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ABSTRACT 

A typical approach to data classification based on machine learning algorithms is binary classification. This in-
volves the classifier to be trained using representative data sets provided from two object classes. In reality, da-
ta from one of the classes may be not well-defined or readily available and so the one-class classification tech-
nique is gaining popularity. In this research we apply this method to the problem of classification using active 
sonar echoes from different classes of objects. A one-class classification research tool was developed in 
Matlab

®
 to implement several one-class classification techniques found in literature. The tool was applied to 

three sets of data: simulated, laboratory and at-sea. The performance of the selected classifiers on different da-
ta sets will be discussed in this paper. 

1 INTRODUCTION 
The exercise of classification often involves assigning object samples as training datasets in order to train clas-
sification models, which in turn are then used to discriminate between other object classes. This is typically the 
norm and has been used for building binary and multi-class classification models. However, in many real-world 
situations, it is often difficult to have samples from more than one class or in particular, it may not be possible to 
obtain datasets from both target and non-target classes or, perhaps one may not be properly characterised. In 
these cases traditional binary-classification methods will not achieve their full potential and effectively the prob-
lem reduces to a one-class classification method whereby data from a single class is used to train the classifier.  
 
This method has been used in many cases where the target class is relatively easy to obtain but the outlier 
class is difficult to characterise such as in pattern and image recognition, fault detection, web-page classifica-
tion, credit scoring in finance, document classification, disease detection or person identification based on bio-
metric data (Juszczak et al., 2009). In contrast, outlier class samples can be easily obtained in the ocean 
whereas the target characterisations cannot and in this case, outlier class is often used to train one-class classi-
fiers. Typically undersea outlier data is a combination of clutter, ambient noise, reflections, reverberations or 
scattering from seamounts, which makes studies challenging as there are many unknown parameters contained 
in the outlier dataset. This is why one-class classification yet to be widely adopted in sonar processing areas 
and undersea warfare.  
 
In this paper, a brief review of different one-class classification categories is present in Section 2. Section 3 co-
vers details of three sets of data used in this analysis: simulated, laboratory and at-sea. In section 4 we show 
multiple one-class classifiers implemented in a tool which allows users to select different features potentially 
suitable for a particular dataset. The performance of selected classifiers presented in Section 5 shows that 
these classifiers perform superior to sonar data and finally, conclusion and future work are given in Section 6. 

2 THEORY 
One-class classification algorithms are based on the premise that the object to be identified belongs to a par-
ticular class and all others are rejected as false classifications. The algorithms are developed by either estimat-
ing the probability density function or by fitting a model to the dataset. One-class classifiers can be sub-divided 
into three categories namely: density, reconstruction and boundary.  

 Density based classifiers: the calculations are based on the estimation of the probability density func-

tion (PDF) of the feature values in the complete feature space of the data to the class (Mazhelis, 2006). 

Since there is no second class present, the assumption of a uniform PDF for the second class is ap-

plied.  
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 Reconstruction based classifiers: the calculations are based on the evaluation of a best-fit recon-

struction of an observation vector associated with a model which has been estimated during the training 

phase (Pla et al., 2013). The closer the fit the more likely the best reconstruction vector is achieved. 

 Boundary based classifiers: the calculations are based on a boundary built around the training data. It 

takes into account both the distances between the observation vectors in the test dataset and the ob-

servation vectors of the training dataset and the distances between the observation vectors in the train-

ing set (Mazhelis, 2006). 

3 DATASETS 
 
In this analysis, three sets of data were used – simulated, experimental and at-sea. Simulated data was gener-
ated using a numerical scattering computer model whilst the experimental data was collected in a laboratory as 
scaled underwater measurements and finally, at-sea data was collected from trial activities. Input data of the 
training and test datasets is called “signal” of form MxN matrix in Matlab® format where M represents snippet 
time series while N represents number of snippets (Trojan, Kouzoubov, 2007)  

3.1 Simulated Data 
A numerical model was used to produce acoustic scattering data for a concrete cylinder and a metal object of 
similar size. Echo snippets were obtained from 361 different aspect angles. The duration of each echo was 901 
time samples. The time series plots of target and non-target simulated data are given in Figure 1. 

3.2 Experimental Data 
Acoustic scattering data of an actual concrete cylinder and a metal object were collected from laboratory tank 
measurements. These physical objects had the same geometry and material properties as their mathematical 
model counterparts. The 8192x361 dataset obtained consisted of echoes taken at 361 aspect angles each of 
length 8192 time samples. The time series plots of target and non-target experimental data are shown in Figure 
2. 

3.3 At-sea Data 
The data used here was collected from the Clutter09 at-sea trial which was conducted in the Malta Plateau 
channel, between Malta and Sicily in 2009. Backscattered echoes from an oil rig, wellhead, two passive acous-
tic targets and two echo repeaters (labelled here as Oilrig, Wellhead, PAT1, PAT2, Echo1 and Echo4 respec-
tively) were treated as targets whilst all other echoes were considered as false-alarms or clutter. The transmit 
signal was a Linear Frequency Modulation (LFM) up-sweep chirp of duration 1.1 seconds from 500 to 3500Hz 
every two minutes. The beam-formed data was matched filtered and normalised before the detection and ex-
traction processes were performed. Echo snippets were then generated in a Wave Audio File format of duration 
of 0.5 seconds before and after the respective regions of interest. An in-house Matlab

®
 program was developed 

to convert echo snippets from wav format to Matlab
®
 format and the dataset further was reduced to 1000 time 

samples before and after the detection point. The time series plots of the target and non-target data are pre-
sented in Figure 3. 
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Figure 1: Plots of simulated time-series snippets. 

 

Figure 2: Plots of experimental time-series snippets. 
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Figure 3: Plots of sea trial time-series snippets. 

4 CLASSIFICATION TOOLS 
The One-Class Classification Research Tool (OCCRT), which allows the user to enter parameters or to select 
pre-defined features, was used to visualise the results. OCCRT is a research tool for testing the performance of 
feature and one-class classification algorithms of time series echoes. This tool is a modified version of the Bina-
ry Classification Research Tool (BCRT), which has been developed in Matlab

®
 and includes a Graphical User 

Interface for user-friendly selection of features and classification algorithms (Kouzoubov, Nguyen, 2011). 
OCCRT allows the user to specify the training dataset (either target or outlier). After loading the files, OCCRT 
combines the target and outlier echoes together to form the test dataset. Selection of features, parameters and 
classification algorithms within OCCRT are the same as BCRT.  
 
A confusion matrix is a table that is often used as the quantitative metric to measure the performance of a clas-
sification method. It visualises the percentages of false positives, false negatives, true positives and true nega-
tives of a particular classifier. Another method is to determine the Area Under the ROC Curve (AUC) coefficient. 
This value is ranging from 0 to 1. Therefore, a 100% of either true negatives or true positives or an AUC of 1 is 
considered as a perfect classification. To set a performance benchmark here, any classification that achieves an 
AUC value greater than 0.80 or a true negatives or true positives percentage value greater than 80% is consid-
ered to have good performance.  
 
A total of 60 characterisation features are available for selection within OCCRT which are divided into three 
sets:  

Set 1: time-domain matched filter series and frequency- domain power spectra; 

Set 2: Short-Time-Fourier Transform (STFT) of the matched filtered time series features calculated us-

ing the STFT approach on each snippet for a number of STFT frames; and 

Set 3: STFT based on the Gamma-Tone filtered time-series (Ellis, 2009). 

A list of the 60 features can be found in Table 1. To avoid adversely affecting the training phase, it is essential to 
select the features that are relevant to the test dataset being analysed. This process can be performed by using 
either ranking or subset selection techniques to remove any irrelevant features (Jeong et al., 2012). In this par-
ticular case, the ranking technique was chosen.  
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From the results shown in Table 2 one can see that three sets of features performed outstandingly well with the 
results very close to each other. Feature sets 1 and 2 have been selected due to set 3 features requiring more 
computational time. 
 
Nine classifiers, as used by Tax (Tax, 2013) in the open literature, were implemented during the benchmarking 
process. Each classifier had a set of required parameters such as number of clusters, number of iterations, 
number of attempts or number of prototypes. All classification algorithms used here required a rejection thresh-
old factor and by default, was set to 0.10. A snapshot of the results is shown in Figure 6 highlighting the perfor-
mance of the nine classifiers in both confusion matrix and AUC measures.  

Table 1: List of features. 

Set 1 features Set 2 features Set 3 features 

time shape mean peak signal to noise ratio energy centroid 

time shape variance average signal to noise ratio energy roughness 

time shape skewness time of peak signal to noise ratio duration 

time shape kurtosis frequency of peak signal to noise 

ratio 

maximum sub-band attack 

time amplitude mean mean frequency frequency of maximum sub-band attack 

time amplitude variance rms bandwidth mean sub-band attack 

time amplitude skewness frequency skewness minimum sub-band attack 

time amplitude kurtosis frequency kurtosis frequency of minimum sub-band attack 

frequency shape mean mean time maximum sub-band decay 

frequency shape variance rms time frequency of maximum sub-band decay 

frequency shape skewness temporal skewness mean sub-band decay 

frequency shape kurtosis temporal kurtosis minimum sub-band decay 

frequency amplitude mean power standard deviation frequency of minimum sub-band decay 

frequency amplitude variance power standard deviation in time maximum sub-band synchronicity 

frequency amplitude skewness power standard deviation in  

frequency 

frequency of maximum sub-band syn-

chronicity 

frequency amplitude kurtosis power skewness mean sub-band synchronicity 

temporal centroid power skewness in time minimum sub-band synchronicity 

 power skewness in frequency frequency of min sub-band synchronicity 

 power kurtosis  

 power kurtosis in time  

 power kurtosis in frequency  

 attack rate  

 decay rate  

 spectral flux  

 temporal flux  

 

5 RESULTS 
To test the performance of the nine one-class classifiers, two types of test datasets were used - balanced and 
imbalanced. For the balanced test dataset, the number of target snippets equalled the number of outliers whilst 
the imbalanced dataset had the number of outlier snippets was much greater than the number of targets. 
 
Table 3 and Table 4 show the classification results for these cases using OCCRT as applied to three datasets 
with differing sources - most of the classifiers gave AUC values greater than 0.90 and many of them achieved 
the value of 1.0 indicating a perfect classification. Table 5 and Table 6 show the overall performance of the 
classifiers using the confusion matrix approach which again gives a level of confidence in the technique and in 
particular, the density classification algorithms earn excellent classification accuracy as the confusion matrix 
values are above 90%. Here, a few of the classifiers achieved a perfect score. Contrary to this, the Local Outlier 
Fraction classifier did not perform well particularly, in the case of imbalanced classes using experimental target 
snippets as training. This is due to some similarities in density and size of both target and outlier data as this 
method is an outlier detection therefore using outlier data as training is the best option. 
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6 CONCLUSIONS AND FUTURE WORK 
This paper examined nine classifiers using a one-class classification approach and presented the results of the 
performance tests of the classifiers. The performance of the classifiers was analysed using simulated, experi-
mental and at-sea data. Most of the classifiers achieved an AUC of over 0.90 and a corresponding confusion 
matrix value of above 90.0% with an exception of the Local Outlier Fraction classifier. This is a promising finding 
as potentially these classification algorithms  lend themselves to practical applications because they are based 
on the fact that non-target related training data is readily available, removing the need to collect often difficult to 
obtain target training data. In conclusion, the performance of the nine one-class classification algorithms de-
pends on the type of training and test datasets, feature selection and the degree of imbalance between the da-
tasets. The performance metric results show promise for potential active sonar applications. 
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Figure 4: Snapshot of the results of the nine classifiers 
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Table 2: Ranking features using Sea trial data. 

 
Features set 1 

 
 Features set 2 

  
Features set 3 

(Gamma-tone Filters) 

   

 
non-target as 
training class  

target as train-
ing class  

non-target as 
training class  

target as train-
ing class  

non-target as 
training class  

target as train-
ing class 

 
Target Outlier 

 
Target Outlier 

 
Target Outlier 

 
Target Outlier 

 
Target Outlier 

 
Target Outlier 

Classifiers % % 
 
% % 

 
% % 

 
% % 

 
% % 

 
% % 

Density                  

MCD Gaussian 100 90.4  90.4 100  100 90.4  90.4 100  100 90.4  90.4 100 

Mixed Gaussian 100 89.6  89.6 100  100 89.6  89.6 100  100 89.6  89.6 100 

Naïve-Parzen 100 89.6  89.6 100  100 89.6  89.6 100  100 89.6  89.6 100 

Reconstruction                  

Auto Encoder 100 90.4  90.4 99.1  100 90.4  90.4 100  100 90.4  90.4 99.1 

Self-Organising Map 100 90.4  90.4 100  95.7 90.4  90.4 100  99.1 90.4  90.4 100 

PCA 100 90.4  90.4 100  99.1 90.4  90.4 99.1  100 90.4  90.4 93.9 

Boundary                  

K-NN 100 100  100 100  94.8 100  100 99.1  88.7 100  100 99.1 

Min. Spanning tree 97.4 100  100 98.3  93.9 100  100 98.3  88.7 100  100 97.4 

Local Outlier Fraction 93.9 94.8  97.4 90.4  87.8 95.7  97.4 99.1  68.7 98.3  98.3 98.3 

                  

 

Table 3: Area Under the ROC Curve results – balanced classes. 

 Simulated data  
Experimental 

data  Sea trial data 

   

 

non-
target 

as train-
ing 

class 

 

target 
as 

train-
ing 

class 

 

non-
target 

as 
train-
ing 

class 

 

target 
as 

train-
ing 

class 

 

non-
target 

as 
train-
ing 

class 

 

target 
as 

train-
ing 

class 

 
Features set 1 

 
Features set 1 

 
Features set 1 

 
AUC 

 
AUC 

 
AUC 

 
AUC 

 
AUC 

 
AUC 

Classifiers            

Density            

MCD Gaussian 0.96  0.94  0.98  0.97  0.99  1.00 

Mixed Gaussian 1.00  1.00  1.00  1.00  1.00  1.00 

Naïve-Parzen 0.96  0.99  0.97  0.99  1.00  1.00 

Reconstruction            

Auto Encoder 0.94  0.98  1.00  0.93  1.00  1.00 

Self-Organising 
Map 

0.97  0.99  0.99  0.97  1.00  1.00 

PCA 0.93  0.99  0.99  0.98  1.00  1.00 

Boundary            

K-NN 1.00  1.00  1.00  1.00  1.00  1.00 

Min. Spanning 
tree 

1.00  1.00  1.00  1.00  1.00  1.00 

Local Outlier 
Fraction 

0.98  0.99  1.00  0.99  0.98  1.00 
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Table 4: Area Under the ROC Curve results – imbalanced classes. 

 Simulated data  
Experimental 

data  Sea trial data 

   

 

non-
target 

as train-
ing 

class 

 

target 
as 

train-
ing 

class 

 

non-
target 

as 
train-
ing 

class 

 

target 
as 

train-
ing 

class 

 

non-
target 

as 
train-
ing 

class 

 

target 
as 

train-
ing 

class 

 
Features set 1 

 
Features set 1 

 
Features set 1 

 
AUC 

 
AUC 

 
AUC 

 
AUC 

 
AUC 

 
AUC 

Classifiers            

Density            

MCD Gaussian 0.98  0.99  0.99  0.97  0.99  1.00 

Mixed Gaussian 1.00  1.00  1.00  1.00  1.00  1.00 

Naïve-Parzen 0.96  0.99  0.97  1.00  1.00  1.00 

Reconstruction            

Auto Encoder 0.95  0.98  1.00  0.95  0.99  1.00 

Self-Organising 
Map 

0.99  1.00  1.00  0.92  1.00  1.00 

PCA 0.97  0.99  1.00  0.99  1.00  1.00 

Boundary            

K-NN 1.00  1.00  1.00  1.00  1.00  1.00 

Min. Spanning 
tree 

1.00  1.00  1.00  1.00  1.00  1.00 

Local Outlier 
Fraction 

0.95  0.91  0.99  0.53  0.96  1.00 
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Table 5: Confusion matrix results – balanced classes. 

 Simulated data 
 

Experimental data 
 

Sea trial data 

   

 

non-target 
as training 

class 
 
target as 

training class  
non-target as 
training class  

target as 
training class  

non-target as 
training class  

target as train-
ing class 

 
Features set 1 & 2 

 
Features set 1 & 2 

 
Features set 1 & 2 

 
Tar-
get 

Out-
lier  

Tar-
get 

Out-
lier  

Tar-
get 

Out-
lier  

Tar-
get 

Out-
lier  

Tar-
get 

Out-
lier  

Tar-
get 

Out-
lier 

Classifiers % % 
 
% % 

 
% % 

 
% % 

 
% % 

 
% % 

Density                  
MCD  
Gaussian 

91.4 90.0  90.0 92.0  96.4 90.0  90.0 98.6  100 90.4  89.6 100 

Mixed  
Gaussian 

99.7 90.0  90.0 99.7  100 90.0  90.0 100  100 89.6  89.6 100 

Naïve-Parzen 89.2 90.0  90.0 97.0  93.4 90.0  90.0 99.2  100 89.6  89.6 100 
Reconstruc-
tion 

                 

Auto Encoder 86.7 90.0  90.0 94.7  98.1 90.0  90.0 79.8  100 90.4  91.3 100 

Self Organis-
ing Map 

92.5 90.0  90.0 98.1  97.0 90.0  90.0 93.1  100 90.4  90.4 100 

PCA 88.1 90.0  90.0 95.6  97.8 90.0  90.0 97.2  100 90.4  91.3 100 

Boundary                  

K-NN 95.6 100  100 99.4  96.7 100  100 86.1  96.5 100  100 100 

Min. Span-
ning tree 

92.2 100  100 93.6  96.7 100  100 83.9  96.5 100  100 99.1 

Local Outlier 
Fraction 

91.1 97.0  97.0 93.6  99.7 96.7  97.2 93.9  87.0 96.5  97.4 98.3 

 
Legend:  

Excellent 
k>=90% 

Good 
90%>k>=80% 

Acceptable 
80%> k > 70%  

Poor 
K<= 70% 

 

Table 6: Confusion matrix results – imbalanced classes. 

 Simulated data 
 

Experimental data 
 

Sea trial data 

   

 

non-target 
as training 

class 
 
target as 

training class  
non-target as 
training class  

target as 
training class  

non-target as 
training class  

target as train-
ing class 

 
Features set 1 

 
Features set 1 

 
Features set 1 

 
Tar-
get 

Out-
lier  

Tar-
get 

Out-
lier  

Tar-
get 

Out-
lier  

Tar-
get 

Out-
lier  

Tar-
get 

Out-
lier  

Tar-
get 

Out-
lier 

Classifiers % % 
 
% % 

 
% % 

 
% % 

 
% % 

 
% % 

Density                  
MCD  
Gaussian 

98.3 90.0  90.0 93.6  97.0 90.0  90.0 100  100 90.0  90.0 100 

Mixed  
Gaussian 

100 90.0  90.0 100  100 90.0  90.0 100  100 90.0  90.0 100 

Naïve-Parzen 90.0 90.0  90.0 94.7  93.6 90.0  90.0 100  100 90.0  90.0 100 
Reconstruc-
tion 

                 

Auto Encoder 86.1 90.0  90.0 93.6  98.6 90.0  90.0 68.7  100 90.0  90.0 100 
Self Organis-
ing Map 

98.1 90.0  90.0 99.2  98.1 90.0  90.0 77.6  100 90.0  90.0 100 

PCA 90.9 90.0  90.0 98.1  100 90.0  90.0 98.6  100 90.0  90.0 100 

Boundary                  

K-NN 84.2 100  100 84.8  95.8 100  100 42.4  93.9 100  100 99.1 

Min. Span-
ning tree 

80.9 100  100 82.0  95.3 100  100 36.0  93.9 100  100 99.1 

Local Outlier 
Fraction 

84.2 96.7  98.3 71.2  97.5 95.0  95.0 32.1  71.3 93.3  98.3 99.1 
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