for alternative methods for model-based inver-
sion of geoacoustic model parameters. A few of these meth-
ods, such as time-frequency analysis of broadband data, re-
flection coefficient inversion and travel time tomography 
were briefly discussed.  
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