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ABSTRACT 
The radiation of sound from the open end of pipes and ducts is a common problem in environmental noise control. 
Examples include radiation from ductwork in heating, ventilation and air-conditioning systems, noise emissions 
from exhaust stacks in industrial power plants, as well as radiation from turbofan engines. These open duct ter-
minations represent a relatively simple mechanical structure; however, the acoustics is significantly more compli-
cated and this is especially true when a mean gas flow is present. This article presents an efficient numerical 
model suitable for analysing sound radiation from an unflanged duct termination, and introduces a method for 
including a uniform mean fluid flow in the exterior region away from the termination. An example of sound radiation 
from a turbofan engine is then investigated. 

1 INTRODUCTION 
Many applications in acoustics involve the propagation of sound in pipes or ductwork. The sound source is nor-
mally a fluid moving device such as a fan or power generator and this moving fluid is almost always expelled to 
the atmosphere through an open duct termination. This facilitates the easy removal of the fluid, however the open 
end also impacts on the acoustics of the duct system because the change in impedance at the termination both 
reflects and scatters an incident sound wave. Therefore, open duct terminations can significantly impact on the 
acoustics of a system and they should be included in the calculation of system performance. Furthermore, the 
role they play in scattering sound is also important when measuring noise radiation and meeting environmental 
noise regulations. Accordingly, this article examines the problem of noise radiation from open duct terminations 
and discusses a numerical approach to calculating sound reflection and scattering. The article also develops a 
method for adding a uniform mean fluid flow in the region outside of the duct termination. 
 
Common examples of open duct terminations include the exhaust and intake systems for power generation, such 
as gas turbines and turbofans used in aircraft, as well as internal combustion engines. Other examples include 
heating ventilation and air-conditioning (HVAC) systems. The noise emitted by these applications is normally 
quantified using a multiple number of measurements undertaken in the surrounding environment. These meas-
urements must account for the directionality of the sound pressure field, and this is linked to the noise source as 
well as the scattering effect of the open termination. Accordingly, understanding the way in which sound radiates 
from terminations is important in achieving an optimised acoustic design for a system. The radiation of sound from 
open ended duct terminations presents a classical problem first studied by Rayleigh that appears, at least at first 
glance, to be reasonably straightforward. However, in reality open ended terminations are a complex problem and 
they do not lend themselves to straightforward analytic methods. For example, the most well-known analytic work 
on the subject is by Levine and Schwinger (1948), who relied on a Wiener-Hopf approach to study an unflanged 
duct. Alternative methods normally rely on some form of numerical discretisation and this requires one to enforce 
the Sommerfeld radiation condition at infinity. This is readily achieved using the boundary element method (BEM), 
and Dalmont et al. (2001) used boundary elements to examine sound radiation from a finite length unflanged duct. 
Burnett (1994) investigated an alternative approach using infinite elements to discretize the outer region, and then 
compared the computational time of this method with the BEM. Burnett reported that the infinite element method 
is two or three orders of magnitude faster than the BEM for the same accuracy. However, infinite elements cannot 
be placed close to regions of high modal scattering and so it is often necessary to place them a long way from 
the outlet of a duct termination, especially at higher frequencies. This makes infinite elements less attractive for 
larger problems and higher frequencies. The BEM also becomes less efficient when regions of internal non-uni-
formity are present, which is the case when non-uniform fluid flow is present in a duct system. Therefore it is 
common to focus on the use of finite element based methods when studying radiation from open ducts, especially 
when mean flow is present, see for example the study of turbofan engines by Astley et al (2011). The finite element 
method does, however, present the problem of enforcing the Sommerfeld radiation boundary condition. To ad-
dress this, one may use infinite elements, even when mean flow is present, see Eversman (1999), or the DtN 
method which applies the boundary conditions locally on an artificial surface surrounding the outlet of the pipe 
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Givoli (2004). Perfectly matched layers (PML) can also be used in the outer domain, as these damp down out-
wards going waves; however, PMLs are computationally expensive as one needs to mesh a large outer domain, 
especially at higher frequencies.  
 
This article introduces an alternative numerical method developed by the authors for analysing sound radiation 
from open ended duct terminations, see Duan and Kirby (2012). It is shown in this article that this method may be 
extended to include the effects of mean fluid flow, so that it is applicable to a wider range of noise control problems. 
Moreover, the method has the advantage of working over a wide frequency range and it can accommodate ge-
ometries with an arbitrary cross-section, so that it can readily be applied to rectangular as well as circular geom-
etries. The method is also sufficiently general to be used in the study of complex duct terminations, such as those 
found in HVAC systems, although this type of problem will not be discussed here. Instead, the article will focus 
on introducing mean flow into a model for sound radiation from a turbofan engine. This example problem is chosen 
because it provides a relatively straightforward flow field in the regions away from the end of the pipe. 

2 THEORY 
The numerical method presented here is based on a hybrid modal-finite element approach. The basic principles 
behind this hybrid approach were discussed by Kirby (2008), and it is flexible enough to be used in many different 
applications in guided waves, see for example Kirby et al. (2013) and Duan et al. (2016). The method relies on 
the use of modal solutions for uniform regions, and a full finite element discretisation for non-uniform regions. 
Thus, for uniform regions the acoustic pressure is expanded as an infinite set of eigenmodes and, crucially, ex-
pansions can be obtained for exterior regions using Hankel functions for a two-dimensional problem, and spherical 
Hankel functions for a three-dimensional problem. Moreover, this approach has the advantage of automatically 
satisfying the Sommerfeld radiation condition because the sound pressure in the exterior region is written as a 
set of outward propagating modes and the amplitudes of the reflected modes are set equal to zero. However, the 
use of Hankel basis functions normally relies on a regular geometry such as a circle (two dimensions), or a sphere 
(three dimensions). Of course, regular geometries do not appear for an open end, see for example the truncated 
circle in Figure 1. Thus, the key challenge when applying a hybrid approach to open ended ducts is obtaining a 
modal basis for the exterior scattering problem. It was shown by Duan and Kirby (2012) that this can be accom-
plished provided the sound field in the exterior region is separable, and this method is reviewed here first for zero 
mean flow, and then the addition of flow is discussed in the section that follows. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Geometry of problem, with sound incident in the position ݖ direction region 1, and a mean flow Mach 
number M in the negative ݖ direction. 

2.1 No mean flow 
In the absence of mean flow, the governing wave equation for region ݍ	ሺݍ ൌ 1,2, or	3ሻ, is given as 

ݍ′݌2׏ െ
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ݍ′݌2߲

2ݐ߲
ൌ 0, (1) 

where ݌′ is pressure, ݐ is time, and ܿ଴ is the speed of sound in the fluid. For the uniform duct, the pressure is 
expanded over an infinite set of eigenmodes, to give 
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Here, ݎ, ,ߠ is time, ߱ is the radian frequency, ݇଴ ݐ ,form a cylindrical co-ordinate system ݖ ൌ ߱ ܿ଴⁄  and ݅ ൌ √െ1. In 
addition, for mode ሺ݉, ݊ሻ, Φሺݎሻ is the eigenvector and ߣ the eigenvalue, with F௠,௡ and A௠,௡ modal amplitudes.  
 
The key challenge for region 3 is obtaining an eigenexpansion for a truncated circle in two dimensions, or a 
truncated sphere, or cone, in three dimensions. To achieve this, the sound pressure in region 3 is written as 

,ݎᇱଷሺ݌ ,ߠ ߮; ሻݐ ൌ ∑ B௠Υ௠ሺݎሻΨ௠ሺߠ, ߮ሻ݁௜ఠ௧ஶ
௠ୀ଴ . (3) 

Here, ݎ, ,ߠ ߮ form a spherical co-ordinate system in region R3, and B௠ is the modal amplitude. The sound pressure 
field is separated into a radial component Υ௠ and a transverse component Ψሺߠ, ߮ሻ. This separation is crucial to 
writing the outer sound pressure field as a series of outgoing modes, which then allows the exact implementation 
of the Sommerfeld radiation condition (by setting the modal amplitude for inward travelling waves equal to zero). 
Substituting Eq. (3) into the governing wave equation, and separating variables yields 

Υ௠ሺݎሻ ൌ ݄ఙ೘
ሺଶሻሺ݇଴ݎሻ, (4) 

where ݏ௠ଶ ൌ ௠ߪ௠ሺߪ ൅ 1ሻ and  

ఏఝ׏
ଶ Ψሺߠ, ߮ሻ ൅ ,ߠଶΨሺݏ ߮ሻ ൌ 0. (5) 

Thus, one first solves the eigenproblem in Eq. (5) to find ݏ and then the radial displacement is found from Eq. (4), 
where ݄ఙ೘

ሺଶሻ is a spherical Hankel function of the second kind, of order ߪ௠. Equation (5) is an eigenproblem over 
the outer surface of region R2, which is a one dimensional problem for a circle, and a two dimensional problem for 
a cone, which is not difficult to solve and does not take up too much computer memory. Following the solution of 
the respective eigenproblems in regions R1 and R3, the only unknown variables in Eqs. (2) and (3) are the modal 
amplitudes. These are obtained following the solution of the scattering problem, and this requires the modal so-
lutions to be joined to the finite element discretization in region R2. This is implemented by enforcing continuity of 
pressure and normal velocity over the interface between each region Γ஺	 and Γ஻. This process is described in detail 
in the article by Duan and Kirby (2012), and following this one obtains a linear system of equations that can be 
solved to find the unknown modal amplitudes and the acoustic pressure. To quantify the influence of the open 
end, an energy balance is carried out and the transmission loss (TL) is defined as the ratio of the incident to 
transmitted sound power, which gives 

TL ൌ െ10log10 ൤
1

݇0
2

∑ H݉|݉ܤ|
ݎݐܯ2

݉ൌ0

∑ λ݉I݉|݉ܨ|
ܿ݊݅ܯ2

݉ൌ0

൨ (6) 

where, ܯ௜௡௖ and ܯ௧௥ denote the number of cut-on modes for the incident and transmitted waves, respectively; and 
I௠ ൌ ׬ |Φ௠ሺݎ, ሻ|ଶߠ ݀Γ஺ and H௠ ൌ ׬ |Ψ௠ሺߠ, ߮ሻ|ଶ ݀Γ஻. 

2.2 Addition of Mean flow 
The presence of a mean gas flow is common in most applications. However, the addition of flow into this numerical 
model is not straightforward and so only a simple mean flow profile is considered in this study. This assumes a 
mean flow of velocity v௭ is incident normal to the plane of the pipe, so that it is parallel to the ݖ axis and in a 
direction from right to left, see Fig. 1. That is, the mean flow velocity is defined at ݖ ൌ ൅∞ as ܞ ൌ ሾ0,0, െv௭ሿ, with 
a Mach number ܯ௭ ൌ v௭ ܿ଴⁄  is defined in the outer region. This flow then impinges upon the duct, with some flow 
going into the duct, and some flow around the duct. This type of velocity profile is seen in turbofan applications, 
see for example Eversman (1999). Furthermore, it is necessary for the velocity profile to be uniform in the outer 
region so that the acoustic variables remain separable and one may then expand the pressure as a set of propa-
gating eigenmodes in the same way as before. Of course, the use of the finite element discretisation in region 2 
is designed to allow for more complex flow patterns and so it is assumed that any complex flow patterns are 
restricted to this region only. Furthermore, the static potential flow field is calculated independently of the acoustic 
field, so that the mean flow velocity field is obtained first, and this is then substituted into the acoustic wave 
equation to solve for the acoustic pressures. To obtain the flow field, only a simplified potential flow solution is 
used here as the focus remains on obtaining the acoustic solution. Accordingly, in the discussion that follows, it 
is assumed that the potential velocity field has been solved first, and the values obtained are then added into the 
acoustic equations. The governing wave equation when flow is present is then given by Pierce (1990):  
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׏ ∙ ሺߩ଴׏߶ሻ െ ଴ߩ ቀ
డ

డ௧
൅ ܞ ∙ ቁ׏ ଵ

௖బ
మ ቀ

డ

డ௧
൅ ܞ ∙ ߶ቁ׏ ൌ 0. (7) 

Here, ߩ଴ is the density of the fluid, and ߶ is a velocity potential defined as ߶ ൌ െߩ଴ሺ߲ ⁄ݐ߲ ൅ ܞ ∙  ሻ߶. To implement׏
the hybrid method in the same way as for the no flow case, it is necessary to obtain a separable solution to the 
governing wave equation in region R3. To accomplish this, a Lorenz transformation is used, and assuming a 
uniform flow in region R3, with ߚ ൌ ඥ1 െܯ௭

ଶ, this gives  

ܺ ൌ ݔ ⁄ߚ ܭ , ൌ ݇ ⁄ߚ , and ܶ ൌ ݐߚ ൅ܯ௭ܺ ܿ଴⁄ . (8) 

This delivers a revised modal expansion for region R3 of the form,  

߶ଷሺݎ, ,ߠ ߮ሻ ൌ ߰ଷሺܴ, Θ, ߮ሻ݁௜௄ெ೥ோୡ୭ୱ஀. (9) 

where tanΘ ൌ ܴߚ and ߠtanߚ ൌ ඥ1ݎ െܯ௭
ଶsinଶߠ. This shift in co-ordinates then allows the governing equation in the 

outer region to be written as  

ଶ߰ଷ׏ ൅ ଶ߰ଷܭ ൌ 0 (10) 

which delivers a (separable) Helmholtz Equation for region R3. Following the approach in the previous section, 
this may be solved using an expansion for ߰ଷ of the form 

߰ଷሺܴ, Θ, ߮ሻ ൌ ∑ ௠݄ఙ෥೘ܤ
ሺଶሻሺܴܭሻϑ௠ሺΘ,߮ሻஶ

௠ୀ଴ . (11) 

The values of ߪ෤௠ and ϑ௠ are then found in the same way as before, but this time in the shifted co-ordinates. 
Following this, the modal amplitudes and velocity potential is found in each region using a finite element mesh in 
region R2, and the usual modal expansion (with flow) in region R1.  

3 RESULTS AND DISCUSSION 
The radiation problem is solved here for a pipe of circular cross-section, which after taking advantage of symmetry 
enables a solution to be obtained in two dimensions only. This is achieved by separating the sound field in region 
3 into two components, so that as Ψ௠ሺߠ, ߮ሻ ൌ Ψ෩௠ሺ߮ሻ݁ି௜௡ఏ, where the angular dependence in the ߠ direction maps 
onto the eigenexpansion chosen in region 1. This then enables a two dimensional discretisation of the problem in 
region 2 and a one dimensional discretisation over Γ஺ and Γ஻. In the examples presented here, quadratic line, 
triangular and rectangular elements are used. Following solution of the problem, post-processing enables the 
sound pressure field to be obtained for the entire region, and in Fig. 2 this is illustrated for an example problem 
with a planar incident sound field (ܨ଴,଴ ൌ ௠,௡ܨ 	,1 ൌ 0, for ݉ ൐ 0 and ݊ ൐ 0). Here, the radius of the inlet duct is 
0.05 m, and the sound pressure distribution is shown at 400 Hz with ܿ଴ ൌ 343.2244 m/s. 
 
Figure 2 plots absolute value of the sound pressure |݌|, and the boundary Γ஻ is shown on the diagram as a white 
dashed line. This figure clearly shows that high levels of energy are reflected back into the duct, which causes a 
strong standing wave to form in the duct and a relatively quick drop in the sound pressure level away from the 
open end. It is also noticeable that the sound transmitted away from the open end is close to planar at about two 
to three times the duct radius. 
 
In Fig. 3 the excitation frequency is increased to 4 kHz, although a plane wave incident sound field is maintained. 
It is clear that when the frequency is increased above that of the first cut-on mode in region 1, the energy in the 
duct largely escapes from the open end. This lowers the sound transmission loss of the open end, and the energy 
is seen to “beam” out of the duct and deliver relatively high sound pressure levels directly in front of the open end. 
However, it is also seen that high pressure is localised close to the pipe exit and this effect may potentially be 
important in the design of treatments for noise from open ends, for example those used in HVAC systems. Figure 
3 also shows that for plane wave excitation a shadow zone is still present when one moves in the transverse 
direction away from the duct exit plane. This delivers a highly directional sound field. Figure 3 is also helpful in 
illustrating the seamless continuity that can be obtained in the sound pressure field, so that if one removes the 
white dashed line from Fig. 3 it would not be possible to identify the join between the finite element region and the 
outer modal expansion. 
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Figure 2: No flow. Magnitude of acoustic pressure |݌| for plane wave excitation in circular duct at 400 Hz. 

 

Figure 3: No flow. Magnitude of acoustic pressure |݌| for plane wave excitation in circular duct at 4 kHz.  

Figures 2 and 3 illustrate the influence of frequency on the transmission of sound through the open end of a duct. 
This can be quantified in the form the transmission loss TL, which is defined in Eq. (6). Duan and Kirby (2012) 
report the following expressions obtained using this approach: for an unflanged circular duct 

TL ൌ 10logଵ଴ ቂ1 ൅
ଵ

ሺ௞బ௔ሻమ
ቃ. (12) 

where ܽ is the duct radius. And for an unflanged rectangular duct 

TL ൌ 10logଵ଴ ቂ1 ൅
଴.ଷଽ଴ଽு

ሺ௞బ௔ሻమ
ቃ, (13) 

where the rectangular duct has dimensions 2ܽ ൈ 2ܾ and ܪ ൌ ܽ ܾ⁄  with ܪ ൒ 1. 
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The TL values reported above, and the sound pressure plots reported so far, rely on a planar incident sound field. 
However, in practice it is common to encounter multi-modal excitation, and it is well known that turbomachinery 
generates tonal as well as broad-band noise. It is, therefore, interesting to investigate the behaviour of higher 
order incident modes, and these are chosen here to be circumferential modes, so that ݉ ൌ 0 and ݊ ൐ 0. Accord-
ingly, in Figure 4, the sound pressure distribution for the mode (0,2) is shown, and here one can see that the 
energy in the duct is now concentrated towards the outer wall, and this is refracted by the pipe termination. This 
leads to higher sound pressure levels being found at larger angles to the centreline, as well as in the shadow 
region of the duct. 

 

Figure 4: No flow. Magnitude of acoustic pressure |݌| for multi modal excitation (݊ ൌ 2) in circular duct at 6 kHz. 

The sound pressure field seen in Figure 4 generates a more complex directivity pattern, and this is shown in Fig. 
5 where the pressure pattern is compared at an outer radius of 0.2 m (the dashed white line) for the two planar 
excitations in Figs. 2 and 3, and the higher order mode in Fig. 4.  

 
Figure 5: No flow. Magnitude of acoustic pressure |݌| for a circular duct at ݎ ൌ 0.2	m. 
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One can see in Fig. 5 that at 400 Hz the relative radiated sound pressure level is low, as energy is reflected back 
by the pipe duct end, whereas at higher frequencies energy is permitted to escape from the duct. Moreover, Fig. 
5 illustrates the potential complexity of the pressure patterns for an open-ended duct, and if energy is propagating 
in a number of incident eigenmodes then these patterns can combine to produce more complex distributions at 
higher frequencies, although the exact way in which these patterns combine will depend on the sound source. 
The behaviour illustrated in Fig. 4 is particularly relevant to turbines and those turbofan engines found in aircraft. 
This is because these applications have large numbers of blades and this can transfer energy into very higher 
order circumferential, or spinning, modes. This behaviour can be seen by increasing the frequency (relative to the 
duct radius), and here the frequency is increased to 12 kHz so that one drives the mode ݉ ൌ 0	and	݊ ൌ 9. The 
resulting sound pressure field is shown in Fig. 6 and here one can see that sound radiates at an even higher angle 
to the centreline than seen previously. Moreover, some energy is trapped in the duct, even at these high frequen-
cies, although significant levels of energy are still likely to escape. 

 
Figure 6: No mean flow. Magnitude of acoustic pressure |݌| for excitation of single  

higher order mode (݊ ൌ 9) in circular duct at 12 kHz.  

In Fig. 7, the effect of mean flow is added to the problem studied in Fig. 6. The mean flow has a Mach number of 
௭ܯ ൌ 0.3 incident on the duct in the negative ݖ direction. It can be seen that the mean flow changes the directivity 
pattern, so that the magnitude of the sound pressure increases outside of the pipe. This effect is shown in more 
detail in Fig. 8, where the pressure patterns are compared with and without flow at an outer radius of 0.2 m. 

 
Figure 7: Mean flow ܯ௭ ൌ 0.3. Magnitude of acoustic pressure |݌| for excitation of single  

higher order mode (݊ ൌ 9) in circular duct at 12 kHz.  
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Figure 8: Magnitude of acoustic pressure for excitation of single higher order mode (݊ ൌ 9) 

in circular duct at 12 kHz.             , ܯ௭ ൌ ௭ܯ ,            ,0 ൌ 0.3  

Finally, it is interesting to compare the results obtained with flow against those previously reported in the literature 
by Eversman (1999), who used infinite elements in the outer region. In order to facilitate this comparison for a 
pipe radius of 50 mm, it is necessary to scale the frequency up to 27.4 kHz to provide the same conditions as 
those used by Eversman [for a bigger duct]. It can be seen in Fig. 9 that behaviour is observed that is similar to 
that seen in the previously when ݊ ൐ 0. This pressure profile is also seen to compare reasonably well with the 
plots presented by Eversman. Furthermore, this sound pressure field serves to illustrate the complexity of the 
problem and the challenge associated with accurately predicting and measuring the sound pressure distribution 
from the open end of a duct or pipe. 

 

Figure 9: Mean flow ܯ௭ ൌ 0.3. Magnitude of acoustic pressure |݌| for excitation of single  
higher order mode (݊ ൌ 23) in circular duct at 27.4 kHz.  
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4 CONCLUSIONS 
This article presents a numerical method for obtaining the acoustic behaviour of an open ended duct or pipe. The 
numerical method makes use of a modal expansion in the region exterior to the duct in order to enforce exactly 
the Sommerfeld radiation condition. This then facilitates the introduction of a numerically efficient approach to 
solving the problem as one only needs to solve an eigenproblem over the outer surface of the finite element 
domain. It is also shown that this method may be extended to include mean fluid flow, but only if the flow in the 
outer region is uniform. This enables a Lorenz transformation to be used that then restores a separable equation 
in the outer region. Following this, the problem with flow may be solved in the same was as that described for 
zero mean flow. 
 
Predictions for plane wave and higher order modal excitation are presented here. It is seen that the pressure 
patterns generated by scattering from the open end of the pipe become very complex. This is especially true when 
higher order modes are excited in the pipe. Accordingly, for complex noise sources, such as those found in tur-
bomachinery, it is likely that the radiated sound pressure field will be complex and susceptible to small changes 
in local conditions, including the presence of mean fluid flow. For example, this may be important when measuring 
directivity patters in the presence of wind. The influence of the open end of a pipe is also quantified using a sound 
power balance, and two relatively simple equations are repeated here for the TL of the open end of a circular and 
rectangular duct in the absence of mean flow. Further work is required to quantify the effect of the mean flow on 
these values for TL, including the effect of changes in mean flow speed and direction. This will then enable envi-
ronmental conditions to be factored into calculations on the acoustics of open-ended terminations. 
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