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ABSTRACT 
This paper presents a nonlinear dynamic model of the contact forces and vibration generated in rolling element bear-
ings due to a surface defect in a raceway. A rectangular shape defect with sharp edges is selected for modelling be-
cause previous models were not able to predict the low frequency vibration event that occurs when a rolling element 
enters the defect. Simulations are presented for two defect sizes. In the first simulation, the defect length is small such 
that the rolling elements do not strike the bottom of the defect. The simulated results compare well with experimental 
results, and predict the low and high frequency events that occur when a rolling element passes through the defect ob-
served in the experimental results. In the second simulation, the defect length is increased such that a rolling element 
strikes the bottom of the defect. This simulation demonstrates the benefits over models that do not consider the mass 
of the rolling elements. The benefits are illustrated by a detailed analysis of the contact forces that occur as a rolling 
element passes through the defect. The developed model can be used to simulate the vibration response of bearings 
with a defect in the raceway to aid in the development of new diagnostic algorithms.  

INTRODUCTION 

Rolling element bearings are widely used in rotary machin-
ery. Developing an understanding of their dynamic behaviour 
has therefore received a great deal of attention and led to the 
development of a number of analytical models. These models 
are often used to develop and test diagnostic algorithms for 
condition monitoring purposes.  

This paper develops a dynamic model that can be used to 
predict the contact forces and vibration response of a wide 
range of defect profiles. However, this paper focuses on rec-
tangular shaped bearing defects with sharp edges. The non-
linear model includes the dynamics of the raceways and roll-
ing elements, the mass and the inertia of rolling elements and 
the impact energy loss of the rolling elements in the system. 
The model can be used to predict the vibration and contact 
forces of parts of the bearing, and does not require an as-
sumed path of a rolling element moving into and out of a 
defect. The model is based on the work by Harsha (2005).  

The model described in this paper is compared with experi-
mental studies by Sawalhi and Randall (2011). The size of 
the defects in their experimental study was small, compared 
to the rolling element diameter, and the rolling elements did 
not strike the bottom of the defect.  

A second case study is described in this paper of a simulation 
involving a larger defect, where the rolling element loses 
contact with both raceways and can strike the bottom of the 
defect in the raceway. The characteristics of the resultant 
vibration signal for both case studies are discussed. This 
model can be used to simulate the vibration signal generated 
by bearings for several types of defects, and can be used to 
develop new diagnostic algorithms including algorithms to 
identify the size of a defect. 

Previous work 

Numerous vibration generation mechanisms in rolling ele-
ment bearings have been investigated by researchers. These 
mechanisms include varying compliance due to the existence 

of different rolling elements in the load zone, localised de-
fects such as cracks, pits and spalls caused by fatigue, and 
distributed defects such as waviness due to manufacturing 
errors (Sunnersjö, 1978, Sayles and Poon, 1981, Wardle, 
1988, Tandon and Choudhury, 1999, Jang and Jeong, 2004). 
The study of the vibration generated by the above mentioned 
mechanisms is useful for quality inspection and condition 
monitoring.  

A force impulse train is often used to model the vibration 
response of a defective bearing (Sunnersjö, 1978, Jang and 
Jeong, 2004). The impulse train models have received con-
siderable attention for developing condition monitoring algo-
rithms. These models do not take the shape and size of a 
localised fault into account and are limited to bearing defects 
that produce impulsive vibration signals. Hence, this simple 
model cannot be employed to analyse the vibration response 
of defects of varying shape and size.  

Recently, more sophisticated dynamic models have been 
developed to include defect geometries that are distributed or 
localised. In these models, the bearing contact forces are 
related to the displacement of bearing components using 
Hertzian contact theory (Harsha et al., 2003, Sawalhi and 
Randall, 2008). The mass and inertia of the rolling elements 
in these models can safely be ignored for low speed applica-
tions because the centrifugal forces or gyroscopic moments in 
most rolling element bearing applications are much smaller 
than the contact forces between the rolling elements and 
raceways due to the external radial and/or axial loads (Liew 
et al., 2002). These forces do not significantly affect the dis-
tribution of the applied load among the rolling elements and 
are usually ignored in dynamic analysis of rolling element 
bearings. Due to this simplification in the earlier models, the 
force impacts that are generated as unloaded rolling elements 
strike the bottom of the defect cannot be predicted. 

A more complex model was developed by Harsha (2005) 
which includes the mass and the inertia of the rolling ele-
ments. However, the impact energy loss of the rolling ele-
ments was not taken into account and therefore impact forces 
of the rolling elements striking the raceways cannot be pre-
dicted. In addition, the model develop by Harsha (2005) does 
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not include a mass-spring-damper representing a measured 
high frequency resonant response of the bearing, as included 
in the model proposed by Sawalhi & Randall (2008). 

Figure 1 shows a typical measured vibration signal due to a 
defect with sharp edges, such as illustrated in the outer race-
way in Figure 2. A limitation of all previously mentioned 
models is that simulations of a defect with sharp edges pro-
duces very large impulsive forces at both the entrance and 
exit of the defect, which results in large accelerations with 
high frequency content. In contrast, it has been shown by 
previous experimental studies that the entry of a rolling ele-
ment to a defect with a sharp edge produces a vibration signal 
with low frequency content (Epps and Mccallion, Sawalhi 
and Randall, 2011). The exit of the rolling element produces 
a larger vibration signal with high frequency content, which 
is due to the rolling element striking the sharp edged raceway 
and exciting the natural frequency of the system.  

 
Figure 1: A typical measured response (Epps and Mccallion) 

 
Figure 2. Schematic diagram of the second simulated bearing with 
square shape defect (a defect with sharp edges). 

In order to avoid large impulsive forces at the entrance and 
exit points of a square shape defect, Sawalhi and Randall 
(2008) modified the shape of the defect to resemble the path 
travelled by the rolling element. In the model developed here, 
the path of the rolling element is predicted taking into ac-
count its mass and finite dimension, and the actual defect 
geometry is therefore used as a model input.  

The following sections describe a proposed model that over-
comes some of the limitations of previous models. 

MODELING AND PROBLEM FORMULATION 

Figure 3 shows the main components of a rolling element 
bearing, namely the inner raceway, the outer raceway and the 
rolling elements. The rolling element bearing assembly is 
modelled as a multi-body dynamic system consisting of 
masses, springs and dampers, with the assumption that the 
outer raceway is fixed. Compared to Harsha’s (2005) model, 
an additional mass 𝑚 has been attached to the inner raceway 
via a spring and damper to account for the high frequency 
resonant response of the bearing. 

 
Symbol Description 
𝑟o	
   Radius of outer raceway 
𝑟b	
   Radius of rolling element  
𝑟! 	
   Radius of inner raceway 
𝜌! 	
   Radial position of the rolling element from the centre 

of the outer raceway 
𝑋! 	
   Radial position of the rolling element from the centre 

of the inner raceway 
𝜙! 	
   Angular position of jth rolling element with respect to 

centre of the outer raceway 
𝜃! 	
   Angular position of jth rolling element with respect to 

centre of the inner raceway 
𝑘!,out	
   Contact stiffness between the inner raceway and jth 

rolling element  
𝑘!,in	
   Contact stiffness between the inner raceway and jth 

rolling element 
𝑐s	
   Damping of the shaft  
𝑘s	
   Stiffness of the shaft 
𝑐r	
   Damping of high frequency resonant mode 
𝑘r	
   Stiffness of high frequency resonant mode 
𝑚	
   Mass of high frequency resonant mode 
𝑁b	
   Number of rolling elements 
𝑚b	
   Mass of the jth rolling element 
𝑚in	
   Mass of the inner ring 
𝑊	
   Static load acting on the inner raceway 

 

Figure 3. The diagram of a spring-mass model for rolling element 
bearings  
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A set of independents generalised coordinates for the inner 
raceway (𝑥in, 𝑦in), and the rolling elements (𝜌! ; j=1, 2, 3,…,  
𝑁b) are defined. The parameter 𝑋! is the position of the  𝑗th 

rolling element from the centre of the inner raceway and is 
related to the parameter   𝜌! as  

𝑋! = 𝑥in! + 𝜌!! − 2𝜌!𝑥in cos𝜙!
− 2𝜌!𝑦in sin𝜙! + 𝑦in

!/!
 (1) 

where 𝜙! is the angular position of the jth rolling element with 
respect to the inner raceway’s generalised coordinate illus-
trated in Figure 3. Non-linear springs are used to model the 
contacts between the rolling elements and raceways. The 
contact forces are related to the elastic contact deformations 
between the rolling elements and raceways using the Hertzian 
elastic contact theory (Stachowiak and Batchelor, 2011). The 
contact deformations of a rolling element and the raceways 
are calculated from the dynamic motion of the bearing com-
ponents. Therefore the nonlinear contact stiffnesses are relat-
ed to the dynamics of the system. 

Contact stiffness 

The contact deformations and forces between the rolling 
elements and the raceways are modelled using Hertzian con-
tact theory (Stachowiak and Batchelor, 2011). The contact 
force  𝑄! between a rolling element and raceway is calculated 
as  

𝑄! = 𝑘! 𝛿! 𝛿! (2) 

where the nonlinear contact stiffness 𝑘!(𝛿!), which is a func-
tion of the contact deformation 𝛿!, is defined for a steel-ball 
and steel raceway contact as 

𝑘!(𝛿!) = 𝑘!   𝛿!
!/! (3) 

with the constant 𝑘! depending on the curvature of the rolling 
elements and raceways (Harris, 2001). Equation (3) is used 
for calculating the nonlinear stiffnesses of the springs 𝑘!,!" 
and 𝑘!,out shown in Figure 3, given the contact deformations 
𝛿!,in and 𝛿!,out between the 𝑗th ball and inner and outer race-
way, respectively. Equations (3) has to be adjusted when 
rollers are used instead of balls (Harris, 2001). 

Modelling the defect and contact deformations 

In order to model the geometry of a defect on the raceways, 
the defect shape function 𝛾 is introduced, which is a function 
of the angle 𝜙!. A rectangular-shape bearing defect on the 
outer raceway can be modelled as  

𝛾(𝜙) =   ∆    𝜙en < 𝜙 < 𝜙ex
0                  otherwise

   (4) 

where 𝜙en and 𝜙ex are the angular positions of the entry and 
the exit to the defect, respectively. 

In contrast to the previous models (Harsha, 2005, Sawalhi 
and Randall, 2008), where the rolling element is considered 
as a point mass to calculate the contact deformation between 
each rolling element and the raceway at a time, the model 
proposed in this paper takes into account a finite number of 
points on the circumference of a rolling element for calcula-
tions. In other words, the dimensions of the rolling element 
are taking into account rather than modelling it as point mass. 

Figure 4 shows a diagram of a rolling element in the defect 
zone. As a rolling element at a given angular position 𝜙! 
contacts the edges of the defect, the deformation δj occurs at 
the angle 𝛽!  illustrated in Figure 4. 

 
Figure 4. Schematic diagram of the rolling element passing a rectan-
gular shape defect with 𝛿!  the contact deformation, ∆ the defect 
depth, 𝑟b the rolling element radius,   𝜌!  the position of the rolling 
element with respect to the centre of the outer raceway, 𝛽!  the angle 
of the deformation location on the rolling element, and 𝛼!  the angle 
between the edges of the defect and the vector  𝜌! . 

In this paper the defect is modelled on the outer raceway. The 
deformations between the rolling elements and the inner 
raceway always happen at a point perpendicular to the inner 
raceway. However, the deformation between a rolling ele-
ment and the outer raceway in the defect zone happens at a 
point which is not necessarily at the angular position 𝛽! = 0 
as assumed in previous models (Harsha, 2005). To overcome 
this limitation, a finite number of points on each rolling ele-
ment are used to calculate the angular position of the contact 
deformation between a rolling element and the defect on the 
outer raceway. The relative contact deformations between the 
rolling elements and the raceways at this point are calculated 
as 

𝛿!,out = 𝑐 − 𝛾 𝜙! ± 𝛼! − 𝑟o +
𝑟bsin𝛽!   
sin𝛼!

cos𝛼! (5) 

𝛿!,in = 𝑐 + 𝑟b + 𝑟i − 𝑋! (6) 

where 𝑟b is the rolling element radius,  𝑟o is the radius of the 
outer raceway, 𝑟i is the radius of the inner raceway, 𝑐 is the 
radial clearance, 𝑋! was defined in Equation (1), and the an-
gle 𝛼! is given by 

𝛼! = tan!!
𝑟b sin𝛽!
𝜌! + cos𝛽!

   ;     −
𝜋
2
< 𝛽! <

𝜋
2

 
(7) 

 

The angle 𝛼!, illustrated in Figure 4, is the angle between the 
deformation point on a rolling element and the generalised 
coordinate 𝜌! of the rolling element. These enhancements to 
the previous models improve the results in dynamic simula-
tion of bearings with sharp defects by permitting the rolling 
element to follow a more realistic path that is not predefined. 

Equations of motion 

The equations of motion for the inner race, including the high 
frequency response of the inner race, are given by 
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𝑚in𝑥in − 𝑘!,in

!!

!!!

𝛿!,out ! cos𝜙! = 0 (8) 

𝑚in 𝑦in + 𝑔 + 𝑐s + 𝑐r 𝑦  in + 𝑘r + 𝑘s 𝑦in − 𝑘r𝑦r

− 𝑐r𝑦r − 𝑘!,in

!!

!!!

𝛿!,out !  sin  𝜙!

= 𝑊 

(9) 

𝑚r𝑦r + 𝑘r 𝑦r − 𝑦in + 𝑐r 𝑦r − 𝑦in = 0 (10) 

where 𝑔 = 9.81m/s! is the gravity of earth, 𝑊 is static load 
applied to the shaft in the 𝑦 direction, and the remaining 
spring and damper constants are defined in Figure 3.  

In order to derive the equations of motion for the rolling ele-
ments, Lagrange’s equation for the set of generalised coordi-
nates, 𝜌!  are used as 

𝑑
𝑑𝑡

𝜕𝑇
𝜕 𝜌!

−
𝜕𝑇
𝜕 𝜌!

+
𝜕𝑉
𝜕 𝜌!

= 𝑓  (11) 

where 𝑇 is the kinetic energy, 𝑉 is the potential energy, 𝜌!  is 
a vector with the generalised coordinates for the rolling ele-
ments, and 𝑓  is the vector with generalised contact forces. 
The total kinetic and potential energy of each rolling element 
is 

𝑇! = 0.5𝑚b 𝜌!
! + 𝜌!!  𝜙!

!
!!

!!!

+ 0.5  𝐼 𝜙!
!
1 + 𝑟o 𝑟b

!
 

(12) 

𝑉! = 𝑚!𝑔
!!

!!!

𝜌!   sin  𝜙! (13) 

where 𝐼 is the moment of inertia of a rolling element, 𝑚b is 
the rolling element mass, and 𝑟o is the outer raceway radius. 
The vector of the generalised contact forces   𝑓  in Equation 
(11) acting on each rolling element can be calculated by dif-
ferentiating Hooke’s law for the nonlinear springs with re-
spect to the generalised coordinates 𝜌!, such that  

𝑓 =
𝜕(𝑉)springs
𝜕 𝜌!

 (14) 

where the potential energy of the nonlinear springs acting on 
each rolling element is given, according to the Hooke’s law, 
by 

(𝑉!)springs =    0.5  𝑘!,in𝛿!,in
!

!!

!!!

+ 0.5  𝑘!,out  𝛿!,out
!

!!

!!!
 (15) 

Substituting Equations (12) to (14) into Equation (11) gives 
the following equations of motion for the rolling elements 

𝑚b𝜌! + [𝑐rol]∗  𝜌!+𝑚!𝑔 sin𝜙! +𝑚!𝜌!𝜙!

+ 𝑘!,in 𝛿!,in !

𝜕𝛿!,in
𝜕𝜌!

+ 𝑘!,out 𝛿!,out ! +
1
2
𝜕𝑘!,in
𝜕𝜌!

𝛿!,in !
!

+
1
2
𝜕𝑘!,out
𝜕𝜌!

𝛿!,out !
!
= 0 

        𝑗 = 1,2,… ,𝑁b 

(16) 

 

where differentiation of 𝑘j,in, 𝑘j,out and 𝛿!,!" with respect to 𝜌! 
can be obtained from Equations (3), (5) and (6), and with the 
function of the damper term 𝑐rol described in the following. 
The subscript + indicates that only positive values are used in 
the equations and the negative vales are set to zero. Thus, the 
contact forces only arise if a rolling element is under com-
pression.  

In Equation (16), the viscous damping parameter 𝑐rol ac-
counts for the impact energy loss of the rolling elements. The 
coefficient of restitution during impacts in the system can be 
interpreted as damping in the vibro-impact dynamics of a 
system (Liew et al., 2002). Therefore the loss of energy due 
to a rolling element impact is taken into account by including 
the damping 𝑐rol in Equation (16). The subscript * in this 
equation indicates that when a rolling element is not in con-
tact with a raceway, the damping 𝑐rol for that rolling element 
is set to zero. This is the case when a rolling element loses 
contact with both raceways. While the collision of a rolling 
element and a raceway is occurring this parameter has posi-
tive value. It is assumed that the effect of the elasto-
hydrodynamic lubrication (EHL) on the rolling elements 
damping is small and ignorable (Wijnant et al., 1999). This 
addition to Harsha’s model (2005) enables the prediction of 
the impact forces when an unloaded rolling element strikes 
the bottom of a defect. 

Equations (8) to (10) and (16) form a system of coupled se-
cond order nonlinear ordinary differential equations having 
parametric excitation.  

SIMULATION AND VALIDATION 

To enable comparison of simulated and experimental results 
and validate the model, the geometrical bearing parameters 
are set similar to the bearing in the experimental test bearing 
used by Sawalhi and Randall (2011). The test bearing used in 
this experiment was a deep grove ball on which a rectangular 
shape outer raceway defect with a width of 1.1 mm and a 
depth of 0.25 mm was machined. The bearing has a pitch 
diameter of 39 mm and a rolling element diameter of 7.93 
mm. The vibration measurements were recorded at a rota-
tional speed of 1200 rpm. The high frequency resonant mode 
was modelled to have a resonance frequency of 30 kHz and a 
damping ratio of 8%. The simulations were undertaken using 
Matlab® and Simulink® and the equations of motion defined 
by Equations (8) to (10) and (16) were solved using the 
‘ode45’ differential equation solver. 

The aim of the simulations is to show that the developed 
model can predict characteristics observed in a measured 
vibration response (Sawalhi and Randall, 2011) while model-
ling the actual shape of the defect. This is in contrast to pre-
vious models in which the modelled defect shape was altered 
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from the actual shape in order to achieve better agreement 
between modelled and measured results. The emphasis here 
is on predicting the qualitative characteristics of the vibration 
signal rather than fine tuning the damping and stiffness terms 
of the model to obtain absolute vibration levels that match the 
measured ones.  

The advantages of the developed model are demonstrated by 
showing that: (1) It can predict the low and high frequency 
content of the vibration signal due to the rolling element 
passing a rectangular shape defect with sharp edges similar to 
the experimental result; (2) The relative position of the two 
frequency components on the simulated vibration signal 
matches experimental results. The developed model is also 
used to analyse the contact forces between the rolling ele-
ments and raceways.  

Figure 5(a) shows the trace of the radial position of the 5th 
rolling element (𝜌!  + 𝑟b). The entry to the defect appears with 
mainly low frequency content while the exit from the defect 
has higher frequency content. The low frequency content at 
the entry to the defect is due to gradual de-stressing of the 
rolling element which starts when it is at an angle 𝜙en. This 
gradual de-stressing is observed in Figure 5(c) where the 
contact forces gradually decay until the rolling element 
changes direction and moves out of the defect. The high fre-
quency event in the vibration response observed in Figure 
5(a) is associated with the rolling element exiting the defect.  

 
Figure 5: Simulated bearing with 1.1mm defect size. (a) vibration of 
the inner raceway. (b) position of the rolling element (𝜌!  + 𝑟b). (c) 
contact force between rolling element and raceways. 

The low and high frequency events can also be explained by 
looking at the rolling element traces in Figure 5(b). The 
change of the acceleration at the entry is due to the trace of 
the rolling element following an arc path. As the centre of the 
rolling element reaches half way through the defect, the roll-

ing element hits the exit point of the defect. Consequently the 
rolling element has to suddenly change direction. This abrupt 
change in the direction of the movement causes a step change 
in the velocity and generates an impulse in the acceleration 
signal. In this example, the impact at the exit happens when 
the rolling element has travelled half way through the defect. 

Figure 6 shows the experimentally measured acceleration of 
the test bearing conducted by Sawalhi and Randall (2011). 
They concluded that the entry to the defect exhibits low fre-
quency content in the vibration signal and the impact happens 
when the centre of the rolling element has moved half way 
through the defect, which is consistent with the predictions of 
the proposed model described here. 

 
Figure 6: Experimental acceleration signal used for qualitative vali-
dation of developed model (Sawalhi and Randall, 2011) 

The relative position of the two characteristic frequencies on 
the vibration signal is (Sawalhi and Randall, 2011) 

𝑙 =
𝑇i𝜋𝑓r(𝐷p

! − 𝐷b
!)

𝐷p𝑓s
  (Samples) (17) 

where 𝑇i is the time to impact in samples (measured from the 
start of the low frequency content in the vibration signal), 𝑓r 
(Hz) is the rotational speed of the rotor and 𝑓s (Hz) is the 
sampling frequency. Also, 𝐷p and 𝐷b are the pitch and rolling 
element diameters in mm, respectively. Sawalhi and Randall 
(2011) showed that the length of the defect can be estimated 
from the time between the occurrence of the low and high 
frequency events.  

Equation (17) can be used to predict the defect length from 
the simulated signal in Figure 5(a). The number of samples 
between the entry and exit of the rolling element into the 
defect is 𝑇i=23 in this figure. This gives an estimated size of 
the defect of 𝑙 = 1.11 mm which matches the modelled 
length. Hence, the defect size estimation method proposed by 
Sawalhi and Randall (2011) works when the defect length is 
such that the rolling elements do not strike the bottom of the 
defect.  

The presented simulations and the experimental observations 
by Sawalhi and Randall (2011) suggest that in bearings with 
a defect smaller than the diameter of the rolling element, the 
impact occurs midway through the defect. However, the 
modelled vibration response for a larger defect, which is 
considered in the next section, suggests that larger defects 
exhibit different characteristics.  

Simulation of a large defect 

In this section, the length of the outer raceway defect is in-
creased in the simulations such that the rolling elements 
strike the bottom of the defect. The purpose of conducting 
these simulations is to highlight additional characteristics of 
the vibration response that cannot be predicted by previous 
models. The simulation results are studied in detail and the 
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vibration characteristics of a typical bearing with a large 
defect size are described. 

The length of the bearing defect is chosen as 6.93 mm so that 
a rolling element loses contact with the outer and the inner 
raceway before hitting the defect at the exit point. The model 
can predict the impact of the rolling element at the bottom of 
the defect, which in turn generates high frequency excitation 
of the bearing that appears in the simulated vibration re-
sponse. The simulation results of a bearing with 6.93 mm 
defect size are shown in Figure 7. 

 

 
Figure 7: Simulation of large defect on the outer raceway (6.93 mm). 
(a) radial vibration. (b) trace of the 5th rolling element. (c) contact 
forces of rolling element-inner raceway and rolling element-outer 
raceway. (d) contact forces for the 4th, 5th and 6th rolling elements. 

The key characteristics of the results are numbered on Figure 
7 and are explained as follows: 

1. Rolling element entry: the rolling element enters the 
defect and gradually de-stresses which causes a low fre-
quency event in the vibration signal. 
 

2. Contribution of the 4th and 6th rolling element: at this 
stage, the 5th rolling element completely loses contact 
with both raceways and the load has to be re-distributed 
among the other rolling elements. Figure 7(d) shows the 

contact forces of the 4th, 5th and 6th rolling elements. At 
the time 1720 samples, there is an increase of load on the 
leading rolling element 6 and lagging rolling element 4, 
while the load is reduced on the 5th rolling element. The 
stressing and de-stressing of the 4th and 6th rolling ele-
ments introduces low frequency content in the vibration 
signal. 
 

3. Impact of the rolling element and outer raceway (B-
OR): after losing contact with the raceways, the rolling 
element travels through the defect and strikes the bottom 
of the outer raceway defect, as shown in Figure 7(b) at 
time 1870 samples. The contact time, which is the time 
from when the 5th rolling element contacts the bottom of 
the outer raceway to the time it first loses contact with the 
outer raceway, is shown in Figure 7(b) at 1870 to 1880 
samples and is due to the damping introduced in the con-
tacts. Figure 7(c) shows a half-sine contact force pulse of 
relatively low amplitude at time 1870 samples. 

 
4. Impact of the rolling element and inner raceway (B-

IR): the rolling element impacts the inner raceway before 
impacting the outer raceway at the exit point. This impact 
event generates high frequency signal content. 

 
5. Rolling element exit: the rolling element re-stresses 

between the raceways which excites the high frequency 
resonance of the inner ring in this system. This re-
stressing is followed by multiple impacts of the rolling 
element to the outer raceway and inner raceway at the ex-
it. 

CONCLUSION 

This paper has presented a comprehensive nonlinear mathe-
matical model that can predict the dynamics of defective 
rolling element bearings. The developed model has the ca-
pacity to model various bearing defect geometries. 

The first simulation results of the proposed model are com-
pared with experimental results and it is shown that the pro-
posed model can predict the main characteristic events when 
a rolling element passes through the defect. These main char-
acteristics are the low frequency event due to gradual de-
stressing of the rolling elements at the entrance to the defect 
and the high frequency event due to the restressing at the exit 
of the defect. 

A second simulation was conducted of a rolling element 
bearing with a larger defect in which the rolling elements 
temporarily lose contact with the raceways in the defect zone. 
The results of this case are studied and key characteristics of 
the vibration signal are discussed. The second simulation 
reveals the capability of the proposed model in predicting the 
impact events of a rolling element to the bottom of the fault 
that cannot be predicted by previous models.  

Moreover, simulation of a larger defect revealed that the high 
frequency excitation of a bearing, with a defect size less than 
the diameter of the rolling element, does not necessary occur 
midway through the defect. Therefore, the simulation results 
of the proposed model can be used to develop and enhance 
bearing defect diagnostic algorithms. 

Future work on this model and its applications could include 
further experimental validation and simulation of several 
different defect geometries on different components of a 
rolling element bearing. 
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