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ABSTRACT 

The Fast Multipole Boundary Element Method (FMBEM) reduces the O(N2) computational and memory com-
plexities of the conventional BEM to O(NlogN) and O(N) respectively, where N is the number of boundary un-
knowns. One critical feature of the fast multipole method in the high-frequency regime is the choice of the spher-
ical filtering algorithm used to interpolate and/or filter the multipole expansions between octree levels. In this 
paper a fast spherical filtering algorithm based on the Non-equally spaced Fast Fourier Transform (NFFT) is 
presented. The filtering algorithm is implemented in MATLAB via a combination of sparse matrix-vector products 
and standard FFTs, and is shown to achieve the theoretical algorithmic complexity for this type of spherical fil-
ter. Furthermore, the cross-over point at which the present NFFT filter becomes faster than the direct method is 
shown to be up to a factor of 2 smaller compared to that of other fast filtering algorithms in the published litera-
ture. The NFFT algorithm has been incorporated into a broadband Helmholtz FMBEM model. Large-scale 
acoustic scattering problems are presented to demonstrate the method. 

1 INTRODUCTION 
The FMBEM reduces both the computational cost and memory requirements of the conventional Boundary El-
ement Method (BEM) by employing multipole expansions to treat the interactions between well-separated 
groups of boundary elements. This alleviates the need to explicitly construct and store the full BEM coefficient 
matrices which represent the individual pair-wise interactions of unknowns on the discretized boundary surface. 
The FMBEM thus reduces the O(N2) computational and memory complexities of the Helmholtz BEM for acoustic 
analysis problems to O(NlogN) and O(N) respectively (Gumerov and Duraiswami 2004): a significant improve-

ment for large-scale problems.  

The FMBEM algorithms are typically classified as either ‘low-frequency’ or ‘high-frequency’ algorithms (Yasuda, 
et al. 2010, Cheng, et al. 2006), depending upon the type of multipole expansion utilised in the algorithm. The 
low-frequency FMBEMs use the spherical basis functions for the multipole expansions of the Helmholtz funda-
mental solution, while the multipole translations are applied using either the RCR (Gumerov and Duraiswami 
2003) or plane-wave expansion (Greengard, Huang, et al. 1998) translation algorithms. In either case, the low-

frequency translation algorithms have a computational cost proportional to O(𝑝3) for translating a truncated mul-
tipole expansion with 𝑝2 coefficients, leading to a FMBEM algorithm whose computational cost scales as O(N1.5) 
(Gumerov and Duraiswami 2004). Conversely, in the high-frequency regime the FMBEM algorithms are based 

on the far-field signature functions and diagonal translation methods (Rokhlin 1993) which provide an O(𝑝2) 
translation method. Both the low and high frequency FMBEM algorithms cannot in the first instance be applied 
in the opposite domain, due to either numerical instabilities and/or the computational cost of the translation algo-
rithms when applied outside of the optimal frequency range. This has led to the development of various ‘broad-
band’ FMBEM algorithms which incorporate both low and high-frequency multipole expansions/translations and 
automatically switch between these representations based on the problem frequency (Gumerov and 
Duraiswami 2009, Cheng, et al. 2006). Alternatively, modifications can be made to either the low or high fre-
quency FMBEMs to make them applicable at all frequencies (Darve and Have 2004, Chaillat and Collino 2015). 
 
One issue for the high-frequency FMBEMs are the requisite interpolation and filtering operations required to 
change the truncation number (i.e. the number of coefficients in the truncated multipole expansions) between 

octree levels. The direct implementation of these spherical filtering algorithms results in an O(𝑝3) method, and 
so the formal algorithmic complexity of the high-frequency FMBEM becomes O(N1.5) (Gumerov and Duraiswami 
2004). To achieve the O(NlogN) scaling, so-called ‘fast’ spherical filtering algorithms must be employed to fur-

ther reduce the O(𝑝3) cost of the direct filtering method. Different algorithms based on the 1D Fast Multipole 
Method (FMM) (Jakob-Chien and Alpert 1997), NFFT (Bohme and Potts 2003), fast Legendre transform (Press, 
et al. 2007) and Cauchy matrix (Gumerov and Duraiswami 2004) have been proposed to accelerate the spheri-
cal filter; in all cases leading to an O(𝑝2 log𝑝) filtering method. 
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In the present work, a fast spherical filter based on the NFFT (Bohme and Potts 2003) is implemented using fast 
Gaussian gridding (Greengard and Lee 2004) and the performance is compared to the direct spherical filtering 
method. The algorithmic complexity of the present implementation is shown to agree with the theoretical esti-
mates, while the memory complexity for the NFFT spherical filter algorithm appears to be reported for the first 
time in the published literature. The observed ‘cross over’ point where the NFFT filter becomes faster than the 
direct method, while slower in the present implementation compared to some other models (Bohme and Potts 
2003), is shown to be up to a factor of 2 smaller compared to the cross over point reported for the fast algorithm 
based on the Legendre transform (Press, et al. 2007). Results from a broadband Helmholtz FMBEM utilising the 
fast spherical filter are presented to demonstrate the NFFT filtering algorithm for large-scale and high-frequency 
acoustic scattering problems.  
 
The paper is organised as follows: Section 2 briefly presents the theory for the low and high-frequency multipole 
expansions of the Helmholtz Green’s function used in the broadband FMBEM. The direct and NFFT fast spheri-
cal filtering algorithms are then presented in Section 3. Section 4 presents the algorithmic and memory com-
plexities of each filtering algorithm and demonstrates the application of the NFFT spherical filter to a Broadband 
Helmholtz FMBEM for acoustic scattering problems. Finally, Section 5 concludes the paper.  

2 THE BROADBAND HELMHOLTZ FMBEM 

2.1 The Low-Frequency Fast Multipole Method 

The Fast Multipole Method (FMM) for the acoustic BEM relies on the decomposition of the Helmholtz Green’s 
function to allow for the localised grouping and corresponding interactions between well separated groups of 
boundary elements in the discretised problem. The Helmholtz Green’s function  

𝐺(𝒙, 𝒚) =  
𝑒i𝑘𝑟

4𝜋𝑟
,          𝑟 = |𝒙 − 𝒚|, (1) 

has been shown to admit the following decomposition using the 𝑆 and 𝑅 type spherical basis functions in the 
low-frequency regime of the FMM (Gumerov and Duraiswami 2004): 

𝐺(𝒙, 𝒚) ≈  i𝑘 ∑ ∑ 𝑅𝑛
−𝑚(𝒚− 𝒄)𝑛

𝑚=−𝑛
𝑝
𝑛=0 𝑆𝑛

𝑚(𝒙 − 𝒄).  (2) 

In the above equations, 𝒙 and 𝒚 are well separated points on the boundary surface, 𝒄 is the expansion centre for 

the multipole expansions, 𝑘 is the acoustic wavenumber of the problem and i is the complex number. The 
spherical basis functions are defined in terms of the spherical Bessel, Hankel and harmonic functions; see 
(Gumerov and Duraiswami 2004) for details. In the present context, the pertinent information is that the expan-

sions are truncated after a certain number of terms 𝑝 corresponding to the maximum degree 𝑛 in the truncated 

expansion. Choosing 𝑝 such that max𝑛 = 𝑝 − 1 yields 𝑝2 coefficients in the truncated spherical basis function. 

2.2 Conversion Between the Low and High Frequency Fast Multipole Methods 
In the broadband FMBEM, the low-frequency spherical basis functions are converted to the high-frequency far 
field signature functions above a particular octree level, corresponding to when a certain number of acoustic 

wavelengths spans an octree box on that level of the octree structure. The spherical basis functions (𝐹 = 𝑅, 𝑆) 

are converted to the discretised far field signature functions, 𝑓(𝜃𝑗, 𝜑𝑘), as follows (Cheng, et al. 2006): 

𝑓(𝜃𝑗, 𝜑𝑘) = ∑ ∑ 𝐹𝑛
𝑚𝑌𝑛

𝑚𝑛
𝑚=−𝑛

𝑝
𝑛=0 (𝜃𝑗 ,𝜑𝑘), (3) 

where 𝑌𝑛
𝑚 is the spherical harmonic function 

𝑌𝑛
𝑚(𝜃𝑗 ,𝜑𝑘) = 𝑃̅𝑛

|𝑚|(cos𝜃𝑗)𝑒
i𝑚𝜑𝑘 ,    𝑃̅𝑛

𝑚(𝑧) = (−1)𝑚√
2𝑛+1

4𝜋

(𝑛−|𝑚|)!

(𝑛+|𝑚|)!
𝑃𝑛
𝑚(𝑧), (4) 

𝑃𝑛
𝑚 is the associated Legendre function, ! denotes a factorial, and (𝜃𝑗, 𝜑𝑘) is the set of sampling points for the far 

field signature function, defined in terms of the polar (𝜃) and azimuthal (𝜑) directions on the unit sphere. Select-
ing 𝜃𝑗 = cos

−1 𝑡𝑗 where 𝑡𝑗 are the nodes (𝑗 = 1:𝑝) for the 𝑝-point Gauss-Legendre quadrature rule, and 𝜑𝑘  as 

equally spaced points over the 0:2𝜋 azimuth angular range (𝑘 = 1: 2𝑝), provides a [𝑝 × 2𝑝] grid of points which 

(with the corresponding quadrature weights) can exactly integrate products of the spherical harmonics up to a 
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summed degree of 2𝑝 (Cheng, et al. 2006). Conversely, the discretised far field signature functions can be con-

verted to the truncated spherical basis function 𝐹𝑛̂
𝑚̂ with coefficients 𝑛̂ = 0: 𝑝̂, 𝑚̂ =-𝑛̂: 𝑛̂ as follows: 

𝐹𝑛̂
𝑚̂ =

2𝜋

𝑝̂
∑ 𝑤𝑗̂∑ 𝑓(𝜃𝑗̂,𝜑𝑘̂)

2𝑝̂

𝑘̂=1

𝑝̂

𝑗=1̂
𝑌𝑛̂
−𝑚̂(𝜃𝑗̂, 𝜑𝑘̂), (5) 

where 𝑤𝑗̂ are the Gauss-Legendre weights for the 𝑝̂-point quadrature rule (𝑗̂ = 1: 𝑝̂). Equations (3) and (5) thus 

provide a mechanism to convert a truncated spherical basis function with 𝑝2 (or 𝑝̂2) coefficients into a discre-

tised far field signature function sampled at 2𝑝2 (or 2𝑝̂2) coefficients, or vice versa. 

3 THE DIRECT AND NFFT SPHERICAL FILTERS 

3.1 The Direct Spherical Filter 
Spherical filtering operations are required in the high-frequency FMBEM when interpolating or filtering a discre-

tised far-field signature function sampled on one grid of spherical angular points (𝜃𝑗̂, 𝜑𝑘̂) specified by the trunca-

tion number 𝑝̂, to a different set of points (𝜃𝑗 ,𝜑𝑘) specified by the truncation number 𝑝, where 𝑝̂ ≠ 𝑝. The direct 

spherical filter algorithm applies this resampling by converting from the far field signature functions to the spher-

ical basis functions (for the same truncation number 𝑝̂) via Eq. (5), followed by resampling these spherical basis 
function at the new grid of finer or coarser far field signature functions (specified by the new truncation number 

𝑝) via Eq. (3). The direct spherical filter is applied in the following steps to reduce the overall computational cost 

and leverage the use of the FFT. By first substituting for 𝑌𝑛̂
−𝑚̂(𝜃𝑗̂, 𝜑𝑘̂), Eq. (5) is applied in two steps: 

𝛽𝑗̂
𝑚̂ =

2𝜋

𝑝̂
∑ 𝑓(𝜃𝑗̂, 𝜑𝑘̂)
2𝑝̂

𝑘̂=1
𝑒 -i𝑚̂𝜑𝑘̂, (6) 

𝐹𝑛̂
𝑚̂ = ∑ 𝑤𝑗̂

𝑝̂
𝑗̂=1 𝛽𝑗̂

𝑚̂𝑃̅𝑛̂
𝑚̂(cos𝜃𝑗̂), (7) 

where the temporary set of 𝛽𝑗̂
𝑚̂ coefficients in Eq. (6) are calculated for 𝑗̂ = 1: 𝑝̂ and 𝑚̂ =-𝑝̂: 𝑝̂. As the azimuthal 

sampling points 𝜑𝑘̂ are equally spaced, the 𝑗̂𝑡ℎ  set of 𝛽𝑗̂
𝑚̂ coefficients can be calculated with the FFT; totalling 

O(𝑝̂2log 𝑝̂) operations for the calculation of 𝑝̂ FFTs in Eq. (6). Equation (7) requires O(𝑝̂3) operations: a summa-

tion over 𝑝̂ for each of the 2𝑝̂2 grid points. Similarly, Eq. (3) can be applied in two steps after initially substituting 
for 𝑌𝑛

−𝑚(𝜃𝑗, 𝜑𝑘): 

𝛼𝑗
𝑚 = ∑ 𝐹𝑛̂

𝑚̂𝑃̅𝑛̂
𝑚̂(cos𝜃𝑗)

𝑝̂
𝑛̂=|𝑚̂| , (8) 

𝑓(𝜃𝑗, 𝜑𝑘) = ∑ 𝛼𝑗
𝑚𝑛

𝑚=−𝑛 𝑒 i𝑚𝜑𝑘 , (9) 

where the temporary set of 𝛼𝑗
𝑚 coefficients in Eq. (8) are calculated for 𝑗 = 1:𝑝 and 𝑚 =-𝑗: 𝑗 (O(𝑝̂2𝑝) operations) 

and Eq. (9) can similarly be applied via 𝑝 calls of the FFT ((𝑝2log𝑝) operations). It can be seen that Eq. (8) ap-

plies the 𝑝̂ → 𝑝 filtering of the 𝐹𝑛̂
𝑚̂ spherical basis function coefficients (𝑛̂ = 0: 𝑝̂, 𝑚̂ = −𝑛̂: 𝑛̂) to yield the temporary 

set of coefficients 𝛼𝑗
𝑚, defined for the new truncation number 𝑝 at the polar sampling points 𝜃𝑗. Equation (9) then 

calculates the far field signature function on the corresponding azimuth grid points 𝜑𝑘 via the FFT. 

When applying Eqs. (6)-(9) for the express purpose of filtering a far field signature function to a coarser or finer 
grid of sample points, the explicit conversion to and from the spherical basis functions is not required. In this 
case, Eqs. (7) and (8) can be combined into a single step (Bohme and Potts 2003), as follows: 

𝛼𝑗
𝑚 = ∑ 𝑤𝑗̂

𝑝̂
𝑗̂=1 𝛽𝑗̂

𝑚̂𝑆(𝑥𝑗̂, 𝑥𝑗),     𝑆(𝑥𝑗̂, 𝑥𝑗) = ∑ 𝑃̅𝑛̂
𝑚̂(cos𝜃𝑗̂)𝑃̅𝑛̂

𝑚̂(cos𝜃𝑗)
𝑝̂
𝑛̂=|𝑚̂|  (10) 

The inner summation appearing in Eq. (10) for 𝑆(𝑥𝑗̂, 𝑥𝑗), has a closed form (Jakob-Chien and Alpert 1997) 

known as the Christoffel-Darboux formula. This sum can be evaluated, assuming 𝑝̂ ≠ 𝑝 (as is the case when 
filtering or interpolating the signature functions) as follows: 

  𝑆(𝑥𝑗̂, 𝑥𝑗) =
1

𝑥𝑗̂−𝑥𝑗
𝜀𝑝̂+1
𝑚̂ [𝑃̅𝑝̂+1

𝑚̂ (𝑥𝑗̂)𝑃̅𝑝̂
𝑚̂(𝑥𝑗) − 𝑃̅𝑝̂

𝑚̂(𝑥𝑗̂)𝑃̅𝑝̂+1
𝑚̂ (𝑥𝑗)] (11) 

where 𝜀𝑛
𝑚 = √(𝑛2 −𝑚2)/(4𝑛2 − 1). Substituting Eq. (11) into Eq. (10) thus allows the middle steps of the direct 

spherical filter to be applied in a single summation over 𝑝̂. Note that the algorithmic complexity of the combined 
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middle steps is not reduced: the summation over 𝑝̂ for each of the 2𝑝2 far-field grid points still has a computa-

tional cost of O(𝑝3). However, the calculation of Eq. (11) can now be accelerated using fast methods. 

3.1.1 Numerical implementation of the direct spherical filter algorithm 

The direct spherical filtering algorithm has been implemented in MATLAB as follows: 

1. The 𝑝̂ FFTs in Eq. (6) are applied to the columns of the input set of far field signature function sample 

points, 𝑓(𝜃𝑗̂, 𝜑𝑘̂), which are stored as a [𝑝̂ × 2𝑝̂] array. 

2. The columns of the [𝑝̂ × 2𝑝̂] array 𝛽𝑗̂
𝑚̂ output from step 1 are reshaped into a single column vector, and 

Eq. (10) is applied using the Christoffel-Darboux formula (Eq. (11)) as a sparse matrix-vector product. 

The sparse matrix has dimensions of [2𝑝2 × 2𝑝̂2] with the individual matrix coefficients of the form 

𝑤𝑗̂𝑆(𝑥𝑗 , 𝑥𝑗̂) arranged on each row such that the matrix-vector product applies the summation in Eq. (10). 

The row dimension of the matrix, of size 2𝑝2, automatically applies the truncation or 0-padding required 
for the second FFT applied in Eq. (9) and any reordering for zero-frequency shifting of the initial/final 

FFTs is also incorporated into the sparse matrix by reordering the rows/columns. 

3.  The [2𝑝2 × 1] column vector output from step 2 is reshaped back into a [𝑝 × 2𝑝] array and Eq. (9) is ap-

plied via 𝑝 invocations of the FFT, yielding the filtered far-field signature function 𝑓(𝜃𝑗 ,𝜑𝑘). 

The direct spherical filter is applied in the present FMBEM model by precalculating and storing the sparse ma-
trix, and so at run-time the filter is efficiently applied as FFTs, array reshaping (which does not require the array 

data to be rewritten) and a sparse matrix-vector product. 

3.2 The NFFT Spherical Filter 
The fast spherical filtering methods in the literature (Jakob-Chien and Alpert 1997, Bohme and Potts 2003, 
Gumerov and Duraiswami 2004) seek to further reduce the algorithmic complexity of the middle steps of the 
direct spherical filter by approximating the O(N2)-type interaction involved in evaluating the 1/(𝑥𝑗̂ − 𝑥𝑗) term ap-

pearing in Eq. (11). Substituting Eq. (11) into Eq. (10) and rearranging yields (Bohme and Potts 2003): 

𝛼𝑗
𝑚 = 𝜀𝑝̂+1

𝑚̂ (𝑃̅𝑝̂
𝑚̂(𝑥𝑗)∑

𝑤𝑗̂𝛽𝑗̂
𝑚̂𝑃̅𝑝̂+1

𝑚̂ (𝑥𝑗̂)

𝑥𝑗̂−𝑥𝑗

𝑝̂
𝑗̂=1 − 𝑃̅𝑝̂+1

𝑚̂ (𝑥𝑗)∑
𝑤𝑗̂𝛽𝑗̂

𝑚̂𝑃̅𝑝̂
𝑚̂(𝑥𝑗̂)

𝑥𝑗̂−𝑥𝑗

𝑝̂
𝑗̂=1 ).      (12) 

Each of the sums in the above equation can be applied using an NFFT by first regularising the kernel near to 
the singularity (𝑥𝑗̂ = 𝑥𝑗) and then smoothing and scaling the resulting function to provide a continuous periodic 

function over the (𝑥𝑗̂− 𝑥𝑗) = ±
1

2
 range. The resulting function can then be well approximated by a Fourier series 

sampled on a non-uniform grid of points (recall that 𝑥𝑗̂ and 𝑥𝑗 correspond to the nodes of the 𝑝̂ and 𝑝-point 

Gauss-Legendre rules, respectively) and so the summations in Eq. (12) can be accelerated using an NFFT.  

3.2.1 Smoothing and scaling the NFFT kernel 

Assuming a kernel of the form: 

𝑓(𝑥𝑗) = ∑ 𝛽𝑗̂𝐾(𝑥𝑗̂ − 𝑥𝑗)
𝑝̂
𝑗=̂1 ,      (13) 

for each summation term appearing in Eq. (12), the kernel 𝐾(𝑦) = 1/𝑦 can be smoothed and scaled to yield a 1-
periodic version of the function, 𝐾𝑅, over the range [−1/2:𝑦: 1/2]  as follows. Firstly 𝐾(𝑦) is set to 0 at 𝑦 = 0 to 

remove the singularity there and the function is then parameterised by a constant 𝑎, which determines the range 
near 𝑦 = 0 and 𝑦 = ±1/2 where the kernel will be replaced by a smooth sine series. 𝐾𝑅(𝑦) is thus defined as: 

  𝐾𝑅(𝑦) =

{
 

 𝑇𝐼(𝑦), 𝑦 ∈ (−
𝑎

𝑛
,
𝑎

𝑛
) ,

𝑇𝐵(𝑦), 𝑦 ∈ [−
1

2
, −

1

2
+

𝑎

𝑛
) ∪ (

1

2
−

𝑎

𝑛
,
1

2
] ,

𝐾(𝑦), otherwise,

      (14) 

where 𝑛 is the number of terms later used in the Fourier series representation of 𝐾𝑅(𝑦) (Bohme and Potts 2003). 

The sine series used to regularise the kernel are defined by a smoothing parameter 𝑞 to ensure continuity of the 

kernel and its first 𝑞 − 1 derivatives at the joins: ±
𝑎

𝑛
 and ±(

1

2
∓

𝑎

𝑛
). The sine series are (Bohme and Potts 2003): 
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𝑇𝐼(𝑦) =  ∑ 𝑎𝑙
𝐼 sin

𝜋𝑛𝑙

2𝑎
𝑦𝑞

𝑙=1 ,     (15) 

𝑇𝐵(𝑦) =  {
∑ 𝑎𝑙

𝐵 sin
𝜋𝑛𝑙

2𝑎
(𝑦 −

1

2
)𝑞

𝑙=1 , 𝑦 ∈ (
1

2
−

𝑎

𝑛
,
1

2
] ,

∑ 𝑎𝑙
𝐵 sin

𝜋𝑛𝑙

2𝑎
(𝑦 +

1

2
) ,

𝑞
𝑙=1 𝑦 ∈  [−

1

2
, −

1

2
+

𝑎

𝑛
) ,

     (16) 

where the coefficients 𝑎𝑙
𝐼 and 𝑎𝑙

𝐵 are calculated by enforcing the previously mentioned continuity requirements at 

the joins: see (Bohme and Potts 2003) for details. The kernel values 𝑥𝑗̂ − 𝑥𝑗 must also be scaled within the ±1/2 

range for the periodic function. It is advantageous to apply the scaling such that 𝑥𝑗̂ − 𝑥𝑗 ∈ [−
1

2
+

𝑎

𝑛
,
1

2
+

𝑎

𝑛
] as this 

minimises the number of correction terms required over the smoothed regions of 𝐾𝑅 (discussed next). To satisfy 
this condition, 𝑥𝑗̂− 𝑥𝑗 is replaced with 𝑠 ∗ (𝑥𝑗̂ − 𝑥𝑗) where the scaling factor 𝑠 is defined as (Bohme and Potts 

2003): 

𝑠 = 
1

4
−
𝑎

2𝑛

max{|𝑥𝑗̂|,|𝑥𝑗|}
 ,     (17) 

and 𝐾(𝑦) is replaced with 𝐾 (
𝑦

𝑠
) to correct for the scaling of the magnitude introduced by 𝑠. The smoothing and 

scaling operations required for the NFFT spherical filter are demonstrated in Figure 1 below for the following 
settings: 𝑝̂ = 150, 𝑝 = 100, 𝑎 = 6, 𝑞 = 6, 𝑛 = 256, 𝑗̂ = 1: 150, 𝑗 = 15. 

 

Figure 1. Example of the smoothing and scaling operations applied to the 𝐾(𝑦) kernel to apply the 
NFFT spherical filter. Figure 1(a) shows the discrete points for the unaltered 𝐾(𝑦) kernel for 𝑗̂ = 1:150 
and 𝑗 = 15, where the corresponding 𝑥𝑗̂ and 𝑥𝑗 values are the Gauss-Legendre points for the 𝑝̂ = 150 

and 𝑝 = 100 rules. Figure 1(b) shows the continuous scaled 𝐾(𝑦) function in black, and the section of 

the scaled function which is replaced with the smoothed function, 𝐾𝑅(𝑦), in red. The complete 
smoothed function 𝐾𝑅(𝑦) is shown in Figure 1(c) (continuous line) along with the corresponding Fouri-

er series approximation of the smoothed function, 𝐾𝑅𝐹(𝑦), shown as sparsely sampled circular mark-
ers for clarity (note the non-equal spacing for the Gauss-Legendre sample points). 

It can be seen from Figure 1(b) that by scaling the 𝑦-range of the 𝐾(𝑦) kernel by 𝑠, only a small number of points 

lie within 𝑦 = ±𝑎/𝑛, and so the smoothing function 𝐾𝑅(𝑦) must only be applied to small subset of points: outside 
of this range 𝐾𝑅(𝑦) =  𝐾(𝑦) (see Eq. (14)) and so no correction term is required to account for the smoothing.     

3.2.2 Fourier series approximation of the smoothed kernel         

The smoothed function 𝐾𝑅(𝑦) can thus be approximated by the following Fourier series (Bohme and Potts 
2003)  

 𝐾𝑅𝐹(𝑦) =  ∑ 𝑏𝑙𝑒
i2𝜋𝑙𝑦𝑛/2−1

𝑙=−𝑛/2 ,     (18) 

where 𝑛 is the number of Fourier terms (chosen here to be the next largest power of 2 for max(𝑝̂, 𝑝)) and the 

Fourier coefficients 𝑏𝑙 are defined as follows: 

𝑏𝑙 =  
1

𝑛
∑ 𝐾𝑅𝐹 (

𝑘

𝑛
)𝑒 -i2𝜋𝑘𝑙/𝑛𝑛/2−1

𝑘=−𝑛/2 ,     𝑙 = −
𝑛

2
:
𝑛

2
− 1.     (19) 
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An example of the Fourier series approximation for 𝐾𝑅(𝑦) is shown in Figure 1(c), where it can be seen that 
𝐾𝑅𝐹(𝑦) (markers) is in good agreement with the smoothed function 𝐾𝑅(𝑦) (continuous line). The Fourier series 
approximation of the smoothed function can thus be efficiently calculated via an NFFT (discussed next). 

3.2.3 Fast evaluation of the kernel using the NFFT 

The function kernel 𝐾(𝑦) is thus evaluated in two parts (assuming the error from the Fourier series approxima-
tion of the smoothed function 𝐾𝑅(𝑦) is negligibly small): 

𝐾(𝑦) = (𝐾(𝑦) − 𝐾𝑅(𝑦)) + 𝐾𝑅𝐹(𝑦),     (20) 

 
where the non-equally spaced FFT is used to accelerate the calculation of Eq. (18) for the Fourier series approx-

imation of the smoothed kernel, while a ‘near-field’ correction factor (𝐾(𝑦) − 𝐾𝑅(𝑦)) is directly calculated for the 

small number of smoothed function terms within 𝑦 = ±𝑎/𝑛, to give the complete 𝐾(𝑦) function. The correction 
factor is equal to the difference between the black and red lines in Figure 1(b): applying this correction to 𝐾𝑅𝐹(𝑦) 
will thus yield the original function (Figure 1(a)) for the scaled 𝑦-coordinates. Denoting the near-field correction 

as 𝐾𝑁𝐸(𝑦) = (𝐾(𝑦) − 𝐾𝑅(𝑦)), Eq. (13) is thus calculated as (Bohme and Potts 2003): 

𝑓(𝑥𝑗) = ∑ 𝛽𝑗̂𝐾𝑁𝐸(𝑥𝑗̂ −𝑥𝑗) + ∑ 𝛽𝑗̂𝐾𝑅𝐹(𝑥𝑗̂− 𝑥𝑗)
𝑝̂
𝑗=̂1

𝑝̂
𝑗̂=1 .      (21) 

The first term in Eq. (21) is evaluated in the same way as Eq. (11) for the direct spherical filtering algorithm, but 

must only be evaluated for the small number of smoothed points in 𝐾𝑅(𝑦). The dominant computational cost in 
Eq. (21) is thus for the evaluation of the 𝐾𝑅𝐹(𝑦) term, which can be evaluated using the NFFT as follows: 

 𝑓𝑅𝐹(𝑥𝑗) =  ∑ 𝛽𝑗̂𝐾𝑅𝐹(𝑥𝑗̂ − 𝑥𝑗)
𝑝̂
𝑗̂=1 ,  

 𝑓𝑅𝐹(𝑥𝑗) =  ∑ 𝛽𝑗̂ ∑ 𝑏𝑙𝑒
i2𝜋𝑙(𝑥𝑗̂−𝑥𝑗)𝑛/2−1

𝑙=−𝑛/2
𝑝̂
𝑗̂=1 ,  

 𝑓𝑅𝐹(𝑥𝑗) =  ∑ 𝑏𝑙(∑ 𝛽𝑗̂𝑒
i2𝜋𝑙𝑥𝑗̂𝑝̂

𝑗̂=1 )𝑛/2−1
𝑙=−𝑛/2 𝑒 -i2𝜋𝑙𝑥𝑗. (22) 

The inner summation in Eq. (22) can be approximately calculated (with a controllable accuracy) using a ‘Type 1’ 
NFFT (Greengard and Lee 2004), which is an FFT calculated for a non-equally spaced set of sample points 𝑥𝑗̂. 

The result of this operation can then be multiplied with 𝑏𝑙 and the outer summation can be similarly evaluated 
with a ‘Type 2’ NFFT (Greengard and Lee 2004): an FFT for a non-equally spaced set of evaluation points 𝑥𝑗. 

Each of these NFFTs can be applied in O(𝑝 log𝑝) operations for 𝑝 sample/evaluation points. In the present 

work, an NFFT algorithm which uses fast Gaussian gridding (Greengard and Lee 2004) has been developed by 
the authors in MATLAB and incorporated into the NFFT spherical filtering algorithm. The underlying NFFT algo-
rithm essentially ‘smears’ the non-uniformly distributed sample or evaluation points onto a finely sampled regu-

lar grid and then applies the regular FFT on this finer grid: see (Greengard and Lee 2004) for details.   

The NFFT spherical filter algorithm thus reduces the algorithmic complexity for the direct evaluation of Eq. (12) 
from O(𝑝3) operations to O(𝑝2 log𝑝) operations: the NFFT summation is called O(𝑝) times (for 𝑚 =-𝑗: 𝑗), each 

costing O(𝑝̂ log 𝑝̂) operations. Assuming 𝑝 ≈ 𝑝̂, and that the number of Fourier terms used in Eq. (19) is chosen 
as 𝑛 ≈ (𝑝, 𝑝̂), the NFFT spherical filter algorithm can be shown to have an O(𝑝2 log 𝑝) complexity: see (Bohme 

and Potts 2003) for details. Equations (6) and (9) are similarly applied as in the direct spherical filter using the 
FFT: each costing O(𝑝2log𝑝) operations. Thus the total algorithmic complexity for the NFFT spherical filter is 

O(𝑝2log𝑝) + some lower complexity terms resulting from the near-field correction and error control of the NFFT. 

3.2.4 Numerical implementation of the NFFT spherical filter algorithm 

The NFFT spherical filtering algorithm has been implemented in MATLAB as follows: 

1. The 𝑝̂ FFTs in Eq. (6) are applied to the columns of the input set of far field signature function sample 

points, 𝑓(𝜃𝑗̂, 𝜑𝑘̂), which are stored as a [𝑝̂ × 2𝑝̂] array.  

2. The columns of the [𝑝̂ × 2𝑝̂] array 𝛽𝑗̂
𝑚̂ output from step 1 are reshaped into a single [2𝑝̂2 × 1] column vec-

tor and the corresponding sets of 𝛽𝑗̂ coefficients (Eq. (13)) for each of the summations appearing in Eq. 

(12) are calculated. The columns of 𝛽𝑗̂ coefficients are reshaped back to [𝑝̂ × 2𝑝̂] arrays. 



Proceedings of ACOUSTICS 2017  
19-22 November 2017, 

Perth, Australia 

ACOUSTICS 2017 Page 7 of 10 

3. The Type 1 and Type 2 NFFTs are then applied in turn to each set of 𝛽𝑗̂ coefficients via 3 substeps. First-

ly, a matrix-vector product with a [𝑛 × 𝑝̂] sparse matrix applies the ‘smearing’ operation for the NFFT to 

the regular spaced grid with 𝑛 points. Then, 2𝑝̂ invocations of the 𝑛-point FFT are applied to the col-
umns of the [𝑛 × 2𝑝̂] array. Finally, a second sparse matrix-vector product with a [𝑝 × 𝑛] sparse matrix 

is applied to sum the smeared coefficients over the regular grid to the 𝑝 non-equally spaced points. Be-
tween applying the Type 1 and 2 NFFTs, the coefficients must be multiplied with the 𝑏𝑙 coefficients ac-
cording to Eq. (22). In the present algorithm the sparse matrix for the 3 rd substep of the Type 1 NFFT, 

the multiplication with the 𝑏𝑙 coefficients and the sparse matrix for the 1st substep of the Type 2 NFFT 
are combined into a single sparse [𝑛 × 𝑛] matrix and applied in one matrix-vector product operation. 

4. The near field correction term 𝐾𝑁𝐸(𝑦) is then applied to each [𝑝̂ × 2𝑝̂] array of 𝛽𝑗̂ coefficients output from 

step 2 via sparse matrix-vector multiplications with [𝑝 × 𝑝̂] sparse matrices and the resulting arrays 
added to the [𝑝 × 2𝑝̂] arrays output from the NFFTs applied in step 3. 

5. The arrays resulting from the evaluation of Eq. (21) (step 4) are then combined according to Eq. (12) to 
give the equivalent 𝛼𝑗

𝑚 coefficients from the NFFT algorithm. The [𝑝 × 2𝑝̂] array is reshaped into a 

[2𝑝̂𝑝 × 1] vector and multiplied with a sparse [2𝑝2 × 2𝑝̂𝑝] array to apply the truncation or 0-padding re-
quired for the second FFT (Eq. (9)), as well as any element reordering for zero-frequency shifting of the 
final FFT. Similarly, the other sparse matrices in the previous steps incorporate any element reordering 

required between each of the FFT operations.  

6.  Finally, the [2𝑝2 × 1] column vector output from step 2 is reshaped back into a [𝑝 × 2𝑝] array and Eq. (9) 

is applied via 𝑝 invocations of the FFT, yielding the filtered far-field signature function 𝑓(𝜃𝑗, 𝜑𝑘). 

The NFFT spherical filter is applied in the present FMBEM model by precalculating and storing the sparse ma-
trices for the NFFT/filtering algorithms, and so at run-time the filter is applied as a series of array reshaping op-
erations (which does not require the array data to be rewritten), sparse matrix-vector products and FFTs.  

3.3 Comparison of Spherical Filtering Algorithms 

Steps 2-5 of the NFFT spherical filter algorithm (Section 3.2.4) must be performed faster than step 2 for the di-
rect spherical filter (Section 3.1.1) for the NFFT algorithm to provide a computational advantage over the direct 
method. The overhead in performing the more numerous computational steps in the NFFT algorithm (each of 
which has a lower algorithmic complexity than step 2 of the direct filter) will determine this ‘cross over’ point with 
respect to the truncation number of the far field signature function, above which the NFFT will provide faster per-
formance. Böhme and Potts reported a cross over point of 𝑝 = 64 and an algorithmic scaling for the NFFT 

spherical filter which is slightly larger than O(𝑝2) (Bohme and Potts 2003). Comparatively, the cross over point 

for the fast spherical filter based on the 1D FMM was reported as 𝑝 = 106 (Jakob-Chien and Alpert 1997), while 
for the fast Legendre transform filter, a cross over point of 𝑝 ≈ 500 was cited in Press et al. (Press, et al. 2007). 
Clearly the exact cross over point for each algorithm will strongly depend on the implementation and program-
ming language employed, as well as the contributions from the lower-complexity terms. Finally, it should be not-
ed that the computational cost of the filtering operations in the high-frequency FMBEM can be small compared 
to the other parts of the algorithm, and so in practice the high-frequency FMBEM can still exhibit an O(NlogN) 

complexity when utilizing the direct filtering algorithm: see, for example, (Chaillat, Bonnet and Semblat 2008).  

4 NUMERICAL RESULTS 

The direct and NFFT spherical filters have both been implemented in MATLAB, and incorporated into a broad-
band Helmholtz FMBEM model. The following subsections compare the algorithmic and memory complexities of 
the different spherical filtering algorithms, and demonstrate the effect of the spherical filtering functions on the 
Helmholtz FMBEM for large-scale acoustic scattering problems. All calculations were performed on a desktop 
workstation equipped with an Intel i7 hexacore CPU (running at 3.30 GHz) and 80 GB of RAM. 

4.1 Comparison of the Direct and NFFT Algorithmic and Memory Complexities 
The algorithmic and memory complexities for the present implementations of the direct and NFFT spherical fil-
tering algorithms are presented in Figure 2 below, for both the interpolation and ‘anterpolation’ (adjoint interpola-

tion, or filtering) operations. The truncation numbers are selected as 𝑝2 = 1.5 ∗ 𝑝1 and 𝑝1 = 1.5 ∗ 𝑝2 for the inter-

polation and anterpolation cases respectively, where 𝑝1 and 𝑝2 denote the start and end truncation numbers, 
respectively. These ratios for the start/end truncation numbers represent typical values for the difference be-
tween the truncation numbers on successive levels of the octree structure for large-scale Helmholtz FMBEM 
problems. The complexity results are shown for the spherical filtering of 250 sets of far field signature functions, 
which might be a typical number of occupied boxes for an arbitrary boundary element mesh on the higher octree 
levels. At lower levels there would be both more sets of expansions and smaller truncation numbers. 
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Figure 2. Comparison of the calculation times (left column) and storage requirements (right column) of 
the direct and NFFT spherical filtering methods for the interpolation (top row) and anterpolation (bot-

tom row) operations. The truncation numbers are specified as 𝑝2 = 1.5 ∗ 𝑝1 and 𝑝1 = 1.5 ∗ 𝑝2 respec-
tively for the interpolation and anterpolation cases, and the results are shown for the filtering of 250 
sets of far field signature functions. 

It can be seen from Figure 2 that both the direct and NFFT algorithms exhibit the expected algorithmic complexi-
ties: being proportional to O(𝑝3) for the direct method and O(𝑝2 log𝑝) for the NFFT filter. In the present imple-

mentation the NFFT algorithm becomes faster than the direct method for 𝑝1 ≈ 250 for the interpolation case and 

𝑝1 ≈ 500 for the anterpolation case. These cross over points are several times larger than those reported in 
Böhme and Potts (Bohme and Potts 2003) for their implementation of the NFFT filter, while the present results 

for the interpolation case are twice as fast as the 𝑝 ≈ 500 cross over point reported in Press et al. for the fast 
Legendre filter (Press, et al. 2007), and are approximately equivalent for the anterpolation case. It should also 
be noted that different settings have been used for the smoothing and smearing operations, while the results 
reported in (Bohme and Potts 2003) are only for the case where 𝑝 = 𝑝̂. These differences, as well as the differ-
ent programming languages and implementations of the algorithms, likely account for the larger cross over point 
in the present work compared to Böhme and Potts (Bohme and Potts 2003). 
 
The memory complexity of the NFFT spherical filtering algorithm appears to have not yet been reported in the 
published literature. The memory storage requirements (that is, the memory required to store the precomputed 
data) for the direct and NFFT spherical filters is presented in Figure 2. The memory footprint of the direct meth-

od scales as O(𝑝3): similar to the computational cost for the direct method. Conversely, the memory footprint for 
the NFFT filtering algorithm is shown to scale as O(𝑝)—a negligible cost—while the maximum instantaneous 
memory used in the algorithm is determined by the refined sampling grid for the Type 1 and Type 2 NFFTs 

(Greengard and Lee 2004). This step requires a temporary array proportional to O(𝑛𝑝) to be created for the 
smeared NFFT operations which, depending of the choice of the oversampling ratio used for the NFFT, can re-
sult in an array which has a larger memory footprint than the sparse matrix for the direct filtering method. How-
ever, this calculation can be split into blocks (i.e. filtering the far field signature functions in subsets) to reduce 
the instantaneous memory footprint of the NFFT, while the sparse matrix for the direct spherical filtering algo-
rithm must be explicitly constructed and stored for the efficient implementation of the direct filter. Furthermore, in 
a parallel implementation of the FMBEM, the precomputed data for the spherical filters must be replicated 
across the worker threads. It can be seen in Figure 2 that this could amount to several GB of data per thread for 
the direct filter algorithm, while the stored data for the NFFT algorithm is negligibly small. Therefore, in the paral-
lel implementation of the FMBEM it may become advantageous to switch from the direct to the NFFT filtering 

algorithm at mid-truncation numbers (𝑝 = 200 or so) to minimise the memory footprint of the filtering operations.  
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4.2 Numerical Results for the Broadband Helmholtz FMBEM Utilising the Direct and NFFT Filters 
The direct and NFFT spherical filtering algorithms have both been incorporated into a broadband Helmholtz 
FMBEM model and are demonstrated for two large-scale acoustic scattering problems. Firstly, the acoustic 

scattering of a 𝑘 = 150 plane wave from a unit radius sphere under a rigid (Neumann) boundary condition is 
considered. The sphere mesh is discretised with 1547088 plane triangular elements with constant unknowns, 
giving approximately 10 elements per wavelength. Selecting the ‘switching’ truncation number as 𝑝 ≈ 200 re-
sults in the filtering operations for the 2 highest octree levels (out of 8 levels for the current FMBEM settings) 
being treated with the NFFT algorithm, while the lower levels are treated with the direct spherical filter. Figure 3. 
compares the real and imaginary components of the total surface pressure as a function of angle from the direc-

tion of the incident field (0° is the backscatter direction), with and without utilising the NFFT spherical filtering 
function to apply the filtering between the upper octree levels. 

 

Figure 3. Comparison of the real (top) and imaginary (bottom) components of the total surface pres-

sure for a  𝑘 = 150 plane wave scattered from a unit radius sphere under a rigid (Neumann) boundary 
condition. The continuous red line, dashed blue line and black markers correspond to the combined 
NFFT/Direct filter FMBEM, Direct-filter only FMBEM and analytic solutions, respectively. 

Figure 3. indicates good agreement between the two FMBEM solutions and the analytic solution: the relative 
error norm with respect to the analytic solution for the NFFT FMBEM was 0.59469%, compared to 0.59466% for 
the FMBEM solution which only used the direct spherical filtering algorithm. The NFFT FMBEM solution re-
quired 1.52hrs to set up and 10.39hrs to solve, while the direct FMBEM solution required 1.73hrs to set up and 
10.51hrs to solve. The total memory storage footprint of the NFFT FMBEM was 15.68GB, compared to 16.05GB 
for the direct-filter only FMBEM solution. The NFFT algorithm thus provides a reduction in both the memory 
storage and computation time for the FMBEM, and will continue to provide more pronounced savings as the 
problem size and truncation numbers increase, i.e. such that more octree levels are treated with the NFFT filter. 
 
Finally, as an application example, the acoustic scattering of a 3kHz plane wave impinging the BeTSSi II gener-
ic submarine pressure hull (Gilroy, et al. 2014) at broadside incidence for a rigid boundary condition is calculat-
ed using the NFFT-accelerated FMBEM: see Figure 4. The outer hull of the BeTSSi II submarine model has a 
total length of 62 m, a main hull diameter of 7 m and is discretised in the present BEM mesh via 1538580 ele-
ments. The NFFT-accelerated FMBEM model required 71 minutes to set up and 6.86hrs to solve using a single 
CPU core. The pressure solution from this FMBEM calculation can be used, for example, to calculate the mono-
static target strength of large-scale objects at high frequencies to compare to the various approximate high-
frequency TS models (i.e. based on Kirchhoff methods or raytracing). 

5 CONCLUSIONS 
This paper has presented a theoretical and computational analysis of the direct and NFFT spherical filtering al-
gorithms used to filter the far field signature functions in the high-frequency FMBEM. Numerical results indicate 
that the present implementation conforms to the algorithmic complexities for each method, while the numerically 
demonstrated memory complexity for the NFFT filter appears to be analysed for the first time in the literature. 
The cross over point at which the NFFT filter becomes faster than the direct method is shown to be slower in the 
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present implementation compared to that for other models in the published literature, while still outperforming a 
fast filtering algorithm based on the Legendre transform by up to a factor of 2. Numerical examples from a 
broadband Helmholtz FMBEM model have demonstrated the advantages of the NFFT spherical filtering algo-
rithm for large-scale problems, while the small memory storage requirements of the NFFT filter indicate that this 
filter may also be beneficial for minimising the memory footprint for parallel implementations of the FMBEM 
where the filtering data must be replicated amongst the workers. Further optimisation of the present implemen-
tation to minimise the cross over point for the NFFT filter will reduce the problem size at which the fast filtering 
algorithm can be employed to accelerate the filtering operations in the broadband FMBEM. 

 

Figure 4. Acoustic scattering of a 3kHz plane wave from the BeTSSi II generic submarine pressure 
hull at broadside incidence.  
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