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ABSTRACT 

The cases considered by the COMPILE 2014 workshop in Hamburg defined a pile (length 25 m), a shallow-
water environment (depth 10 m), the pile’s vertical position in it, and a force waveform on the pile head. It also 
defined both close-range and far-range receiver positions, at which acoustic Sound Exposure Levels (SEL) and 
Peak of the Sound Pressure Level (P-SPL) were to be calculated. The organisers published a comparison of 
results from six participants’ pile vibration and far-range propagation models during 2016. Five were Finite-
Element Models and one was a Finite-Difference Model; there was no analytical model. For far-ranges, the 
workshop nominated ranges of 0.75, 1.5, 10, 20 and 50 km. The writer’s in-house analytical model 
FAMPRADOP [“Far-range Analytical Model for Pressure Radiated from a Driven Offshore Pile”] has recently 
been applied to the far-range COMPILE workshop cases. At 0.75 and 1.5 km, the six participants’ results and 
FAMPRADOP agreed closely amongst each other. At the greater ranges, some participants’ results differed 
from the others, by up to 15 dB at 50 km. The FAMPRADOP results generally lie close to the minimum of the 
spread in the participants’ results, for reasons that will be discussed.  

1 INTRODUCTION 
For predicting underwater sound radiation from offshore pile-driving, it is expedient to separately discuss close-
ranges (up to around 30 m) and far-ranges. At close ranges, the sound pressure is determined primarily by the 
pile vibration, and modelling published so far has either ignored the environment or approximated its effect by 
considering only one reflection by each of the sea surface and seabed. The most popular method used by vibra-
tion models is the numerical “Finite-element model” (FEM), and there are subtle differences amongst the differ-
ent implementations that have been published.  

At far-ranges, it is necessary to incorporate propagation models that can compute pressure at any horizontal 
range and receiver depth from an omnidirectional point source of unit strength. For shallow water, there are 
three types of models available: normal-mode (NM), wave-number integration (WNI), and parabolic equation 
(PE). NM and WNI models require that the sound source be represented by one or more omnidirectional point 
sources in a vertical line array (VLA), and the noise modeller’s task is to define a VLA that is equivalent to the 
vibrating pile. PE models compute the propagated pressure using a marching algorithm, and can be started with 
a depth-profile of the sound-pressure at a close-range. 

To compare the different models, the “COMPILE” benchmarking workshop was held in Hamburg Germany, dur-
ing 2014 (Lippert, et al. 2016). The general case defined a single pile, a shallow-water environment, and the 
pile’s vertical position in it. Rather than defining the components of a piledriver, a simple analytical (although 
reasonably representative) axial force waveform applied to the pile head was defined. Individual cases defined 
both close-range and far-range positions, at which acoustic Sound Exposure Level (SEL) and Peak of the mag-
nitude of the Sound Pressure Level (P-SPL) were to be calculated. Seven groups of participants applied their 
pile-vibration models to the close-range cases, and a comparison of their results was published by the workshop 
organisers and participants (Lippert, et al. 2016). For the far-ranges (at least 750 m), six pile-vibration models 
were applied, of which five were Finite-Element Models (FEM) and one was a Finite-Difference Model (FDM); 
there was no analytical model. Only the FDM took account of negative feedback due to radiation loading (the 
reduction in vibration caused by the external and internal pressures created by the vibration); the FEMs simulat-
ed pile damping as being due entirely to viscous drag between the embedded pile segment and the seabed.  

The workshop nominated receiver ranges of 0.75, 1.5, 10, 20 and 50 km. The six participant results for SEL and 
P-SPL agreed closely amongst each other at ranges up to 1.5 km. At greater ranges, some of the results were 
significantly different from the others, with the disparity reaching a maximum of 15 dB at 50 km.  
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Models of pile vibration generated using finite element models generally ignore radiation loading and conse-
quently the axial phase velocity of the vibration waves is assumed to be the plate or bar velocity of the steel, 
with a very small intrinsic loss factor. If there is no other source of loss, the resulting pile vibration will produce 
"long ringing signals in the water column" (Lippert, et al. 2016), which is conceded to be unrealistic. Some mod-
els have assumed all the loss occurs in the embedded segment of the pile, due to drag imposed by a viscous 
seabed. This assumption predicts that radiated noise will decrease as a pile’s embedment increases.  

When radiation loading is considered (Hall 2015), the existence of vibration-produced radiation leads to a vibra-
tion phase velocity whose features include significant loss and dispersion. If loss in vibration (due to radiation) is 
combined with a small reflection loss at the toe (due to downward radiation into the seabed by the pile’s annular 
under-surface), it appears to be unnecessary for a noise model to also include significant loss due to seabed 
viscosity.  

Since the output parameters of current interest are P-SPL and SEL, it is worthwhile to consider their sensitivity 
to vibration of the embedded segment of a pile. The initial pulse of the radiated waveform is the waterborne 
Mach wave from the initial downward travelling vibration wave (Reinhall and Dahl 2011). This will have a higher 
P-SPL that any successive pulses that are (of necessity) due to vibration waves that have been reflected at the 
pile toe. P-SPL will therefore be independent of toe-reflectivity or seabed viscosity. The initial pulse will also 
contain most of the energy (Lippert, et al. 2016) (Reinhall and Dahl 2011). SEL will therefore be a slowly varying 
function of toe-reflectivity or seabed viscosity. 

2 MODEL OF PILE VIBRATION 

2.1 The COMPILE Scenario 
The dimensions, pile elastic properties, and the environment of the COMPILE scenario are listed in Table I 
(Lippert, et al. 2016). A small value, comparable with the intrinsic loss in steel, is used for the Young Modulus 
Loss factor in the pile. The value of 0.101 presented by Lippert et al (2016) as the loss due to the effect of sea-

bed viscosity on pile vibration is not used here. The bar and plate velocities (𝑞𝑏 and 𝑞𝑝) are derived from the pile 

material’s Young Modulus, density and Poisson ratio (Y, 𝜌𝑠, and ). The bar and plate ring frequencies (𝑓𝑏 and 

𝑓𝑝) are derived from the bar and plate velocities respectively, as well as the pile wall mean radius (a). 

Table 1: Pile dimensions, pile elastic properties, and the environment of the COMPILE scenario. 

Parameter Value      

Pile wall mean radius, a (m) 0.975      

Pile wall thickness (m) 0.05      

Pile Length, L (m) 25      

Pile Young’s modulus, Y (GPa) 210      

Pile Young Modulus loss factor 0.001      

Pile density, 𝜌𝑠 (kg/m3) 7850      

Pile Poisson ratio,  0.3      

Pile’s bar and plate velocities (m/s) 5172 and 5422      

Pile’s bar and plate ring frequencies (Hz) 844 and 885      

Seafloor depth, D (m) 10      

Seawater and seabed sound-speeds, (m/s) 1500 and 1800      

Seawater and seabed densities (kg/m3) 1025 and 2000      

Seabed sound absorption coefficient (dB / ) 0.469      

For each pile segment (immersed and embedded) it was specified that the interior and exterior media are to be 
the same.  
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2.2 Damping of vibration waves along the pile 
When considering pile vibration, FAMPRADOP does not incorporate the "equivalent damping values for the 
embedded part of the pile" provided with the cases to account for “losses induced by the interaction between the 
pile and the sediment” (Lippert, et al. 2016). Instead, "The reflectivities of the pile head and toe are assigned 
frequency-independent values of -1 and -0.8, respectively" (Hall 2015). These negative reflectivities applied to 
the radial displacement wave; the reflectivities of the axial displacement wave are both positive. It is appropriate 
here to comment on the following statement (Lippert, et al. 2016, 1062-1063): 

The most significant damping effect in offshore impact pile driving results from the interaction between the 
embedded section of the pile and the surrounding sediment, both inside and outside the pile. A neglect of 
these damping effects has been observed to yield sharp resonances in the spectral density levels of the 
sound pressure and long ringing signals in the water column, which are unrealistic and not observed in 
measurement data; see, for example, Reinhall & Dahl (2011) 

If radiation loading is included then vibration in the immersed segment of a pile will decay ("dampen") regardless 
of any other loss factors. If the entire pile is in liquid, the pile would radiate sound and this radiation would be 
accompanied by significant loss of vibration energy over a wide frequency band. Thus, vibration waves decay 
even if a pile is entirely in an inviscid liquid. The damping rates for the immersed and embedded segments of 
the COMPILE pile (both “filled”) have been computed using the algorithm described in Hall (2015). The results 
are shown in Figure 1 by the blue and red curves (2 - immersed and 3 - embedded). The main peak at 700 Hz is 
related to the bar and plate ring (radial resonance) frequencies of the COMPILE pile (844 and 885 Hz); for ax-
isymmetric vibration, there is only one bar ring frequency and one plate ring frequency. The cause of the damp-
ing shown in Figure 1 is the (inviscid) transfer of vibration energy into radiation energy. 

Whereas the spectra of damping along a filled pile have multiple peaks, the spectra for an empty pile (computed 
but not shown) have only one peak each, at 760 Hz (segment 2) and 450 Hz (segment 3). The peaks in the 
spectra for a filled pile at frequencies above 1000 Hz are therefore due to the presence of a liquid interior medi-
um.  

Figure 1: Theoretical damping rates along the filled pile assumed for the COMPILE workshop. In the legend, ‘2’ 
and ‘3’ refer to the immersed and embedded pile segments respectively. 

2.3 Axial phase velocity 
The phase velocities of the immersed and embedded segments of the COMPILE pile have been computed us-
ing the algorithm described in Hall (2015). They will be denoted by 𝑉2 and 𝑉3 respectively. Phase velocity de-
pends on all the parameters listed in Table I, except pile length. The results are shown by the blue and red 
curves in Figure 2. As prescribed, the internal medium of each pile segment is the same as the external medium 
(Lippert, et al. 2016). It is this feature that gives rise to the multiple peaks and troughs in the curves. The addi-
tional peaks for the “filled” pile are due to resonances between the internal liquid and the pile. The embedded 
curve has similar features to the immersed curve, but the maxima and minima caused by the (different) internal 
media occur at somewhat different frequencies. 
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Results for an empty pile (computed but not shown) have only one minimum and one maximum each, at 420 
and 1100 Hz respectively (segment 2), and at 170 and 1280 Hz respectively (segment 3). The VLF and VHF 
limits of both 𝑉2 and 𝑉3 for an empty pile are the steel’s bar and plate velocities (5172 and 5422 m/s). 

Figure 2: Real part of the Phase Velocity along the filled pile assumed for the COMPILE workshop. In the 
legend, ‘5422’ represents the pile plate velocity. 

3 METHOD FOR COMPUTING FAR-RANGE RADIATED SOUND 

3.1 Exact (All-field) and approximate far-field radiation theories 
In the “Transform Formulation of the Pressure Field of Cylindrical Radiators” (Junger and Feit 1993, 173-176) , 
a cylinder of finite length is represented as a Fourier Transform of a function of axial wavenumber. The Fourier 
Transform (FT) components may be considered as virtual cylindrical shells of infinite length, but with different 
axial vibration wavenumbers (equivalent to a temporal transient being represented as an FT of a function of fre-
quency, whose virtual oscillations last forever). The formulation as presented assumes the external medium to 
be an unbounded homogeneous fluid. It consists of both an exact radiation model (valid for both the near-field 
and far-field) and a far-field approximate model. 

The “Stationary-Phase Approximation to the Far-Field of Cylindrical Radiators” is applicable, subject to two ca-
veats: 

[1] the horizontal range is so large that the Hankel function, whose argument is (horizontal wavenumber  hori-
zontal range), may be replaced by its asymptotic expression over the whole frequency band that affects the re-

sult. The integrand in the IFT, a function of vertical (axial) wavenumber (), then has a single point of stationary 
phase at 𝛾 = 𝑘 cos 𝜃. This corresponds to the origin (the pile at the sea surface, 𝑟 = 0, 𝑧 = 0) being the main 
contributor to the radiated noise. 

[2] the requirement that the major source of noise at the receiver be at the origin implies that no vibration wave 
along the pile can be the major component of the signal. Thus, the major contribution at a receiver cannot be a 
Mach wave. Since a Mach wave is a characteristic feature of pile-driving noise, the stationary phase approxima-
tion may potentially be in significant error. It will be seen later however that FAMPRADOP does produce a rea-
sonable estimate for the Mach wave. 

If these two conditions are met, the IFT integral over 𝛾 may be approximated using the method of stationary 
phase. Whereas the exact model is conveniently expressed in cylindrical coordinates (horizontal range r and 

receiver depth ), the stationary phase expression is more conveniently presented in spherical coordinates: 
 

𝑅 = √𝑟2 + 𝜁2    and    𝜃 = 𝑎𝑡𝑎𝑛(𝑟 𝜁⁄ ) (1)  
 

where R is slant range and 𝜃 is colatitude. The result for the harmonic SPL (Junger and Feit 1993, 176), but 

simplified for axial symmetry and adapted to a time dependence of exp⁡(+𝑖𝜔𝑡), is: 
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𝑃(𝑅, 𝜃, 𝜔) =
−𝑖𝜔2𝜌⁡𝑊̂(𝑘 cos 𝜃)

𝜋 𝑘 sin 𝜃 𝐻1
(2)

(𝑘𝑎 sin 𝜃)
⁡
𝑒−𝑖𝑘𝑅

𝑅
 (2) 

 

where 
 

𝑊̂(𝑘 cos 𝜃) = ∫ 𝑊(𝑧)⁡𝑒𝑥𝑝(𝑖⁡𝑘 cos 𝜃 𝑧) 𝑑𝑧
𝐿

0
 (3) 

 

and 𝐻1
(2)

 is the Hankel function of the second kind and order 1. It follows from Eq. (2) that the phase of P is the 

phase of the straight ray from origin to receiver. An axisymmetric harmonic force (of angular frequency 𝜔 = 2𝜋𝑓) 
acting on a pile head will cause an “initial” harmonic axial displacement wave to travel down a pile (toward in-
creasing z). “Initial” here means unaffected by subsequent toe reflections. The axial displacement in the im-
mersed pile segment may be expressed as: 
 

𝑈(𝑧) = 𝑈0𝑒
−𝑖𝜔𝑧 𝑉2⁄  (4) 

 

where 𝑉2 is the (frequency-dependent) phase velocity in the immersed segment and 𝑈0 is the “initial” axial dis-
placement at the sea surface (𝑧 = 0). The axial and radial displacements are each the sum of the initial compo-

nent and an infinite sequence of reflections, and the radial displacement ⁡𝑊(𝑧) may be expressed as: 
 

𝑊2(𝑧) = 𝜒2𝑈0
𝑒−𝑖𝜔𝑧 𝑉2⁄ −0.8𝑒−𝑖𝜔(2𝐿−𝑧) 𝑉2⁄ 𝑒−2𝑖𝜔(𝐿−𝐷) 𝑉3⁄

1−0.8𝑒−2𝑖𝜔𝑇 ⁡ , 0 < 𝑧 < 𝐷 (5) 

 

𝑊3(𝑧) = 𝜒3𝑈0𝑒
−𝑖𝜔𝐷 𝑉2⁄ 𝑒−𝑖𝜔(𝑧−𝐷) 𝑉3⁄ −0.8𝑒−𝑖𝜔(2𝐿−𝑧) 𝑉3⁄

1−0.8𝑒−2𝑖𝜔𝑇 ⁡ , 𝐷 < 𝑧 < 𝐿 (6) 

 

where 𝜒n = 𝑊𝑛 𝑈𝑛⁄  is a depth-independent ratio, given by either Eq. (II.4) in Junger and Rosato (1954), or Eqs. 
(14) and (19) in Hall (2015), and T is the one-way travel time from head to toe: 
 

𝑇 = 𝐻 𝑉1⁄ + 𝐷 𝑉2 + (𝐿 − 𝐷 − 𝐻) 𝑉3⁄⁄ ,  (7) 
 

in which H is the height of the head above the sea surface, and the suffixes 1, 2 and 3 refer to the aerial, im-
mersed and embedded pile segments, respectively. Since the COMPILE case placed the pile head at the sea 
surface, 𝐻⁡ = ⁡0.  

One practical outcome of the results for 𝑉2 and 𝑉3 shown in Figure 2 is the fundamental frequency of the pile’s 
longitudinal oscillation, the reciprocal of double the travel time given by Eq. (7). Considering the curves at fre-
quencies up to a few hundred Hz, 𝑉2⁡~⁡5250 m/s and 𝑉3⁡~⁡5300 m/s, so 2𝑇~2(10 5250⁄ + 15 5300⁄ ) = 0.0095⁡𝑠. 
The fundamental longitudinal frequency of the COMPILE pile therefore should be approximately 105 Hz. 

3.2 Axial displacement caused by an imposed Force 
It has been shown (Hall 2017) that, in terms of an imposed harmonic axial force 𝐹, the initial axial displacement 
at the head is given by: 
 

𝑈0 = 𝑈′(0) 𝑉𝑛 (−𝑖𝜔) = 𝐹 (𝑖𝜔⁡𝐴⁡𝜌𝑠𝑉𝑛)⁄⁄  (8) 
 

where 𝐴 is the cross-sectional area to which 𝐹 is applied (the cross-sectional area of the pile), the depth-

derivative 𝑈′⁡is the axial strain, and suffix 𝑛 corresponds to the medium immediately below the pile head; 𝑛 = 1 
for the usual exposed head (𝐻⁡ > ⁡0), but 𝑛 = 2⁡for COMPILE (𝐻⁡ = ⁡0). When the FT of an imposed transient 

force waveform is taken, yielding 𝐹(𝜔), Eq. (8) will provide the connection between that force and the conse-

quent axial displacement of the head. The radial displacement is then obtained using 𝜒2. 
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4 FAMPRADOP 
In broad terms, FAMPRADOP is similar to the models used by some of the workshop participants, in that it 
computes the (complex) source strengths of a VLA of point sources. It yields results (only) at far-ranges, and 
therefore differs fundamentally from the close-range model described by Hall (2015). FAMPRADOP is based on 
the Membrane thin-shell vibration theory (Leissa 1993, 37). 

4.1 Pile as sum of contiguous (𝜆∕2) tubular layers 
Before presenting expressions for point sources, let us consider the pile as the sum of several contiguous tubu-
lar layers, each a half-wavelength thick: 𝛿 = 𝜆 2⁄ . The number of immersed layers is  𝑁 = 𝑖𝑛𝑡(2𝐷 𝜆⁄ ). The upper 

face of the j’th layer is at depth 𝑧𝑗 = (𝑗 − 1) 𝜆 2⁄ ,⁡and the colatitude of a receiver at (𝑟, 𝜁) measured from the lay-

er’s upper face is  𝜃𝑗 = 𝑎𝑡𝑎𝑛[𝑟 (𝜁 − 𝑧𝑗)⁄ ]. For each tubular layer, the origin for colatitudes is the centre of the 

layer’s upper face. Except at frequencies below the pile’s fundamental longitudinal frequency of 105 Hz (where 
the radiated noise is negligible), the thickness (tallness) of each layer is small in relation to the range to a re-
ceiver. The major noise source may thus be assumed to be the layer’s upper surface (as distinct from a point 
between the upper and lower surfaces). In this case, the stationary phase approximation will be valid, and Eq. 
(2) may be used for each layer. The (additional) assumption that the total radiated harmonic pressure 𝑃(𝜔) at 

the receiver (𝑅, 𝜃) is the coherent sum of the N individual signals then yields: 
 

𝑃(𝑅, 𝜃, 𝜔) =
−𝑖𝜔2𝜌

𝜋𝑘
∑

𝑊̂𝑗(𝑘 𝑐𝑜𝑠 𝜃𝑗)

𝑠𝑖𝑛 𝜃𝑗 𝐻1
(2)

(𝑘𝑎 𝑠𝑖𝑛 𝜃𝑗)

𝑒
−𝑖𝑘𝑅𝑗

𝑅𝑗

𝑁
𝑗=1  (9) 

 

Since the elastic properties of each layer are the same as its neighbours, there is no reflection at the horizontal 
surfaces of any layer, other than those at the surface and seafloor. The dependence of radial displacement on 
depth within layer⁡𝑗 may therefore be expressed as: 
 

𝑊j2(𝑧) = 𝑊(𝑧𝑗)⁡𝑒𝑥𝑝(−𝑖𝜔 𝑧 𝑉2⁄ )  

 

in which 𝑧 is depth below 𝑧𝑗. The -Fourier Transform of 𝑊𝑗, 𝑊̂𝑗(𝑘 𝑐𝑜𝑠 𝜃𝑗) is therefore given by: 

 

𝑊̂𝑗(𝑘 𝑐𝑜𝑠 𝜃𝑗) = 𝑊(𝑧𝑗)⁡∫ 𝑒𝑥𝑝(−𝑖𝜔 𝑧 𝑉2⁄ + 𝑖𝑘 𝑐𝑜𝑠 𝜃𝑗 𝑧)
𝛿

0
𝑑𝑧 = 𝑊(𝑧𝑗) 𝛿 𝑒𝑖𝜑𝑗 𝑠𝑖𝑛 𝜑𝑗 𝜑𝑗⁄  (10) 

 

where 
 

𝜑𝑗 = 𝑘(𝑐𝑜𝑠 𝜃𝑗 − 𝑐 𝑉2⁄ ) 𝛿 2⁄  (11) 

 

In Eqs. (10) and (11), the dependence on colatitude is the same as the shape of the beam from a continuous 
line source, steered in the direction of 𝜃𝑀 = acos[𝑅𝑒𝑎𝑙(𝑐 𝑉2⁄ )], the angle of the Mach wave. At the complex colat-

itude 𝜃𝑀
𝑐 = acos(𝑐 𝑉2⁄ ) = (74.1, 0.12)°, 𝜑𝑗 would be exactly zero. It has been found that with each colatitude set 

to the Mach colatitude, Eq. (9) yields a good approximation for the pressure of the Mach wave from the entire 
pile. 

4.2 An equivalent VLA of point sources 
In Eq. (9), if the expression that is a function of colatitude were a constant then the pressure could be regarded 
as due to N equal point sources. A VLA of N point sources with a spacing of a half-wavelength generally has a 
beam pattern similar to that of a line source of the same length (Urick 1983, 57,59). The number of sources will 
be proportional to frequency. The equivalence of the line and VLA sources is illustrated in Figure 3 for the fre-
quency of 2000 Hz, where there are 26 point-sources in a length of 10 m. Both line and VLA sources are 

steered in the direction of 73 from the pile axis, to be consistent with the angle of the Mach wave emitted by a 
steel pile in seawater (Reinhall and Dahl 2011) (Hall 2015). The approximation is very good for colatitudes from 

50 to around 95, an interval that should suffice to cover the angles involved in far-range sound propagation 
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(contributions travelling at steep angles attenuate more rapidly than do shallow-angle contributions). The grow-
ing deviation in phase between the two curves is due in part to the continuous line being able to use a precise 
value for the ratio 2𝐿 𝜆⁄ , whereas the corresponding ratio for the VLA is constrained to be an integer. These cal-
culations have been repeated for the pile’s fundamental frequency (105 Hz), for which it is found that the validity 

domain of the approximation is much smaller; from around 63 to 83. Nevertheless, this interval should suffice 
to cover most of the angles involved in far-range sound propagation. 
To convert Eq. (9) to an expression suitable for a VLA of point sources, their source strengths must be angle-

independent, so a suitable fixed value for 𝜃𝑗  must be selected. The source strength of source⁡𝑗 will be the com-

bination of factors in Eq. (9) that multiplies the factor  𝑒−𝑖𝑘𝑅𝑗 𝑅𝑗⁄ . The sensitivity of the results to 𝜃𝑗  was deter-

mined by computing SEL(spectrum) (at range 10 km, depth 1 m) for 𝑅𝑒𝑎𝑙(𝜃𝑗) ⁡ranging from 0 to 90. 

“SEL(spectrum)” denotes the area under the square of the Pressure-magnitude spectrum |𝑃(𝑓)|2; the details of 

the algorithm used are described later. The results vary by less than 1 dB for angles between 60 and 90, so 
the complex Mach angle 𝜃𝑀

𝑐  was selected (the resulting SEL is slightly above the curve based on real angles). 
𝜃𝑀
𝑐  varies with frequency (because 𝑉 does), and its value at 2 kHz is (74.1, 0.12)° . For the source strengths of 

the point sources, Eq. (9) for the tubular layers will therefore be used, except that the colatitude-dependent fac-
tors will be replaced by their values at 𝜃𝑀

𝑐 . 

 

Figure 3: Far-field beam patterns at 2000 Hz of a continuous 10-m line and a VLA of the same length with 

half-wavelength spacing. Both sources are steered in the direction of 73 from the pile axis. 

 
The COMPILE workshop specified a Nyquist frequency (half the sampling rate) of 2500 Hz. Since the FFT rou-
tine used (Ferziger 1998) requires the number of samples to be an integer power of 2, the time windows to be 
used were adjusted accordingly.  
One issue to address is whether the embedded pile segment needs to be included in the calculation. The loss 

per wavelength travelled by sub-bottom sound radiation is of the order of 1 dB / (Hamilton 1980). At frequen-
cies of the pile’s fundamental frequency (105 Hz) or more, the wavelength of sound waves in unconsolidated 
seabed will be no more than 20 m, and thus sub-bottom propagation to a range of the order of 1 km will dampen 
by at least 50 dB. Since the wavelengths of shear waves are around half those of sound waves (at most), shear 
waves will dampen by at least 100 dB. This means that the sub-bottom propagated signals will be negligible in 
relation to the waterborne propagated signals at frequencies above around 100 Hz. In summary: although sub-
bottom propagation may suffer little loss at low frequencies, this is of no consequence since the spectrum of pile 
driving noise below the fundamental frequency is small in relation to the spectrum at higher frequencies. Since 
the contribution of sub-bottom sources will be insignificant at far-ranges, only the point sources in the water will 
be included. 

4.3 Spectra of the radiated sound 
At any frequency, source depth, receiver range, receiver depth and environment, propagation models generally 
report the pressure magnitude. Some also report the complex pressure. These models assume the source to be 
a point source with unit “strength”; the latter meaning that the pressure magnitude is unity at unit distance from 
the source (spherical spreading is accurate at such a short distance, unless the source is very close to a reflect-
ing surface). The results for pressure magnitude are converted to decibels and described as “Transmission (or 
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Propagation) Loss”. In this paper, the results for complex pressure will be referred to as “Normalised Complex 
Pressure”, since they are normalized to unity at unit distance.  
At each frequency to be used in the current analyses, the complex harmonic source strengths are multiplied by 
the normalized complex pressures computed by the ORCA propagation model (Westwood, Tindle and 

Chapman 1996) for each of N source depths. Since ORCA assumes a time dependence of 𝑒−𝑖𝜔𝑡, the complex 
conjugates of those results are used. The products are the harmonic pressures at far ranges. The N complex 
pressures at the receiver from the N sources were summed coherently, yielding the FT of the received pressure. 
Spectra computed with FAMPRADOP for the COMPILE scenario with a receiver at 1-m depth and horizontal 
ranges of 0.75, 1.5, 10, 20 and 50 km are shown in Figure 4. The frequency resolution (pixel) decreases from 
1/3.3 = 0.3⁡𝐻𝑧 at 0.75 km to 1/100 = 0.01⁡𝐻𝑧 at 50 km (these resolutions were found to be required for the re-
spective inverse-FTs that will be described later). The fundamental frequency of 105 Hz and four of its over-
tones are evident. Also evident is the rapid fall-off in the spectrum below around 300 Hz as the range increases 
(the COMPILE scenario’s cut-off frequency for modal propagation is 68 Hz). 
 

Figure 4: Sound pressure spectra computed with FAMPRADOP for the COMPILE scenario with a receiver 
at 1-m depth and horizontal ranges of 0.75, 1.5, 10, 20 and 50 km. 

4.4 Waveforms of the radiated sound 
The FTs were inverted to obtain waveforms. The number of frequencies (NUMFREQ) for the FFT was succes-
sively doubled, until the resulting waveforms stabilised. At 0.75 km, the values required ranged from 213 to 215, 
whereas at 50 km they ranged from 218 to 220. As an illustrative example, four sound pressure waveforms com-
puted with FAMPRADOP for the COMPILE scenario with a receiver at 10-km horizontal range and 1-m depth 
are shown in Figure 5. The sizes of the FTs that produced these four waveforms are 215, 216, 217 and 218 (the 
corresponding time windows are = 6.5, 13, 26 and 52 s). Although the abscissa label is “Time” it should not be 
interpreted as travel time; the time computed by FAMPRADOP is 1.2 s, whereas the actual travel time would be 
approximately 6.7 s (the reason for this error is unknown).  

The reassuring aspect of the waveforms in Figure 5 is that as NUMFREQ (and time window) increases, the im-
aginary parts decrease and the peaks of the real parts asymptote to a value that can be estimated with a small 
uncertainty. SEL(spectrum) is constant at 129.7 dB re µPa2.s, and the four successive values of SEL(real wave-
form) are less than SEL(spectrum) by 1.61, 0.39, 0.095, and 0.024 dB respectively. “SEL(real waveform)” de-
notes the integral over the time window of the square of the real part of the waveform. It is interesting that each 
time NUMFREQ is doubled, the error in SEL(real waveform) reduces to around 25% of its previous value. 

4.5 Far-range SEL and P-SPL  
Participants’ results for SEL and P-SPL at receiver depths of 1 and 9 m have been published (Lippert, et al. 
2016), and those at 1 m have been read off for presentation in Figures 6 and 7 (the 9-m results were found to 
yield similar comparisons). The spread of the participants’ results at each range is indicated by an error bar. 
FAMPRADOP computed two measures of SEL, “SEL(spectrum)” and “SEL(real waveform)”. The latter increas-
es with NUMFREQ (accompanied by a reduction in the imaginary part of the waveform) and asymptotes to 
SEL(spectrum). The successive doubling of NUMFREQ was continued until SEL(real waveform) had risen to 
within 0.1 dB of SEL(spectrum). NUMFREQ was then doubled once more so that the variability in P-SPL could 
be examined.  
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Figure 5: Sound pressure waveforms computed with FAMPRADOP for the COMPILE scenario with a re-
ceiver at 10-km horizontal range and 1-m depth, using four time-windows from 6 to 52 s. KEY: Blue: real part, 
Red: imaginary part. The first waveform is presented at the time computed by FAMPRADOP (1.2 s); the other 

three are successively shifted by 1 s for clarity. 

The participants’ and FAMPRADOP far-range results for SEL at a receiver depth of 1 m are compared in Figure 
6. The slightly different values for the two FAMPRADOP SELs are not shown individually. At 0.75 and 1.5 km 
the differences are negligible, whereas from 10 km to 50 km the FAMPRADOP results lie at or near the minima 
of the spreads in the participants’ results. 

 

Figure 6: Comparison of far-range results for SEL at a receiver depth of 1 m. 

The participants’ and FAMPRADOP far-range results for P-SPL at a receiver depth of 1 m are compared in Fig-
ure 7. The FAMPRADOP results lie between the minimum and median of the distributions of the participants’ 

results. The variability in the FAMPRADOP results is generally of the order of 0.01 dB. 
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Figure 7: Comparison of far-range results for P-SPL at a receiver depth of 1 m.  

5 CONCLUSIONS 
At the shorter ranges (0.75 and 1.5 km) the spread in the results for both SEL and P-SPL are small, and 
FAMPRADOP results are close to the participants’. 
At the longer ranges (10, 20 and 50 km), the spread in the participants’ SEL results increases with range from 

 5 dB to  8 dB. The spread in the participants’ P-SPL results increases with range from  4 dB to  7 dB. 
For SEL at 1 m depth, the FAMPRADOP results lie at or near the minimum of the spread in the participants’ 
results. For SEL at 9 m depth, the FAMPRADOP results lie at the median at 10-km range, but decrease to the 
minimum at 50 km.  
For P-SPL at 1 m depth, the FAMPRADOP results lie between the minimum and median of the participants’ 
spreads at 10 and 20 km, and at the minimum at 50 km. For P-SPL at 9 m depth, the spreads are small except 
at 50 km. The FAMPRADOP results are close to the participants’ results at 10 and 20 km, but decrease to the 

minima at 50 km.  
A conceivable reason for FAMPRADOP to (relatively) underestimate SEL and P-SPL by several decibels at 
ranges beyond 10 km is that the number of point sources (2 per wavelength) it uses is insufficient (one partici-
pant used a minimum of 5 sources). One would expect however that an inadequate number of sources would 
cause a similar shortfall at all ranges, including 0.75 and 1.5 km. 
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