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A model of the sound signal emitted by the airgun array and the sound propagation model across the Southern 
Ocean are presented in the next section. Modelling results are compared with measurement data in Section 3. 

2 MODELLING APPROACH 

2.1 Source signal 
The sound signal emitted by the airgun array was modelled using a numerical model of sound emission from 
single guns and airgun arrays developed at the Centre for Marine Science and Technology (CMST), Curtin Uni-
versity (Duncan, 1998). The model calculates the signal waveform in the far field, i.e. at a distance much larger 
than the array dimensions. Then the waveform amplitude is back-extrapolated to a distance of 1 m from the ar-
ray geometrical centre using the spherical spreading law for the transmission loss, so that the array is modelled 
by a directional point source. As the array is a directional source of sound signal, the source signal waveform is 
modelled for different azimuth and elevation angles. The azimuth angle is commonly measured clockwise rela-
tive to the vessel/array heading, and the elevation angle is measured relative to the downward vertical direction, 
so that it is 90 for the horizontal emission. The input parameters of the model are the array geometry (as shown 
in Figure 4 in Gavrilov et al., 2016) and the volume and chamber pressure of each active gun in the array.       

The heading direction of all seismic tracks of the survey was either about 30 or 330 relative to the direction of 
sound propagation to the recorder in Antarctica. Figure 2 shows the sound signal waveform emitted by the array 
at an azimuth angle of 330 and elevation angle of 90.   

 
Figure 2: Sound signal waveform at 1 m from the airgun array centre, modelled for an 

azimuth angle of 330 and elevation angle of 90. 

The Energy Spectral Density (ESD) level of the sound signal emitted by the array at 330 is shown in Figure 3. It 
is averaged over the elevation angles from 45 to 90 where most of the sound energy is coupled with the un-
derwater sound channel. Averaging over the elevation angle is applied to simplify calculations of the sound 
transmission loss with range, as most of the common sound propagation models do not directly accept point 
sources with vertical directionality. The ESD level decays from about 10 Hz to nearly 100 Hz. The broad peak at 
around 10 Hz is formed by the energy of air bubble pulsations which have slightly different frequencies for air-
guns with different volumes in the array. The modelled ESD shown in Figure 3 was used to predict the ESD at 
the sound receiver in Antarctica.   
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of spreading loss (Figure 8). At frequencies below approximately 30 Hz, the attenuation is noticeably higher due 
to interaction of low order modes with the seabed over the shallower section of the continental slope. At fre-
quencies above approximately 80 Hz, the effect of surface scattering becomes significant in the transmission 
loss. 

Finally, the SEL was calculated as a function of depth at the receiver location. Figure 11 shows the modelled 
SEL versus depth and the SEL value of the airgun signals measured on the 18th of May. The plot clearly 
demonstrates that the sound transmission from a shallow sound source over the continental slope is more effi-
cient when the sea depth at the source location is smaller than the depth of the SOFAR channel axis. When the 
sea depth at the source location is 150-200 m, the sound energy at the receiver location tends to concentrate in 
the top 200-m water layer. As the sea depth at the source location increases, the SEL becomes more evenly 
distributed across the water column.     

 

 
Figure 11: SEL of the received signal vs receiver depth at the distance to the sound recorder 
modelled for three sound source locations. The horizontal error bar shows the range of SEL var-
iations measured on the 18th of May.     

4 SUMMARY 
The sound emission and propagation model employed in this numerical study resulted in a good agreement of 
the modelling results with the measurement data with respect to both ESD and SEL of the received signal. 
However, the modelling results were verified by measurements only for a receiver placed near the seabed. The 
comparison of the numerical predictions and measurement data would be much more comprehensive if we had 
measurements made at different (shallower) receiver depths.  

It’s also important to add that the measurements were made in austral summer when the Southern Ocean off 
Eastern Antarctica is free of sea ice. In such conditions the airgun sound trapped in the polar near-surface 
sound channel was affected by the transmission loss due to sound scattering from surface waves. A significant 
wave height of approximately 8 m typical for the Southern Ocean south of the Antarctic polar front was used in 
the sound transmission model, which resulted in a good agreement of modelling and measurement results. In 
austral winter, an extensive area of the Southern Ocean south of the East Antarctic coast is covered by sea ice, 
which affects the surface scattering mechanism and should be taken into consideration in the sound transmis-
sion model.   
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